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Abstract

This is a compilation of some of the ‘frequently asked questions’ regarding the famous singularity

theorems of general relativity. After some introductory remarks, the discussion is organized in a

question-answer format. Some references are included at the end for more detailed and precise

information.
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I. INTRODUCTION

The singularity theorems are invoked in many context and carry an “aura” of mystery

around them. These are sharply formulated statements delineating the limitations of clas-

sical general relativity. The notion of singularity used is also different from a naive and

intuitive extrapolation from the one encountered in the Newtonian context eg: ‘singularity

as a place where some physical quantity diverges’. The reason for this is that the space-time

model is much more sophisticated than the absolute space and time of pre-relativistic era.

In particular, there is a non-trivial structure of causality due to a finite maximum speed for

any propagation of influence. Thus, a singularity is identified with the existence of features

of the general relativistic space-times, which are physically unacceptable. This is discussed

further below.

The appropriate notions of singularities, evolved through various explicit examples which

of necessity were highly special, usually with idealized high degree of symmetries. Almost

all of the well motivated and physically relevant solutions exhibited a singularity similar

in spirit as the Newtonian ones. There are two physically relevant contexts viz an un-

stoppable gravitational collapse of localized sources such as massive enough stars and the

Friedmann-Robertson-Walker (FRW) expanding universe where ‘singularities’ were encoun-

tered. Different sets of people contributed to these in the early stages.

Chandrasekhar discovered that star which has run out of its nuclear fuel and is being

supported against a collapse by the quantum mechanical degeneracy pressure1, will fail to be

stable if its mass exceeds about 1.4×M� (M� ∼ 1033 grams is the solar mass). This is the

famous Chandrasekhar limit for the white dwarfs. There is a similar upper limit for neutron

stars which are supported by the degeneracy pressure of the neutrons. This was computed

by Oppenheimer and Volkoff. A qualitative reason for the instabilities to set-in for massive

bodies is that in general relativity the pressure energy also gravitates and thus encourages

1 It is a fact of nature that particles called fermions (electrons, protons, neutrons, . . . ) cannot be in the

same quantum mechanical state. This is known as the Pauli principle. If external conditions try to

force the situation (for example by cooling the system and/or applying a squeeze), the resistance offered

translates into an effective pressure. This pressure is known as degeneracy pressure. For the white dwarf

stars considered by Chandrasekhar, this pressure is provided by the electrons. As the mass of the star

increases, the electrons’ speeds become comparable to the speed of light which results in decreasing their

resistance to the gravitational squeeze and an instability sets in.
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collapse. In the Newtonian gravity, only mass gravitates but not energy and stability against

collapse is achievable for any mass. These works showed the possibility of an un-stoppable

gravitational collapse. Subsequently, Oppenheimer-Snyder solution describing gravitational

collapse of a spherical body of uniform density, also exhibited a central region with infinite

curvature and density i.e. a ‘singularity’.

In the cosmological context, the simplest solution showed a ‘beginning of the universe’

from an infinitely dense state - the Big Bang singularity. These are solutions which are

spatially homogeneous (same as analyzed from any spatial location) and isotropic (same

view in every direction)2. Raychaudhuri showed that merely including anisotropies i.e.

allowing the geometry and matter distribution to be different in different directions, does

not remove the singularity thereby indicating that the occurrence of singularity may be

more general. This was indeed confirmed by more examples. Assuming the existence of

a singularity, Belinskii-Khalatnikov-Lifshitz asked whether among the possible singularities

are there any which arise without making any particular restrictions on the initial data i.e.

are any of the singularities generic3? They answered in the affirmative. They also formulated

a conjecture regarding the nature of the singularity. However, their analysis did not identify

conditions under which singularities are inevitable. This was achieved by the more abstract

methods adopted by Penrose-Hawking-Geroch which lead to a set of singularity theorems.

The equation presented by Raychaudhuri in his analyses, now known as the Raychaudhuri

equation, plays a crucial role in the proofs of these theorems. This is discussed further below.

Following is a presentation of some of the main ideas. A few references are included at

the end to help get a perspective and some technical level information. The references to

the original literature can be found in [1].

2 There is observational evidence for isotropic distribution of sufficiently distant clusters of galaxies. The

homogeneity however has the strongest support from the cosmological principle viz “there is nothing

special about the location of our galaxy”.
3 This is a technical statement and means that if there is some initial data which leads to a singular

geometry, then almost all initial data in its vicinity will also lead to a singular geometry. It does not imply

that all initial data lead to a singularity.
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1. What are some explicit examples of singular space-times?

(a) The r = 0 (a 2-sphere) singularity of the positive mass, Schwarzschild solution.

Here the curvature components (and invariants constructed out of these) diverge.

By contrast the singularity at r = 2GM/c2 is a coordinate singularity and is

absent for negative mass Schwarzschild solution.

The same feature holds for the Reissner-Nordstrom solution (m2 > Q2, in the

geometrized units: G = 1 = c).

For the Kerr (and the Kerr Newmann solution), the r = 0 is a “ring singularity”.

These are the simplest examples of solutions of Einstein equation which represent

localized sources and have a curvature singularity.

(b) The FRW solution has a curvature singularity as the scale factor vanishes at a

finite synchronous time4 in the past (implying a finite age for the universe). This

is a solution which exhibits the maximal symmetry of spatial homogeneity and

isotropy.

There are also spatially homogeneous but anisotropic5 space-times all of which

exhibit curvature singularities. These are classified into nine Bianchi types. The

simplest of this class of space-times is the Kasner (Bianchi-I) solution of vacuum

Einstein equation. This has 3 scale factors which behave as ai(t) ∼ t2αi , where

the constant exponents satisfy
∑
αi = 1 =

∑
α2
i . The volume vanishes as t→ 0

such that one scale factor diverges and the other two scale factors vanish. The

most complex of this class is the Bianchi-IX type for which an exact solution is

not known. It has six metric components and the approach to singularity can be

parametrised in terms of 3 scale factors along a a set of 3 directions. The three

scale factors behave as in the Kasner solution for some time, then permuting the

4 In general relativity, time is a coordinate and is as arbitrary as the space coordinates. The metric and

the coordinates together give the space-time interval by the expression

∆s2 = gtt∆t2 + 2

3∑
i=1

gti∆t∆xi +

3∑
i,j=1

gij∆xi∆xj

The synchronous time refers to a coordinate system such that gti = 0 and |gtt| = 1.
5 An example of a homogeneous but anisotropic situation in the usual space would be (say) a uniform

electric field pointing in some direction.
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behaviors among themselves and permuting the directions as well, ad infinitum.

The Belinskii-Khalatnikov-Lifshitz (BKL) conjecture is that as a space-like singu-

larity is approached, even in a general inhomogeneous model, the inhomogeneous

spatial surface can be viewed as an essentially independent collection of approxi-

mately homogeneous patches, each of which evolves as a Bianchi-IX model. The

general approach to singularity is thus chaotic.

All of these are examples of space-like singularities and as they are approached, cur-

vature components and/or invariants diverge.

There are also solutions with time-like singularities (eg the negative mass Schwarzschild

solution) as well as null singularities (eg some of the Weyl class of static, axisymmetric

solutions).

2. What is meant by a ‘singularity’?

It turned out, after a great deal of work that a suitable criterion to characterize a

singular space-time is the property of geodesic incompleteness. This is not the only

criterion, but is the most commonly accepted one for which sharp theorems are avail-

able for their occurrence. The incompleteness property for causal geodesics is regarded

a physical pathology since these geodesics are world-lines of freely falling physical ob-

servers. An alternative criterion is stated in terms of the incompleteness of time-like

curves of bounded acceleration (observers with rockets).

But of course, one could have a mathematically constructed space-time which has

other pathologies. For example, it may admit an ill-behaved causal structure6 eg it

may admit closed time-like curves (excluded by invoking the chronology condition),

or such curves are strictly absent but come arbitrarily close to a given point on itself

(excluded by invoking strong causality), or if the metric is perturbed slightly the strong

causality can be violated (excluded by invoking stable causality). There are many other

notions of bad causality, all such causal pathologies are prevented in a stably causal

space-time. An even stronger notion is that of global hyperbolicity which incorporates

the notion of determinism i.e. allows formulation of a Cauchy problem. Globally

6 The precise definitions can be seen in [3].
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hyperbolic space-times are automatically stably causal and thus, free of all causal

pathologies.

Such nice space-times would be mathematical fiction if they are not determined by

some physical mechanism which in GR means that the metric is a solution of Einstein

equation. But these equations should be solved for with matter stress tensor repre-

senting physical matter. This property of matter is codified in terms of the so-called

energy conditions. For this purpose, the cosmological constant can be taken as a part

of matter stress tensor and the energy conditions can be applied to the new stress

tensor.

Thus, finally we can say that a physically acceptable space-time is a globally hyperbolic

(or stably causal) space-time which is a solution of Einstein equation with matter

satisfying one or more of the energy conditions and in which all causal geodesics are

complete. Examples? Minkowski space-time(!), space-times corresponding to stellar

bodies (not black-holes) etc.

Most of the hard work went into identifying a precise set of pathologies which could

render the general relativistic model of space-time either useless (non-predictive) or

irrelevant (physically non-realizable).

3. What is the connection between the Raychaudhuri equation and singularities?

To appreciate this connection, a few terms should be understood at least qualitatively.

Recall that a geodesic in the usual examples of two dimensional surfaces such as a

plane or a sphere are the paths of shortest length i.e. among all curves connecting

any two given points, geodesics have the smallest length. When one considers world-

lines or paths in a space-time, they come in three distinct types: time-like (world-lines

of material particles, obey an upper speed limit), light-like (world-lines of light) and

space-like (world-lines of as-yet-fictitious particle - ‘tachyons’ which obey a lower speed

limit). The length along a time-like curve is the time elapsed as recorded by clock

moving with the material particle (also called proper time). A time-like geodesic is a

time-like world-line along which the proper time is the largest7.

7 This is the basis for the statement that the freely falling twin will be older than the other twin who goes

on a rocket tour, when they meet again.
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This property of time-like geodesics, of maximizing the proper time between two given

events, holds only if the two events are not conjugate points. Quite generally, conjugate

points along a geodesic are the points at which several geodesics meet or focus8. The

poles on earth are conjugate points along every longitude (which are geodesics), the

object and image points in a lens are another example of conjugate points (paths of

light are geodesics).

It is important to note that just as the focal point of a convex lens is not a singularity

of the ambient space, though it is a “singularity” of the bundle of rays, conjugate

points along a time-like geodesic are not the locations of space-time singularities.

Now one can ask the questions: do geodesics always have conjugate points, never have

conjugate points or have them under some conditions? Interestingly, the answer to

these questions depends on the space-time as well as on the properties of bundles (tech-

nically a congruence) of geodesics. The topological properties of the set of time-like or

light-like curves connecting two events, imply that in a globally hyperbolic space-time,

there always exist a geodesic connecting a pair of points without any conjugate points

in-between. On the other hand, The Raychaudhuri equation gives precise conditions

under which there will exist a pair of conjugate points along a time-like geodesic.

Now, it is possible to realize the conditions required by the Raychaudhuri equation, in

a globally hyperbolic space-time, thus producing a contradiction. The way out is to

observe that the geodesic must not be extendible beyond the conjugate points implied

by Raychaudhuri equation! The geodesic must be incomplete (not definable for all

values of the proper time). The space-time must be singular by the criteria discussed

above, under the conditions required by the Raychaudhuri equation9.

4. What are singularity theorems?

Clearly, singularity theorems cannot be implying that every solution of Einstein equa-

tion would have some pathology. These theorems isolate additional properties of space-

times, which if they hold then some physical pathology must also occur. Typically, the

physical pathology is taken to be existence of at least one incomplete causal geodesic.

8 This is an intuitive description. The precise technical definition refers to a non-trivial solution of the

geodesic deviation equation which vanishes at the two points on the geodesic [3].
9 I have taken time-like geodesics for simplicity. Analogous statements hold for light-like geodesics [3].
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Thus, typically one assumes that (a) space-time is a solution of Einstein equation

with matter satisfying one or more energy condition (“gravity is attractive for positive

mass-energy”); (b) space-time is free of causal pathologies (globally hyperbolic or

stably causal) and then formulates: if either space-time also admits trapped surfaces

(i.e. two dimensional, closed without boundaries, space-like sub-manifold such that

both the out-going and in-coming, orthogonally emanating null geodesics have negative

expansion), or there exists a space-like Cauchy surface whose extrinsic curvature for

past directed null geodesic congruence is negative and bounded away from zero, then

there exists at least one causal geodesic which is past or future incomplete.

Different versions of singularity theorems differ in precise articulation of these three

features: physically realizable space-time, space-time free of causal pathologies (so

that rest of the equations of classical physics remain predictive and meaningful) and

a condition characterizing a sufficiently advanced stage of gravitational collapse (for-

mation of trapped surface) or an everywhere expanding universe (some observed fact

of nature). The existence of incomplete causal geodesic(s) is then guaranteed.

The third feature is essential because there certainly exist real space-times which have

no pathologies.

5. What these theorems do NOT imply?

Firstly, these theorems do not imply that every causally acceptable and realizable so-

lution, is necessarily singular - a further property is essential. One could evade the

theorems trivially by denying the third set of properties. (Un)Fortunately, there are

grounds to believe in the physical existence of black holes which indicate that gravi-

tational collapse has proceeded far enough and that universe seems to be expanding

everywhere, so the third set of conditions actually hold and hence theorems become

non-trivial.

Secondly, the entire formulation is classical and within the framework of Pseudo-

Riemannian manifolds. This need not be valid at all scales of observations and this

would be one way to evade the theorems. For example, quantum theory (of matter)

may render the classical notion of causality inadequate.

Thirdly, Einstein equations are used as linking geometry with gravity. This link is
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however considered to be relatively weak.

6. Big bang versus Collapse:

It is common to cite the Big bang singularity as an example of a naked singularity. It is

certainly true that the Big Bang is a singularity (typically the homogeneous, isotropic

one) and it is visible to us i.e. we can catch future directed null geodesics from the early

universe. Since universe is expanding, it is opposite of a collapse situation. However,

the terminology of naked singularity is introduced in the context of an unstoppable

stage of gravitational collapse of localized sources and refers to an end state of collapse

without the formation of an event horizon (i.e. a black hole). Whether a gravitational

collapse will result in a black hole or a naked singularity is addressed by the so-

called cosmic censorship conjecture/hypothesis, which states that in a gravitational

collapse, an event horizon will always form. Again there are variants/refinements of

the conjecture and many counter examples have been proposed [5]. Strictly speaking,

the two contexts, one of universe and one of collapse are physically very different and

it is a little unfair to mix the two and cite the Big Bang as a “naked singularity” 10.

7. Does time end at a singularity?

Physically relevant singularities are those which form, either in the future or in the

past, starting from a completely regular physical situation. Thus, one has at the back

of the mind a causal and deterministic evolution, in short a globally hyperbolic space-

time. In such a context, the singularities will be space-like i.e. can be “approached”

in an evolution (by contrast, a time-like singularity will invalidate Cauchy property).

For such approachable singularities, it is true that “time will end”, since evolution

past these is meaningless. The evolution is essentially incomplete, in the backward

direction for the universe (due to the Big Bang) and in the forward direction “inside”

a black hole be it a few solar masses heavy, massive or super-massive11.

10 If one insists on viewing time reverse of evolution of the universe as a collapse, then the absence of any

causal rays reaching us from regions “outside the universe” (and not those coming from the singularity)

would correspond to the negation of the censorship hypothesis in the time reverse view!
11 In general relativity, Black holes are regions from which nothing can ever escape to very far away regions

(“infinity”). Theoretically they can have any mass. In nature they are expected to arise due to collapse

of individual massive stars which can grow by a process of accretion. These are expected to have a mass

few times the solar mass. Many such black holes could also merge to form super-massive black holes (a
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8. What is geometry at the Big Bang?

The Big Bang typically refers to the homogeneous and isotropic (FRW) spatial ge-

ometry. There are three such cases: spherical (K > 0), flat (K = 0) and hyperbolic

(K < 0). These topological properties are unchanged as the scale factor vanishes at

the singularity. So the answer depends which model is supported by observations. For

non-FRW models, there is no single “K” since the spatial geometry is not maximally

symmetric. The examples of the Bianchi models and the BKL conjecture gives some

idea about how the geometry may be viewed close to the singularity.
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