Einstein and Gravity Probe B

Ghanashyam Date

The Institute of Mathematical Sciences, Chennai
Organization of the Talk

- What is Gravity Probe B?
- General Theory of Relativity
- Predictions for Spinning test bodies
- The Experiment
- Remarks
Organization of the Talk

- What is Gravity Probe B?
Organization of the Talk

- What is Gravity Probe B?
- General Theory of Relativity
Organization of the Talk

- What is Gravity Probe B?
- General Theory of Relativity
- Predictions for Spinning test bodies
Organization of the Talk

- What is Gravity Probe B?
- General Theory of Relativity
- Predictions for Spinning test bodies
- The Experiment
Organization of the Talk

- What is Gravity Probe B?
- General Theory of Relativity
- Predictions for Spinning test bodies
- The Experiment
- Remarks
What is Gravity Probe B Experiment?

http://einstein.stanford.edu/
What is Gravity Probe B Experiment?

http://einstein.stanford.edu/

GP-B is a Highly Sophisticated Experiment designed to test two of the predictions of Einstein’s General Theory of Relativity:
What is Gravity Probe B Experiment?

http://einstein.stanford.edu/

GP-B is a Highly Sophisticated Experiment designed to test two of the predictions of Einstein’s General Theory of Relativity:

A freely falling gyroscope will suffer two types of precession induced by the earth’s gravitational field -
What is Gravity Probe B Experiment?

http://einstein.stanford.edu/

GP-B is a Highly Sophisticated Experiment designed to test two of the predictions of Einstein’s General Theory of Relativity:

A freely falling gyroscope will suffer two types of precession induced by the earth’s gravitational field -

the geodetic precession due to ’curvature’ and
What is Gravity Probe B Experiment?

http://einstein.stanford.edu/

GP-B is a Highly Sophisticated Experiment designed to test two of the predictions of Einstein’s General Theory of Relativity:

A freely falling gyroscope will suffer two types of precession induced by the earth’s gravitational field -

the geodetic precession due to ’curvature’ and

the frame dragging precession due to spinning of the earth.
What is the General Theory of Relativity?

It is a synthesis of three different notions/facts, namely,

1. The notion of space and time,
2. Riemannian geometry and
What is the General Theory of Relativity?

It a synthesis of three different notions/facts, namely,
What is the General Theory of Relativity?

It a synthesis of three different notions/facts, namely,

1. The notion of space and time,
What is the General Theory of Relativity?

It a synthesis of three different notions/facts, namely,

1. The notion of space and time,

2. Riemannian geometry and
What is the General Theory of Relativity?

It a synthesis of three different notions/facts, namely,

1. The notion of space and time,

2. Riemannian geometry and

Intuitively, space and time serve to catalog physical events by giving their locations and times of occurrences. The labels are assigned using physical systems (e.g., rods and clocks) and using physical processes (e.g., synchronization).

Special Theory of Relativity accepts as postulate, that the speed of light in vacuum is constant. Instantaneous communications are out and space and time merge into the single entity called space-time.
Space + Time \rightarrow Space-Time

Intuitively, space and time serve to catalog physical events by giving their locations and times of occurrences. The labels are assigned using physical systems (e.g., rods and clocks) and using physical processes (e.g., synchronization).
Intuitively, space and time serve to catalog physical events by giving their locations and times of occurrences. The labels are assigned using physical systems (eg rods and clocks) and using physical processes (eg synchronization).

Special Theory of Relativity accepts as postulate, that the speed of light in vacuum is constant.
Intuitively, space and time serve to catalog physical events by giving their locations and times of occurrences. The labels are assigned using physical systems (eg rods and clocks) and using physical processes (eg synchronization).

Special Theory of Relativity accepts as postulate, that the speed of light in vacuum is constant.

Instantaneous communications are out and space and time merge into the single entity called space-time.
Riemannian Geometry

Space (or space-time) also has Geometrical properties such as lengths of solid rods, sums of angles of triangle etc. The geometrical properties can be encoded in terms of a metric or a rule specifying length of a coordinate interval. These are Riemannian geometries which are curved in general. Pre 1905, the space is flat (Euclidean). Between 1905 and 1915, the space-time is still flat (Minkowski) but now moving lengths contract and clocks slow down. A rotating observer will measure the geometry to be non-Euclidean due to the length contraction effects.
Riemannian Geometry

Space (or space-time) also has Geometrical properties such as lengths of solid rods, sums of angles of triangle etc.
Riemannian Geometry

Space (or space-time) also has Geometrical properties such as lengths of solid rods, sums of angles of triangle etc.

The geometrical properties can be encoded in terms of a metric or a rule specifying length of a coordinate interval. These are Riemannian geometries which are curved in general.
Riemannian Geometry

Space (or space-time) also has Geometrical properties such as lengths of solid rods, sums of angles of triangle etc.

The geometrical properties can be encoded in terms of a metric or a rule specifying length of a coordinate interval. These are Riemannian geometries which are curved in general.

Pre 1905, the space is flat (Euclidean). Between 1905 and 1915, the space-time is still flat (Minkowski) but now moving lengths contract and clocks slow down.
Riemannian Geometry

Space (or space-time) also has Geometrical properties such as lengths of solid rods, sums of angles of triangle etc.

The geometrical properties can be encoded in terms of a metric or a rule specifying length of a coordinate interval. These are Riemannian geometries which are curved in general.

Pre 1905, the space is flat (Euclidean). Between 1905 and 1915, the space-time is still flat (Minkowski) but now moving lengths contract and clocks slow down.

A rotating observer will measure the geometry to be non-Euclidean due to the length contraction effects.
Gravity

A curious fact: gravitational mass = inertial mass.

Uniform gravity is indistinguishable from uniform acceleration!

But, acceleration affects geometry, so gravity affects geometry!!

But, matter/energy produces gravity, so matter/energy also affects geometry!!

GTR: Matter moves in a curved Riemannian manifold whose geometry is determined by the matter distribution.
Gravity

A curious fact: gravitational mass $= \text{inertial mass}$.
Gravity

A curious fact: gravitational mass $= \text{inertial mass}.$

Uniform gravity is indistinguishable from uniform acceleration!
Gravity

A curious fact: gravitational mass = inertial mass.

Uniform gravity is indistinguishable from uniform acceleration!

But, acceleration affects geometry, so gravity affects geometry!!
Gravity

A curious fact: gravitational mass = inertial mass.

Uniform gravity is indistinguishable from uniform acceleration!

But, acceleration affects geometry, so gravity affects geometry!!

But, matter/energy produces gravity, so matter/energy also affects geometry!!!
Gravity

A curious fact: gravitational mass = inertial mass.

Uniform gravity is indistinguishable from uniform acceleration!

But, acceleration affects geometry, so gravity affects geometry!!

But, matter/energy produces gravity, so matter/energy also affects geometry!!!

GTR: Matter moves in a curved Riemannian manifold whose geometry is determined by the matter distribution.
Novelties of GTR

- Light bends around massive bodies (confirmed);
- Planetary orbits precess (confirmed);
- Stars can collapse to form black holes (widely believed);
- Gravitational waves (indirect evidence);
- "Big Bang cosmology" (widely believed);
- A small spinning body would precess due to curvature near a massive body and an additional precession if the body is rotating (Being tested!).
Novelties of GTR

Light bends around massive bodies (confirmed);

Stars can collapse to form black holes (widely believed);

Gravitational waves (indirect evidence);

"Big Bang cosmology" (widely believed);

A small spinning body would precess due to curvature near a massive body and an additional precession if the body is rotating (Being tested!).
Novelties of GTR

Light bends around massive bodies (confirmed);

Planetary orbits precess (confirmed);
Novelties of GTR

Light bends around massive bodies (confirmed);

Planetary orbits precess (confirmed);

Stars can collapse to form black holes (widely believed);
Novelties of GTR

Light bends around massive bodies (confirmed);

Planetary orbits precess (confirmed);

Stars can collapse to form black holes (widely believed);

Gravitational waves (indirect evidence);
Novelties of GTR

Light bends around massive bodies (confirmed);

Planetary orbits precess (confirmed);

Stars can collapse to form black holes (widely believed);

Gravitational waves (indirect evidence);

“Big Bang cosmology” (widely believed);
Novelties of GTR

Light bends around massive bodies (confirmed);

Planetary orbits precess (confirmed);

Stars can collapse to form black holes (widely believed);

Gravitational waves (indirect evidence);

“Big Bang cosmology” (widely believed);

A small spinning body would precess due to curvature near a massive body and an additional precession if the body is rotating (Being tested!).
If a half filled bucket is set spinning, the water starts spinning too and its surface becomes curved. What is this rotation relative to?

It can't be the relative rotation between water and the bucket walls. Newton favored Absolute space, others favored Distant stars! (Mach, 1893)

If the distant stars rotated and not the bucket, would the surface be curved?

Mach may have realized that notions of inertia, dynamics be such that with either view, the surface should be curved – Mach
Spinning Bodies - Newton’s Bucket

If a half filled bucket is set spinning, the water starts spinning too and its surface becomes curved. What is this rotation relative to?

It can't be the relative rotation between water and the bucket walls. Newton favored Absolute space, others favored Distant stars! (Mach, 1893)

If the distant stars rotated and not the bucket, would the surface be curved?

May be notions of inertia, dynamics be such that with either view, the surface should be curved – Mach
Spinning Bodies - Newton’s Bucket

If a half filled bucket is set spinning, the water starts spinning too and its surface becomes curved. What is this rotation relative to?

It can’t be the relative rotation between water and the bucket walls. Newton favored Absolute space, others favored Distant stars! (Mach, 1893)
Spinning Bodies - Newton’s Bucket

If a half filled bucket is set spinning, the water starts spinning too and its surface becomes curved. What is this rotation relative to?

It can’t be the relative rotation between water and the bucket walls. Newton favored Absolute space, others favored Distant stars! (Mach, 1893)

If the distant stars rotated and not the bucket, would the surface be curved?
Spinning Bodies - Newton’s Bucket

If a half filled bucket is set spinning, the water starts spinning too and its surface becomes curved. What is this rotation relative to?

It can’t be the relative rotation between water and the bucket walls. Newton favored Absolute space, others favored Distant stars! (Mach, 1893)

If the distant stars rotated and not the bucket, would the surface be curved?

May be notions of inertia, dynamics be such that with either view, the surface should be curved – Mach
In GTR, this is possible since a rotating universe will have a different geometry which will curve the water surface [Brill-Cohen (1966), Pfister-Braun (1985)].
In GTR, this is possible since a rotating universe will have a different geometry which will curve the water surface [Brill-Cohen (1966), Pfister-Braun (1985)].

This entails space-time being not only curved, but also dragged by a rotating body.
In GTR, this is possible since a rotating universe will have a different geometry which will curve the water surface [Brill-Cohen (1966), Pfister-Braun (1985)].

This entails space-time being not only curved, but also dragged by a rotating body.

It is hard to rotate the whole universe or go very close to a rotating black hole, but we can just watch a spinning gyroscope falling freely around the rotating earth.

This is just what Gravity Probe B Experiment is.
Basic Equation for Spin precession

\[d\vec{S} = \langle \vec{\Omega} \rangle \times \vec{S} , \quad \langle \vec{\Omega} \rangle = \frac{G_2}{r^3} \left[\vec{J}_E - \hat{h} (\hat{h} \cdot \vec{J}_E) \right] + 3 \left(\frac{GM_E}{2} \right)^{3/2} \frac{1}{r^{5/2}} \hat{h} \]
Basic Equation for Spin precession

\[
\frac{d\vec{S}}{dt} = \langle \vec{\Omega} \rangle \times \vec{S},
\]

\[
\langle \vec{\Omega} \rangle = \frac{G}{2r^3} \left[\vec{J}_E - \hat{h}(\hat{h} \cdot \vec{J}_E) \right] + \frac{3(GM_E)^{3/2}}{2r^{5/2}} \hat{h}
\]
Basic details and Estimates

- Polar circular orbit with $r \sim 400$ miles;
- Duration of experiment $\sim 12 - 14$ months;
- Estimated Geodetic precession rate ~ 6.6 arcsec/yr;
- Estimated Frame-dragging precession rate ~ 40.9 milliarcsec/yr;
Experimental Requirements

Basically, all sources which could induce precession must do so with amount less than the estimate and since the change is so minute, the detection of the changes must be extremely precise.
Experimental Requirements

Basically, all sources which could induce precession must do so with amount less than the estimate and since the change is so minute, the detection of the changes must be extremely precise.

1. Gyroscopes must be stable and drag-free;
2. Method to read the spin direction without disturbance;
Experimental Requirements

Basically, all sources which could induce precession must do so with amount less than the estimate and since the change is so minute, the detection of the changes must be extremely precise.

1. Gyroscopes must be stable and drag-free;
2. Method to read the spin direction without disturbance;
3. Stable reference to a Guide Star;
4. Trust worthy Guide Star;
Experimental Requirements

Basically, all sources which could induce precession must do so with amount less than the estimate and since the change is so minute, the detection of the changes must be extremely precise.

1. Gyroscopes must be stable and drag-free;
2. Method to read the spin direction without disturbance;
3. Stable reference to a Guide Star;
4. Trust worthy Guide Star;
5. Isolating Relativity Effects;
6. Calibration Scheme.
The arrangement
The Gyroscope

- Pure quartz ball of diameter 3.81 cm, spherical within few atomic layers \((<3 \times 10^{-7} \text{ inches}) \), homogeneous within \((10^{-6})\), electrical dipole moment vanishingly small;
- Coated with Niobium, suspended electrically in its housing with a clearance of \(10^{-3} \text{ inches}\), remains centered within \(10^{-6} \text{ inches}\). Spin rate up to 10,000 RPM;
The Gyroscope

- Pure quartz ball of diameter 3.81 cm, spherical within few atomic layers ($< 3 \times 10^{-7}$ inches), homogeneous within 10^{-6}, electrical dipole moment vanishingly small;
The Gyroscope

- Pure quartz ball of diameter 3.81 cm, spherical within few atomic layers ($< 3 \times 10^{-7}$ inches), homogeneous within (10^{-6}), electrical dipole moment vanishingly small;

- Coated with Niobium, suspended electrically in its housing with a clearance of 10^{-3} inches, remains centered within 10^{-6} inches. Spin rate up to 10000 RPM;
Detecting spin direction: London moment induced in the rotating super-conductor. Read by a SQUID with sensitivity of 10^{-14} gauss. Cut earth’s magnetic field by 10^{-13} by enclosing in lead bags;
Detecting spin direction: London moment induced in the rotating super-conductor. Read by a SQUID with sensitivity of 10^{-14} gauss. Cut earth’s magnetic field by 10^{-13} by enclosing in lead bags;

Spin-up is achieved by evaporating super-fluid Helium passing around the gyroscope.
Guide Star

Ideally should be a quasar – too faint;

Star with known motion relative to a quasar, preferably a binary with a radio source;

convenient position in the sky – IM Pegasi;
Guide Star

- Ideally should be a quasar – too faint;
Guide Star

- Ideally should be a quasar – too faint;

- Star with known motion relative to a quasar, preferably a binary with a radio source;
Guide Star

- Ideally should be a quasar – too faint;
- Star with known motion relative to a quasar, preferably a binary with a radio source;
- convenient position in the sky – IM Pegasi;
Telescope

- Should detect changes of 10^{-4} arcsec;
- Telescope should remain exactly pointed at the center of the star's image despite diffraction – split image;
- 5.6 inch diameter, 4 inch length, made up from quartz elements with optical contact.
Telescope

- Should detect changes of 10^{-4} arcsec;
Telescope

- Should detect changes of 10^{-4} arcsec;

- Telescope should remain exactly pointed at the center of the star’s image despite diffraction – split image;
Telescope

- Should detect changes of 10^{-4} arcsec;

- Telescope should remain exactly pointed at the center of the star's image despite diffraction – split image;

- 5.6 inch diameter, 4 inch length, made up from quartz elements with optical contact.
Near Zeros

Temperature: 1.8^0 K

Pressure: $< 10^{-11} \text{ Torr}$

Gravitational Acceleration: $< 10^{-10} \text{ g}$

Material homogeneity: $< 3 \times 10^{-6}$

Mechanical sphericity: $< 3 \times 10^{-7} \text{ inch}$

Electrical sphericity: $< 5 \times 10^{-7}$

Magnetic field: $< 10^{-6} \text{ Gauss}$
Remarks

This experiment, conceived over 40 years ago, illustrates a number of points:

▶ Even for a universally believed theory, there is a qualitatively distinct prediction, which is yet to be confirmed and is being tested;
▶ The predicted deviations are tiny making the tests very much harder calling for tremendous sophistication;
▶ Yet, it is worthwhile to devise experiments, even if only to test very esoteric ideas, since they spur new technological developments.
Remarks

This experiment, conceived over 40 years ago, illustrates a number of points:

▶ Even for a universally believed theory, there is a qualitatively distinct prediction, which is yet to be confirmed and is being tested;
Remarks

This experiment, conceived over 40 years ago, illustrates a number of points:

▶ Even for a universally believed theory, there is a qualitatively distinct prediction, which is yet to be confirmed and is being tested;

▶ The predicted deviations are tiny making the tests very much harder calling for tremendous sophistication;
Remarks

This experiment, conceived over 40 years ago, illustrates a number of points:

- Even for a universally believed theory, there is a qualitatively distinct prediction, which is yet to be confirmed and is being tested;
- The predicted deviations are tiny making the tests very much harder calling for tremendous sophistication;
- Yet, it is worthwhile to devise experiments, even if only to test very esoteric ideas, since they spur new technological developments.
Thank You