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These notes grew out of the colloquium given in the Online Colloquium Series “Nobel Talks”

of the Physics Dept. of BITS-Pilani on March 25, 2022 and the colloquium given at CMI

on April 26, 2022.

THE LAUREATES AND THE CITATION

The Nobel Prize in Physics for 2020 was shared by Roger Penrose, Reinhard Genzel

and Andrea Ghez in the proportions 1/2, 1/4 and 1/4 respectively.

“for the discovery that black hole formation is a robust

prediction of the general theory of relativity”

“for the discovery of a supermassive compact object at

the centre of our galaxy.”

credits: (https://www.nobelprize.org/prizes/physics/2020/summary/)

There are three distinct strands to the story of the discoveries: General relativity, Astro-

physics and Astronomy. The table below gives an overview.
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General Relativity Astrophysics Astronomy

Schwarzschild Singularity

(1916)

Chandrasekhar Limit

(1930-31)

Birth of Radio Astronomy

(1933-39)

Cosmological Singularities

(1922-1955)

Raychaudhuri Equation

(1955)

Tolman-Oppenheimer-

Volkoff Limit,

Datt-Oppenheimer-Snyder

(1939)

...

Kruskal Extension

(1960)
...

Discovery of C-273

Quasar (1959)

The Kerr Solution

(1963)

. . . Energy output and size of

Quasar

Trapped Surfaces

(1965)

. . . Identification of Sagittarius

A∗ (1974)

Singularity Theorems

(1965-1975-. . . )

. . . Supermassive Compact

Object(1980-2020)

Let us go through these developments.

General Relativity: Soon after Einstein published his field equations (Nov. 25, 1915),

Schwarzschild published an exact solution to these complicated equations (Jan. 1916). It

describes the space-time due to a point mass. Impressive as it was that an exact solution

could be found so quickly and could play a role in the classic tests of general relativity, it had

the “disturbing” feature of the metric component grr(r) blowing up at r = 2GM/c2 =: RS

where M is the mass of the point mass. This is known as the “Schwarzschild singularity”

and RS := 2GM/c2 is known as the Schwarzschild radius (or gravitational radius). It was

also recognized that the solution describes the exterior geometry of a spherical, massive

body of mass M and with radius R > RS. Consequently, in application to solar system, the

Schwarzschild singularity played no role. It is only with the Kruskal extension in 1960 that

nature of the Schwarzschild singularity being a coordinate artifact was fully appreciated.

(At the Schwarzschild radius, all curvatures are finite. The r = 0 is however a genuine

curvature singularity.)

During the twenties to the mid-fifties, many more exact solutions to the Einstein field equa-

tions were found, notably modeling cosmological space-times. Invariably they exhibited cur-

vature singularities. The big bang singularity of the Friedman-Lemaitre-Robertson-Walker
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solution being the most familiar one. All these examples had a high degree of symmetry - the

spherical symmetry in the case of the Schwarzschild and spatial homogeneity with/without

isotropy in the case of cosmological models. Amal Kumar Raychaudhuri in 1955 consid-

ered if the singularity of the isotropic dust model would survive if isotropy is relaxed. He

concluded in the positive and also gave the first form of the Raychaudhuri equation. His

result is also considered as a first hint of a singularity theorem - that singularities may not

necessarily be due to high degree of symmetry. A very readable account may be seen in the

reference given at the end.

In 1963, Roy Kerr found another exact solution of the field equation without any matter

source, which was not spherically symmetric - the Kerr Solution. This is now understood

as representing a rotating black hole. This too had a singularity (and many other features!)

at the centre. This solution still had the axisymmetry.

It was Roger Penrose, motivated partly by the discovery of a quasar (Quasi Stellar Radio

Source), considered gravitational collapse without any symmetry assumptions. Examining

first the case of spherical collapse, he identified “trapped” spherical surfaces and showed that

these persist even if there are small deviations from spherical symmetry. He then shows that

once trapped surfaces are formed, suitably identified singularity necessarily forms. This is

the first singularity theorem with the essential ingredients.

The main outcome in this strand is the development of the more general and elaborate

singularity theory. This theory invokes the global structure of the space-times, Causality

conditions, the Raychaudhuri equations, energy conditions and a suitable definition of a

“singularity”. We will discuss this shortly.

Astrophysics: Consider the second strand now. This is rooted in the astrophysical theory of

stability of stars. The basic mechanism of stellar stability is that the gravitational collapse

is halted by thermal pressure generated by non-gravitational means such as ordinary chem-

ical heating, nuclear burning, quantum mechanical “degeneracy pressure” due to the Pauli

exclusion principle etc.

Subrahamanyan Chandrasekhar, in 1930-31, noticed that in the stars known as white dwarfs,

which are supported by electron degeneracy pressure, the electron motion is actually rela-

tivistic (electron speed comparable to the speed of light). This changes the relation between

the mass-energy density and the pressure (polytropic index from 5/3 to 4/3). This results

in an instability if the mass of the white dwarf exceeds the Chandrasekhar limit of about

1.4 times the solar mass (1 solar mass ∼ 2 × 1033 gms.) What happens then? Well, all

one can say is that the gravitational collapse ensues, possibly unstoppable. It may be noted
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that white dwarfs have radii up to about 4000 km which is approximately 1000 times the

corresponding Schwarzschild radius.

During 1938-39, it was recognized by Tolman, Oppenheimer and Volkoff that for neutron

stars, stars in which the dominant matter consists of neutrons, the gravitational collapse

could be halted by degeneracy pressure again as neutrons too obey the Pauli principle. They

found that there is an analogue of the Chandrasekhar limit, that above about 2 - 3 solar

masses (TOV limit), a neutron star too will become unstable and gravitational collapse will

commence. Neutron stars have their radii around 10-15 km which is roughly 3 times the

corresponding Schwarzschild radii.

To find out what happens in a non-stoppable collapse, Oppenheimer and Snyder consider

the collapse of a spherically symmetric, dust in the Einstein equation and produced the

time dependent solution - the Oppenheimer-Snyder solution - which showed that once the

ball crosses the Schwarzschild radius, no light rays can emerge from its surface. The ball

shrinks to zero size with infinite density, in finite time. Similar case was also considered and

published by B. Datt from Kolkata, a year earlier in German and it was not noticed. It was

only recently discovered.

Further studies of unstoppable gravitational collapse continued mainly to test the cosmic

censorship hypothesis, and has also lead to the discovery of critical phenomena in gravita-

tional collapse, by Choptuik around 1993.

The main lesson here is that astrophysical equilibrium states of gravitating bodies indicate an

upper mass limit of up to about 3 solar masses, beyond which there is no known mechanism

to halt the gravitational collapse.

(Radio) Astronomy: We now turn to the third strand.

Karl Jansky, a radio engineer, detected the first ever extra-terrestrial radio source and

managed to conclude that it was in the constellation of Sagittarius, near the centre of the

Milky Way (1933). Subsequently, Grote Reber, another radio engineer, made the first map

of the radio sky identifying Cygnus A and Cassiopeia A also as radio sources (1941-43). Thus

was born the field of radio astronomy. After the world war II, radio astronomy picked up

and had the first discovery of a Quasar, 3C-273, in 1959. The time scale of fluctuation of its

intensity gives its size to be less than 1 light month and it is about 100 times brighter than

the brightest galaxy in the galaxy cluster. The mechanism of such energetic radio emission

cannot come from atomic/molecular but comes from synchrotron radiation (radiation from

charges accelerated along curved paths). What could produce so much power from such a
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small region? “Black hole” were a possible candidate. This was one of reasons that had

prompted Penrose to examine if general relativity accommodates such objects.

In 1974, the radio source Sagittarius A, at center of our galaxy was resolved into a point

like source Sagittarius A∗ and attention focused on its study - its mass and its size. Its

initial estimates of mass ∼ 106M� and size ∼ 108 km, were arrived at from the spectral

characteristics of the radio emission from its vicinity. The x-ray emission implied presence

of accretion processes.

With Very Long Baseline Interferometry (VLBI), its position and proper motion could be

tracked accurately while near infrared observations could track the motion of individual

stars orbiting the central object. The size of the central region was still about a couple of

thousand times the Schwarzschild radii and possible alternatives to a single compact object

existed. These included: clusters of low mass stars, neutron stars and stellar mass black

holes. The stability against collapse or dispersal gave a time scale of about a 105 years which

ruled out this possibility. The possibility of a ball of heavy fermions such as sterile neutrinos,

gravitinos held together by degeneracy pressure too was ruled out by 2002 and finally by

Oct 2018 it was concluded that Sgr A∗ IS a black hole with a mass of 4.154× 106M�.

Singularity Theory: Let us begin by visualizing a space-time. Here are the examples of the

Minkowski space-time of special relativity and the Schwarzschild space-time.

t

r r

t

Minkowski Spacetime Schwarzschild Spacetime

ds2 = −dt2 + dr2 + r2dΩ2 ds2 = −
(

1 − Rs
r

)
dt2 + 1

(1−Rs
r

)
dr2

+r2dΩ2

Notice the “uniform distribution” of identical light cones in the Minkowski space-time. By
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contrast, the Schwarzschild space-time has light cones that get narrower as we come closer

to the Schwarzschild radius. This is simply because dt
dr

= ±(1−RS/r)
−1 which increases as

r → RS.

Next is the Oppenheimer-Snyder space-time.

Here the light cones tilt inwards as the RS is approached and align with the r = RS cylinder.

No material particle or light can escape from the inner region. Thus we see that (a) a

singularity at r = 0 does arise; (b) at the “Schwarzschild singularity”, something peculiar

does happen - the light cones tilt fully inward. Note also that this situation arises from a

perfectly non-singular initial distribution. Of course it has been assumed that the density

remains spatially constant all through the evolution.

t

R

R_s

Oppenheimer-Snyder Collapse Spacetime

Keeping such qualitative picture of spacetimes in mind, let us explore further properties.

Consider a bundle of time-like geodesics i.e. geodesics whose world line of a free falling

particle always inside the future part of a local light cone. Single out one relative to

which we track how the nearby geodesics move - come closer, go farther, keep circulat-

ing etc. The constant time cross-section of such bundles shows three types of distortions:

expansion (scaling of its size), twist (rotation of the cross-section relative to the reference

geodesic) and shear (differential movements of layers of the 3-dimensional cross-section).
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Expansion Twist Shear

In any space-time, the evolution of bundle can be quantified in terms of these which satisfy

well defined differential equations. Relevant for us is the equation satisfied by the expansion,

denoted as θ:
dθ

dτ
= − 1

3
θ2 + twist2 − shear2 −Rµνv

µvν

This is the Raychaudhuri equation.

It follows that if θ = θ0 < 0 for some τ0 i.e. initially collapsing, and Rµνv
µvν ≥ 0 equivalent

to strong-energy condition on stress tensor if Einstein equation is used is satisfied, then

θ → −∞ in a τ < τ0 + 3/|θ0| .

The bundle of geodesics is said to focus and the geodesic is said to have a conjugate point.

This is true independent of the Einstein equations.

Here, θ0 < 0 means the particles are initially collapsing. If the spacetime is a solution of the

Einstein equation, then the condition on Rµν translates into a condition on the stress tensor

Tµν , which is known as the strong energy condition.

We have written the Raychaudhuri equation for a bundle of time-like geodesics. There is a

corresponding equation for a bundle of null geodesics (light rays). The factor of 1/3→ 1/2

and the corresponding expansion, twist and shear need a little sophisticated definition. We

are now ready to define Penrose’s trapped surfaces.

Consider a 2 dimensional sphere in a spacetime and flash light rays in the outward and in-

ward direction perpendicular to the surface. These constitute bundles of null geodesics

for which the twist vanishes. These have expansions, θ±. The closed 2-surfaces for

which both the expansions θ± ≤ 0, are called trapped surfaces. Here is an example.
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r > R_S

Singularity

Exteirior

Region

Kruskal Diagram of the
Schwarzschild  Solution

X

T

r =
 R_S

r = R_S

t < 0

r = 0

This representation of the Schwarzschild spacetime in terms of the Kruskal coordinates

T,X, θ, φ. Each point in the diagram is a 2-sphere with coordinates θ, φ. Constant value of

the previously used Schwarzschild coordinate r define curves in this Kruskal diagram which

are displayed for various values of r. Remember that each point on these curves (except

for r = 0) is 2-sphere. The 45 degree red and green lines denote the outward (towards

increasing value of r) and inward (towards decreasing value of r) null geodesic bundles. The

picture makes it obvious that for r > RS, we have the usual expanding and contracting

light spheres while for r < RS, both light spheres are contracting (negative expansion) and

thus constitute trapped spheres. Thus, indeed we have a solution of the Einstein equations

having trapped surfaces.

The next important ingredient on the singularity theory is the global structure of spacetime.

What is meant by this?

Einstein equations are partial differential equation. Thus their solutions are local solutions

i.e. valid in a small region about a spacetime point. These can be extended to larger

regions or local solution in different regions can be matched in the overlap of the regions

etc. Such a process generates a global solution. Incidentally, this is also true for most other

basic equations of physics. It is a property of the space-time metric that in a sufficiently

small region we can always describe a solution with the light cone structure of the Minkowski

spacetime. And in Minkowski spacetime, we know that we have a clear notion of future/past

or “time orientation” and this is a pre-requisite for labeling of cause and effect. When we

join many local solutions, we may end up loosing this property. Our global spacetime may

8



have close time-like curves! We meet our first challenge.

Here is a cartoon example of a two dimensional spacetime. The space axis is horizontal while

the temporal direction is along the vertical but is wrapped around. At any point, we have

the usual light cones. As they are extended, the lines wrap around and join as shown. And

now you see how a closed time-like curve is possible! Every small portion (i.e. locally) our

toy space-time looks like a flat Minkowski spacetime with no confusion about past/future),

but the extended spacetime creates the ambiguity. The causality condition says that, such

spacetimes are disallowed by fiat.

We are not done yet. We may have a spacetime which does not admit any closed time-like

or null (causal in short) trajectories. But we may have some point(s) where a causal curve

comes arbitrarily close to itself, even though it never connects exactly. Operationally, such

a case will be difficult to decide if the causal curve is closed or not! Here is another cartoon

example.
Identify

Identify

Cut

Cut

We have introduced two cuts in the previous spacetimes which prevent close causal curves,

but permit a future directed causal curve to come arbitrarily close to itself. The strong

causality condition says that such spacetimes are also to be disallowed.

One more step still. The light cone are a depiction of a metric. We may compare two different

metrics and find that the light cone with reference to one is wider than that with reference to

the other. This can be easily written down. In our example of the Schwarzschild spacetime,
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we could also draw the Minkowski light cones which are wider than the Schwarzschild light

cones as we come closer to RS. Notice that causal directions in the narrower light cone

are also causal directions in the wider light cones, but not conversely. Now, some of the

space-like directions of the narrower light cone can be causal in the wider one and hence,

a strongly causal spacetime can violate strong causality with a small change to a metric

with wider light cones. This is depicted in the cartoon spacetime below. The red cones

are the wider ones. Precluding such spacetimes - strongly causal spacetimes which cease to

be so under widening of light cones - is called the stable causality condition. Stably causal

spacetimes ensure that no causal pathologies arise.

Identify

Identify

Cut

Cut

Ok, we have restricted to spacetimes in which a causal chain can be constructed unambigu-

ously between an ‘effect’ point and its ‘cause’ point. We can construct all possible causal

chains for a given effect (i.e. consider all possible past directed causal curves from a given

point a spacetime). Are all the causes so inferred accountable or accessible to our experi-

mentation? We can change some of the causes a little bit and that will be registered at the

effect point. But there may be some causes beyond our control which are also registered

at the effect point. If so, then we cannot hope to have a definite prediction of effects from

accounted causes. Consider the figure below.

Cauchy Surface

Future Domain of Dependence

Past Domain of Dependence
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The shaded portion of the planar surface is where we can introduce ‘causes’. It is taken to

be acausal i.e. no two points on it can be connected by a causal curve. Its future domain

of dependence consists of those effect points which can have their causes registered on the

shaded region. This is shown in the upper cone. Points outside this cone will have some of

the past directed causal curves intersecting outside of the shaded portion. Likewise the past

domain of dependence of the shaded region is the past cone. Points outside it will have some

future directed causal curves missing the shaded region. If we can only confine ourselves

to the full domain of dependence of some acausal surface, then we can have determinism.

Thus we take as definition, globally hyperbolic spacetimes are those which are the full domain

of dependence of some hypersurface (3-dimensional surface in a 4-dimensional spacetime).

That hypersurface is called a Cauchy surface.

It so happens that globally hyperbolic spacetimes are free of all causal pathologies and

support determinism. Thus now may now stipulate:

The physically admissible spacetimes are globally hyperbolic spacetimes which are solutions

of Einstein equations with stress tensor satisfying the strong energy condition.

In everyone of these spacetimes, we have bundles of geodesics governed by the Raychaudhuri

equation and also the possibility of trapped surfaces (Warning: this does not mean that all

admissible solutions have a trapped surface, certainly they do not). There is a potential

source of conflict.

In globally hyperbolic spacetimes, between any two causally connected points, there exist a

curve with maximum proper time. This curve is time-like geodesic with no conjugate points

on it. That is, if two spacetime points can be reached by causal means, we can always find

a “freely falling” observer going from the earlier to the later event without any freely falling

dust cloud closing on it.

We see the potential conflict. Raychaudhuri equation says conjugate points can exist and

global hyperbolicity says no that cannot happen. Note that existence of conjugate point is

conditional on an initially collapsing dust cloud. A trapped surface will precisely ensure that!

What is the way out? The geodesic must terminate before the indicated conjugate point is

reached. Though we have managed to get rid of all causal pathologies, have determinism,

have Einstein equations with physically observed sources and yet we may have an endangered

fate of an observer - an incomplete time-like geodesic. Thus we conclude, with Penrose, that

if a gravitational collapse has progressed far enough to have formed a trapped surface, then

such a solution will have a singularity in the sense of an incomplete time-like geodesic.
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Note that there is no assertion of conditions for formation of trapped surfaces, but if they

do form then singularity is inevitable. This conclusion does not use any special symmetry

or otherwise stipulation (except those of admissible spacetimes), and hence is robust.

Note: There are many fine prints that have been glossed over, but the essential logic of a

robust prediction of singularity if trapped surfaces form does not depend on these fine prints.

Let us briefly return to other, non-supermassive black holes. Observationally, these are

suspected when astronomer notice a source which is faint in visible light but bright in the

xray emission. Such a situation arises due to in-falling matter forming an accretion disk

quite close to central region. Several such black holes have been identified.

Yet another method indicating black holes is based on the phenomenon of emission of grav-

itational waves. General relativity predicts that if the quadrupole moment (and/or higher)

has a non-vanishing second time derivative, then such a mass distribution will loose energy

by gravitational radiation. Two astrophysical bodies going around each other, thus loose

energy and spiral towards each other and merge. The emitted gravitational wave form has a

characteristic variation of amplitude with frequency - a chirp waveform. This contains the

information about the masses and sizes of the coalescing bodies. Using the observed gravita-

tional waveforms, the Gravitational Wave Observatories have detected over 80 binary black

hole mergers with masses ranging from about 5 to 150 solar masses. This is a completely

different mass range.

In summary:

Observationally, an object is a “black hole” if:

(a) the object is compact i.e. its radius is comparable to its Schwarzschild radius obtained

from the estimate of its mass: RS := 2GM/c2;

(b) if the mass is larger than the maximum mass of the known stable, compact objects such

as Neutron stars i.e. & 2− 3M�.

In general relativity:, a “black hole” is identified as a spatially compact region containing a

trapped surface. A precise definition of its size requires a suitable definition of a “horizon”.

These two criteria are linked together because formation of a trapped surface guarantees a

singularity, reflecting a run away collapse violating any conceivable upper mass limit. And

we can assert that,

General relativity does admit black holes.
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For further reading:

The book by Kip Thorn, Black Holes and Time Warps, W W Norton & Company, 1994, is

very readable and informative.

For the more technical minded, the article by José M. M. Senovilla, David Garfin-

kle, The 1965 Penrose singularity theorem is available on the arxiv server at

https://arxiv.org/pdf/1410.5226
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