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I. ELECTROMAGNETIC VIEW OF THE UNIVERSE

Look up in the sky and ‘see’ planets, stars, galaxy, . . . , star clusters, galaxy clusters. With

different filters on, this is how the whirlpool galaxy looks:

infrared visible ultraviolet

radio x-ray GW?
Credits:

http://www.physci.mc.maricopa.edu/Astronomy/astlabs/ast114/galaxy-lab/m51.htm

http://coolcosmos.ipac.caltech.edu/cosmic classroom/multiwavelength astronomy/multiwavelength museum/m51.html

Note how different the view is! The views reveal that there are different types of stars, dust,

. . . with different dominant processes producing EM waves in different frequency bands. The

images show the distribution of these difference ‘sources’.

How far are the different types of objects? This is a somewhat elaborate process, involving

many stages constituting the “cosmological distance ladder”. The distances to the nearby

planets, stars are estimated by trigonometry and parallax method. Subsequent methods in-

volve estimating the luminosity of the object and comparing it with the luminosity measured

on earth and inferring the luminosity distance from the ratio using the inverse square law.

The absolute luminosities are estimated by using the variable stars which have a definite

relation between the period of variability of brightness and the absolute luminosity, using

novae, supernovae, brightest galaxies etc. Here is a summary:

Nearby stars Triangulation/parallax ∼ 30 pc

Star clusters main sequence photometry ∼ 105 pc

Galaxy variable stars ∼ 106 pc

Inter-galaxy Novae, brightest stars ∼ 107 pc

Galaxy clusters supernovae, brightest galaxy ∼ 1010 pc
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The first non-trivial observation: If we look at only the objects which beyond about 200

Mpc, then their distribution is almost isotropic → universe is isotropic on large scale.

Invoke the cosmological Principle to assume that the same isotropic view will hold if viewed

from any other galaxy. Thus, imagine the universe to be a stack of spatially homogeneous

three dimensional slices.

The second non-trivial observation, the Hubble law: Galaxies seem to be receding from us

with a rate proportional to their distance from us. → Universe is expanding!

What governs this expansion?

II. ENTER GENERAL RELATIVITY

Einstein’s General relativity which a relativistic generalization of Newtonian gravity, pro-

vides a geometrical framework which naturally accommodates a spatially homogeneous ex-

panding universe with specific equation governing the expansion.

Relativity – both special and general – suggest new entities in the cosmos. A white dwarf

star with a instability beyond the Chandrasekhar limit of about 1.4 solar mass and a neutron

star with a corresponding Tolman-Oppenheimer-Volkoff (TOV) limit of about 2.5 solar mass.

And beyond these limits these stars collapse to a black hole. These are highly compact and

heavy objects. White dwarfs have a radius of about 7000 km while Neutron stars have radii

of about 10− 15 km.

And crucially, the general theory also predicts propagating gravitational effects – gravita-

tional waves. These also carry energy, momentum, angular momentum and provide a new

instability for bound gravitational systems eg two orbiting bodies heading towards a merger.

How may these complement the electromagnetic view?

The quantitative estimates suggest that tightly bound binaries can actually merge and the

best candidates are merger of neutron stars and black holes. When the gravitational wave

astronomy develops further, we will see the distribution of such compact binaries and their

remnants in the sky. These could not have been seen electro-magnetically (barring NS

mergers). The blank box would get filled.

Of course such mergers could also have been happening throughout the history of the uni-

verse and such mergers may be expected to be distributed in a stochastic manner. Since
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GWs can exist and propagate independent of matter, there could have be some unknown

mechanism eg quantum fluctuations at the very beginning of the universe. These could also

produce a stochastically distributed GW background. Together these two are expected to

produce a gravitational wave background. The “sources” responsible for this background

are appropriately thought of as (spatially) non-compact sources. By contrast, the merging

systems of binaries, triples, . . . are (spatially) compact sources.

We have other examples of cosmic background, the CMB and possible but yet to be directly

observed Cosmic Neutrino Background. Recall that CMB is produced when the plasma of

protons, electrons and photons gets cooled and diluted enough so that photons don’t have

enough charged particles to scatter off. Photons decouple and free stream and constitute

the background radiation. CMB is thus a snapshot of the surface of last scatter (LSS),

approximately 3 × 105 years after the Big Bang. There is a corresponding decoupling of

neutrinos at earlier time, about a second after the Big Bang and the free streaming neutrinos

are expected to provide a snapshot of earlier time.

Gravitational waves couple so weakly with matter that they are essentially always decoupled

and free streaming. Their background is thus expected to provide a snapshot of universe

just after the Big Bang. We have no clue of what to expect for such a background.

A. But what are GWs? A very brief commentary

• Generically, waves are localized deviations/disturbances/patterns that propagate eg

pulses. There could can be un-localized patterns that are time dependent eg plane

waves or localized but non-propagating, time dependent patterns eg standing waves;

Their space-time dependence is determined by some partial differential equation of

a hyperbolic character. Such an equation can be linear (Maxwell in free space) or

non-linear (fluids, GR, Yang-Mills etc).

• The most common way to study such class of solutions, is to linearize the equation

about some background configuration. This is how we view ripples over a lake. Such

solutions are perturbative in nature. Maxwell equations in free space are already linear

and don’t need any “background”.

Such a linearization was indeed done by Einstein himself for his equation with the

Minkowski space-time as the background. He in fact derived the leading contribution

to the radiation due to a time varying, spatially bounded matter distribution – the

famous quadrupole formula.
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• Initially, it was quite confusing to identify in an un-ambiguous manner “propagating

solutions” - the propagation speed seemed to depend on coordinates chosen (“Gravita-

tional waves propagate at the speed of thought” attributed to Arthur Eddington). It

was also unclear if these gravitational waves i.e. propagating solutions of the linearized

equation, are actually approximations to some solutions of the full non-linear equation.

Given that there is no locally conserved stress tensor for gravity, it was unclear if there

is any exact solution which can be interpreted as carrying energy, momentum, angular

momentum etc. Somehow, one should identify “radiative solutions” (as hinted by the

quadrupole formula) of the non-linear equation. This problem was solved by Bondi

(1957), Bondi-Pirani-Robinson (1958-60) and Bondi-Burg-Metzner (1962) in a series

of papers. Their inputs were:

• There is some source which is spatially bounded and an asymptotic region can be

identified; In this region, the vacuum equations hold;

•With suitably adapted coordinates (“Bondi-Sachs coordinates”), a class of solutions

satisfying the “no incoming radiation” condition, have a particular asymptotic fall-off

form and are characterized by mass-aspect function, angular momentum aspect and

the news tensor. Among these, a sub-class of solutions for which the news function

(square of the news tensor) is non-zero which can be interpreted as radiation. This

characterizes gravitational radiation; [See the Azadeh Reference for asymptotic form.]

• Suitable quantities can be defined with the interpretation of the energy, momentum,

angular momentum which change iff the news function is non-zero. Thus, radiation can

be interpreted as conveying energy, momentum, angular momentum from the source

region to far away. This analysis holds without any linearization and goes beyond the

quadrupole formula. It also does not refer explicitly to any source dynamics.

• Furthermore, linearized form of these equations (Λ = 0) have solutions with non-

zero News function provided the provided the source multipoles beyond the dipole

have accelerated time dependence.

Thus, for the spatially bounded sources, at the level of non-linear equation, solutions

exist which can be interpreted as radiation and the linearized solutions do provide an

approximation.

• As an aside, we note that when Einstein derived the quadrupole formula, cosmo-

logical constant was not known and the equations did not have it. However, current

cosmological model suggest that Λ > 0. Solutions of the linearized equation with a cor-

responding quadrupole formula have been derived. The formula contain Λ-dependent

corrections which however are tiny for astrophysical, compact sources. A Bondi-Sachs

type analysis for Λ > 0 has also been carried out. [see Compère-Fiorucci- Ruzzicon,
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arxiv.org/pdf/1905.00971 and references therein.]

• Not only does it provide a precise theoretical characterization of gravitational radi-

ation, it also enables us to compute the in-spiral of a binary orbit in a quantitative

way using the energy balance equation. This was superbly confirmed in the orbital

decay of the Hulse-Taylor binary pulsar which constituted the first (indirect) evidence

of gravitational waves.

The subsequent development of post-Newtonian/Post-Minkowski framework of sys-

tematically going beyond the linearised solution provided a detailed in-spiral history

closer to merger and the characteristic ‘chirp’ wave form.

In summary: GWs are indeed physical, have two transverse polarizations denoted as

‘+′ and ‘×′, and propagate at the speed of light.

B. Non-compact sources

What about sources which are not compact? These could arise from a stochastic distribution

of compact sources all over or there could be some “primordial sources” i.e as yet unknown

production mechanisms that are inherently non-compact. Such sources cannot be ascribed

to any localized region. There are no asymptotic regions now and nothing to specify any

fall-off conditions. Notion of radiation does not make much sense but we could still have

waves. We have to seek guidance from a perturbative route and begin with linearization

about some background which can support non-localized sources. The FLRW space-times

are the natural choice The observed large scale isotropy also supports the perturbative

approach. The perturbations can of course be spatially inhomogeneous and this manifests

on our celestial sphere as anisotropies1.

In either of the two ways to conceive of non-compact sources, we have nothing to go by

about their distribution. So the only reasonable assumption that we can make is that such

sources are generically distributed inhomogeneously in a stochastic manner and we can only

hope to have information of a statistical nature. We will generically call such non-compact

sources as cosmological perturbations.

We refer to gravitational waves produced by such sources as Gravitational Wave Background

1 Just consider alternate dark and light vertical bands on a piece of paper and draw a circle at the center

cutting the bands. The arcs will be dark and light showing an anisotropic distribution on the circle.
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(GWB). The background produced by a distribution of compact sources is called Astrophys-

icalGWB while that due to primordial sources is called StochasticGWB.

How do we parametrise such backgrounds in a measurable manner?

We already have a dominantly isotropic distribution of matter with a small amount of

anisotropy, caused by cosmological perturbations. Let us schematically denote the inhomo-

geneity caused by non-compact sources, in terms of a real valued stochastic variable δφ(t, ~x).

Invoking only the cosmological principle (spatial homogeneity), we can write,

δφ(t, ~x) =

∫
d3k

(2π)3/2
e−i

~k·~x
[
z~k uk(t) + z∗−~k u

∗
k(t)
]
, k := |~k| . (1)

Here, the uk(t) denote the complex solutions of the linear differential equation satisfied by

δφ(t, ~x).

The stochastic nature of the inhomogeneity is stipulated as:

〈δφ(t,~k)〉 = 0 ; 〈δφ(t,~k)δφ(t,~l)〉 = δ3(~k −~l)∆2
φ(t, k) ⇔ (2)

〈z~k〉 = 0 ; 〈z~kz
∗
−~l〉 = δ3(~k −~l)A(k) , with (3)

∆2
φ(t, k) = 2A(k)|uk(t)|2 , Pφ(t) :=

k3

2π2
A(k) . (4)

The Pφ(k) is called the power spectrum of the inhomogeneity δφ. It is dimensionless. If

all other correlation functions are determined in terms of this two point function, then the

inhomogeneity is Gaussian distributed and all statistical properties of δφ(t, ~x) are specified

entirely in terms of the power spectrum.

The primary observable for a stochastic background is the power spectrum which is to

be determined observationally and any candidate theory of generation and evolution of

perturbations should compute it.

We need to digress on the cosmological background to formulate perturbations and infer the

deterministic evolution equations satisfied them.

III. COSMOLOGICAL BACKGROUND

Cosmological background space-times are premised on spatial homogeneity and the currently

favored model is the spatially flat FLRW model. The universe is viewed as a stack of spatial

hyper-surfaces, all orthogonal to the “fundamental observers” encoded by a time-like vector
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field uµ(t, ~x). The coordinates are chosen such that uµ = (1,~0). The metric and the stress

tensor take the form,

∆s2 = −∆t2 + a2(t)
( 3∑
i=1

(∆x)2
i

)
, Tµν = ρ(t)uµuν + P (t)(uµuν + gµν) . (5)

The Einstein equations, Rµν − R
2
gµν = 8πG

c4
Tµν reduce to (G = 1 = c units, overdot denoting

d
dt

),

3
ä

a
= −4π(ρ+ 3P ) (Raychaudhuri equation);

3

(
ȧ

a

)2

= 8πρ (Friedmann equation);

ρ̇ = −3(ρ+ P )
ȧ

a
(Conservation equation).

We need to specify a relation between the pressure and the energy density, called the equation

of state. The three common choices and the corresponding solutions are given by,

P = 0 , ρa3 = constant , a(t) = CM t
2/3 (Matter dominated);

P =
1

3
ρ , ρa4 = constant , a(t) = CR

√
t (Radiation dominated);

P = −ρ = − Λ

8π
, a(t) = CdSe

√
Λ/3t (de Sitter).

It is common to use the conformal time, η defined by dη := a−1dt. It follows that η is negative

for de Sitter, positive for the radiation/matter dominated epochs and always increases with

t. The derivatives w.r.t. η are denoted by primes.

The first two equations imply that if (ρ+ 3P ) > 0, our expanding universe will continue to

expand forever and therefore always shrinking as we view back in time. Given the current

rate of expansion, H0 := ȧ
a

∣∣∣
now

, the universe must have had zero size, a finite time ago

(the Big Bang). The observed large scale isotropy suggests that the past light cones of the

antipodal points must have intersected to establish such a correlation. Alas, this is not

possible in the finite age of the universe estimated from the first two equations of state.

This is the so-called horizon problem. It can be solved by postulating an epoch of accelerated

expansion or inflation. The simplest model of this is the de Sitter epoch with a positive

cosmological constant. More general models of inflation, minimally introduce a spatially

homogeneous scalar matter field with a potential.

Here is a brief summary of the main epochs in the evolution of our continuously expanding

universe:
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1. The big bang creation of the universe: The unknown era beyond classical GR. All

scales are Planck scales - 10−35m, 10−8kg, 10−44sec, 1019GeV, 1032 ◦K etc.

2. Inflation: A brief period of exponential expansion (about 70 e-folds ∼ 1030 expansion

factor), consists of gravity (metric) and scalar field (inflaton);

3. Re-heating: Decay of inflaton and transfer of energy to produce standard model par-

ticles;

4. Radiation dominated: Largely protons, electrons and photons till about the decoupling

of photons at LSS.

5. Matter dominated: Dark ages followed by first stars and subsequent structure forma-

tion.

Credits: https://astronuclphysics.info/Gravitace5-4.htm

The always expanding universe provides a natural scale given by the inverse of the expansion

rate: dH(t) := (H)−1 = (ȧ/a)−1, the “Hubble radius”. This provides a time dependent,

length scale for comparison. For matter/radiation dominated epochs, a(t) ∼ tα, 0 < α < 1,

the Hubble radius ∝ t while for de Sitter, it remains constant at Ĥ :=
√

3/Λ. By contrast,

all length scales eg wavelengths, sizes of objects etc scale with a(t) i.e. increase as ∼ tα or

eĤt.

Hence the ratio of the Hubble radius and any physical scale increases as t1−α during de-

celeration and decreases e−Ĥ t during de Sitter inflation (acceleration). This has important

implications for the evolution of the amplitudes of inhomogeneities.

Our presumption has been that perturbations in the matter stress tensor and the geometry

cause the inhomogeneities. How do we know such perturbations exist?
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A. Cosmological anisotropies or “reality of perturbations”

The background quantities are homogeneous and isotropic as motivated by the observations

of the distribution of galaxies. This is reflected also in the CMB angular distribution, which

is beautifully isotropic. However, there are anisotropies reflecting the inhomogeneities in the

plasma producing the CMB. These inhomogeneities in turn are thought to be produced by

perturbation in the epochs preceding the CMB.

Two noteworthy properties of the observed CMB (temperature) anisotropies are: (a) The

amplitudes of the anisotropies ∆T/T̄ (n̂) are about 10−5 times smaller than the those of the

isotopic CMB. As per COBE normalization of the power spectrum PS(k) := AS(k/k∗)
nS−1

the amplitude AS ∼ 2×10−9 and the corresponding one for tensor perturbations is 0.036AS;

(b) the angular distribution is resolvable at about 10 arc-minutes (Planck Satellite). 10

arc-minutes corresponds to about ` = 2160 and since the LSS has a radius of about 40

billion light years2, the linear scale corresponding to 10 arc-minutes is about 108 light years

or about 30 Mpc. The largest possible length scale, angular separation of π corresponds to

about 36Gpc. The present Hubble-radius is about 4 Gpc.

The CMB observations confirm the existence of perturbations in a wave length/frequency

band along with the size of these perturbations.

There is nothing to preclude perturbations outside the scales seen in the CMB anisotropies.

Can these be revealed in other observations? The answer is ‘yes’ and below is an indicative

summary of which scales can be seen in which wavelength/frequency bands.

Experiment Sensitivity window (f) wavelength range

Ground based interferometer 1− 103Hz 300− 3× 105 km

Space based interferometers 10−5 − 0.1Hz 106 − 1010 km

Pulsar Timing Arrays 3× 10−9 − 10−6Hz 10−1 − 30 lyr

CMB 3.4× 10−19 − 7× 10−18Hz 4− 102 Gpc

While the goal of the interferometric observations is direct detection of waveforms from

compact sources, a set of such detectors can also be used to detect the GW backgrounds i.e.

estimate the power spectrum in the corresponding frequency bands.

2 The LSS radius is the η elapsed times the scale factor now in the c = 1 units. Taking anow = 1, the

epoch as matter dominated and neglecting the time interval from the big bang to decoupling, we get

ηnow ≈
∫ t0 dt

(t/t0)2/3
= 3t0 ≈ 40× 109 years.
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Having established he existence of perturbations, we take a look at evolution of cosmological

perturbations, limiting ourselves to gravitational perturbations alone.

IV. GRAVITATIONAL PERTURBATIONS AND THEIR EVOLUTION

We begin by writing the perturbations as, gµν = ḡµν + εhµν for the metric, Tµν = T̄µν + εT
(1)
µν

for the stress tensor and substituting in the Einstein equation.

It is important to recall from GR that neither the coordinates xµ nor the metric compo-

nents gµν(x) are physically meaningful, only the ∆s2 = gµν∆x
µ∆xν are the basic physi-

cal quantities. This in particular implies that any small difference between two metrics,

δgµν ∼ ε(∇̄µξν + ∇̄νξµ), can be generated by a small change in coordinates, δxµ = εξµ,

without changing ∆s2. Such hµν thus do not represent a physical change. Similarly changes

in arbitrary tensors which are of the form, δT ∼ εLξT , merely reflect coordinate change.

It is conventional to call such unphysical changes as gauge transformations. The physically

meaningful quantities are gauge invariant.

One may either use the manifestly gauge invariant quantities or fix the coordinates com-

pletely by imposing appropriate condition on the perturbation which directly represent phys-

ical quantities3. Both methods are used in practice.

For our discussion, we focus only on the fully gauge fixed form of the metric perturbations i.e.

the gravitational ripples on the cosmological background, also called tensor perturbations.

We also restrict to the linear order in perturbations. This means that we look for solutions

of the equations,

�̄hij = 0 , ∇̄jh
j
i = 0 = ḡijhij ; (6)

The �̄ is the d’alembertian of the background metric and the i, j are spatial indices. For

primordial fluctuations, there are no matter sources while for perturbations evolving through

subsequent epochs would typically have transient sources which are neglected in our discus-

sion4.

3 In electromagnetism described in terms of Aµ(x), one may work with the ~E, ~B (or Fµν) and functions

thereof which are manifestly gauge invariant or use the Aµ which further satisfies the conditions such as

∂µA
µ = 0 = A0 leaving only two independent variable reflecting the two polarizations.

4 These statements hold at linear order (primary primordial). We can go to higher orders corrections which

are sourced by the lower order ones. These are called secondary, tertiary . . . primordial gravitational

waves. We focus on the primary ones.
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Given that the cosmological background has spatial homogeneity, we can Fourier decompo-

sition of the perturbations and label the modes by ~k. To linear order, the equations for each

Fourier mode decouple. Their time dependence is determined by the evolving background,

a(t). The general solution hij(η, ~x) can thus be developed as,

hij(t, ~x) =
∑
σ=+,×

∫
d3k

(2π)3/2
e−i

~k·~x[hσ(~k, t)εσij(
~k)] , kjeσji = 0 = δijeσij . (7)

The εσij(
~k) denote the polarization tensors for a wave with wave vector ~k and the hσ(~k, t)

denote the corresponding amplitude.

In terms of Hij(~k, η) := a(η)hij(~k, η) (and Hσ(~k, η) := a(η)hσ(~k, η)), the perturbations

satisfy ,

H ′′ij(
~k, η) +

(
k2 − a′′

a

)
Hij(~k, η) = 0 ↔ H ′′σ(~k, η) +

(
k2 − a′′

a

)
Hσ(~k, η) = 0 .

For the three common epochs, a(η) := a(t(η)) ∼ ηα with α = 2 for matter dominated, α = 1

for radiation dominated and α = −1 for the de Sitter epochs. In all three cases,

a′′

a
=
α− 1

α

(
a′

a

)2

=
α− 1

α
(aH(t))2 ≥ 0 ⇒ (k2 − a′′/a) Q 0 . (8)

Notice that in all three cases, aH(t(η)) = a′/a ∼ η−1.

The perturbation equation shows that for any given η, the modes with label k fall into two

groups:

k2

a2
� H2 ↔ (kη)2 � 1 ↔ λphy(t)� dH(t) (super-Hubble)

k2

a2
� H2 ↔ (kη)2 � 1 ↔ λphy(t)� dH(t) (sub-Hubble)

The super-Hubble modes hσ(k|η| � 1, η) loose the η-dependence and their amplitude re-

mains constant while the sub-Hubble modes evolve as hσ(k, η) ∼ a−1(η) decreasing their

amplitude. Since η2 decreases with t during inflation, a super-Hubble modes remains super-

Hubble through inflation. Likewise sub-Hubble modes remain sub-Hubble during late time

evolutions. In particular, at the time of decoupling (LSS), the modes corresponding to

` . 20 are super-Hubble and have retained their amplitude from the early epochs while

the shorter wavelength modes being sub-Hubble their amplitude AS will continue to fall

as a−2(t). Some of the super-Hub modes can turn sub-Hubble at a later time and begin

decreasing their amplitude.

As an explicit example, consider the evolution in a de Sitter epoch.
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V. hσ DURING A DE SITTER EPOCH

The general solution in these three cases is given in terms of spherical Bessel functions. In

the de Sitter epoch, ηinfl ≤ η ≤ ηend, the general solution takes the form,

hσ(η,~k) = zσ(~k) ek(η) + z∗σ(−~k)e∗k(η) , (reality of hσ(η, ~x) is used);

ek(η) =
αk
a(η)

(
1− i

kη

)
e−ikη , αk are normalization constants.

The two free constants, zσ(~k), z∗σ(−~k) signify initial conditions and their distribution is

stochastic. Suppress the polarization index σ on the zσ(~k). We can consider three different

cases: hσ(η,~k) is (i) a classical stochastic function, (ii) is a classical stochastic field, and (iii)

is a quantum field.

Stochastic function: 〈z~k〉 = 0 = 〈z∗~k〉 , 〈z~kz
∗
−l〉 := A(~k)δ3(~k − ~l) , A(~k) is some unknown,

positive function of ~k and we assume it to depend only on k := |~k| to encode isotropy.

The angle brackets denote an average w.r.t. the unknown probability distribution for the

constants. Using these assumptions together with translational invariance and isotropy, we

get the autocorrelation function as,

〈hσ(η, ~x)hσ(η, ~y)〉 =

∫
d3k

ei
~k·(~x−~y)

(2π)3
[A(k) 2 |ek(η)|2]

∴ 〈hσ(η, ~x)hσ(η, ~x)〉 =

∫
d3k

(2π)3
[A(k) 2 |ek(η)|2] =

∫ ∞
0

dk

k
(2)

[
k3

2π2
A(k)|ek(η)|2

]
with |ek(η)|2 =

|α~k|2

a2(η)

(
1 +

1

k2η2

)
The power spectrum is determined by the square bracket. The factor of 2 is due to the two

terms contributing to the 〈zz∗〉. Both α~k and A(k) are unknown. Notice that a−2(η) = H2η2

for de Sitter and [ · · · ]→ [ k
3

2π2A(k)(H|αk|/k)2(k2η2 + 1)].

Stochastic classical field: The extra attribute requires the perturbation to satisfy the Poisson

bracket relation. This translates into the requirement that {z~k, z∗~l } = −iδ~k,~l. This additional

condition involves the Wronskian of the solutions ek(η) and determines |αk| = 1√
2k

. The

unknown function A(k) remains to be determined. The square bracket becomes, [· · ·] =

H2(A(k)/k3)(1 + k2η2).

Quantum Field: The Poisson bracket condition becomes commutator and retains the de-

termination of αk. But now 〈z~kz∗~l 〉 → Tr[ρ̂ẑ~kẑ
†
~l
]. The density operator ρ̂ though unknown,

provides a handle for theoretical proposals for A(k).
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In particular, for ρ = |0〉〈0|, the average becomes 1, the factor of 2 becomes (1) and A(k) =

1 ∀k and the power spectrum becomes,

Ph(k, η) :=
k3

2π2
|ek(η)|2 =

H2

4π2
(1 + k2η2) → H2

4π2
for super-Hubble k . (9)

Note that the determination of the power spectrum of the gravitational background is still

through the CMB anisotropies observed through electromagnetic waves.

VI. ASTROPHYSICAL GWB

In the late universe, most of the primordial modes have been sub-Hubble and their ampli-

tudes are expected to have decayed to negligible level. The relevant sources are compact

sources with unknown distribution. These constitute the astrophysical GW background,

also stochastic since the distribution of sources such are mergers of supermassive black holes

throughout the late universe is not known. How do we determine their power spectra?

Here the main tool is the Pulsar Timing Arrays.

Pulsars: These are rotating neutron stars which beam the electromagnetic radiation (radio

waves 3 − 109 Hz) due to the rotating magnetic field anchored to the NS. Their rotation

periods, range from milliseconds to a few seconds. These are extremely stable for millisecond

pulsars with a fractional change in rotational frequency to be about δν/ν ∼ 10−15. The radio

pulses emanating from a pulsar suffers various time delays such as gravitational time dilation

in Pulsar neighborhood, traversal in interstellar medium, delays due to intervening massive

bodies, variation in receiver in orbit around the sun etc (Einstein, Romer, Shapiro, . . . ).

The times of arrival of pulses can be inferred and constitute the basic observation. Given

the location of a pulsar and information about its local environment, interstellar medium

etc one can estimate the time of arrival of pulses and compare it with the recorded TOA

data. The difference between the two, called residual time delay is potentially due to GWB.

This is estimated as follows.

Let a pulsar’s sky location be in the direction p̂. Let the infinitesimal distance along the line

of sight be ∆s2 −∆t2 + { (δij + hij)p̂
ip̂j }dα2. Since ∆s2 = 0 for light, we get ∆t2 = (1 +

hij p̂
ip̂j)∆α2. Integrating along the path connecting the pulsar to observer gives the elapsed

time between emission and detection of the radio wave. Since the GW has t-dependence, the

elapsed time for consecutive pulses differs from the pulsar period. If T denotes the pulsar

15



period, then

z(t) :=
∆T

T
(t) ≈

p̂ip̂jεσij(k̂)

2(1 + k̂ · p̂)
hσ(t) . (10)

Here the gravitational wave has polarization σ, is moving along k̂ and t is the time of arrival

[Maggiore, Vol II, Chap 23].

Since the gravitational wave is supposed to constitute a stochastic background, we compute

the pair-wise correlation 〈za(t)zb(t)〉. Writing the hh correlation in terms of a power spectrum

and carrying out the angular averaging over k̂, we write

〈zazb〉 =

{∫
dk

k

[ k3

2π2
A(k)

]} [
4πµHellings−Downs(γab)

]
, cosγab := p̂a · p̂b; (11)

µH−D(γ) =
1

4
+

1

12
cos(γ) +

1

2

{
(1− cosγ)ln

(1− cosγ
2

)}
(12)

The angular dependence is factored out and can be identified in the measurement of the

correlation function.

In June 2023, the NANOgrav collaboration announced an evidence for GW background after

analysis of 15 year data of 68 millisecond pulsars.

In Summary:

Waves are messengers from processes taking place far away. Gravitational waves fill-in where

EM waves step aside. They do so in the form of chirps, as a background hum and also leave

imprints on the polarization anisotropies of CMB which we did not discuss.

Here are some of the recent readable accounts.

Valerie Domcke, TASI lectures, arxiv:2409.08956.

Azadeh Maleknejad, MPA Lectures on GWs in Cosmology.

Caprini and Figueroa, CGWB, arxiv:1801.04268.
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