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Preface

These lecture notes have been prepared as a rapid introduction to Einstein’s General Theory
of Relativity. Consequently, I have restricted to the standard four dimensional, metric theory
of gravity with no torsion. A basic exposure to geometrical notions of tensors, their algebra
and calculus, Riemann-Christoffel connection, curvature tensors, etc has been presupposed
being covered by other lecturers. Given the time constraint, the emphasis is on explaining
the concepts and the physical ideas. Calculational details and techniques have largely been
given reference to.

The First two lectures discuss the arguments leading to the beautiful synthesis of the idea
of space-time geometry, the relativity of observers and the phenomenon of gravity. Heuristic
‘derivations’ of the Einstein Field equations are presented and some of their mathematical
properties are discussed. The (simplest) Schwarzschild solution is presented.

The next lecture discusses the standard solar system tests of Einstein’s theory.

The fourth lecture returns to static, spherically symmetric solutions namely the interiors of
stars. This topic is discussed both to illustrate how non-vacuum solutions are constructed,
how the Einstein’s gravity affects stellar equilibria and hold out the possibility of complete,
un-stoppable gravitational collapse. The concept of a black hole is introduced via the example
of the Schwarzschild solution with the possibility of a physical realization justified by the
interior solution.

The fifth lecture describes the Kerr-Newman family of black holes. More general (non-
stationary) black holes are defined and the laws of black hole mechanics are introduced.
Their analogy with the laws of thermodynamics is discussed. This topic is of importance
because it provides an arena from where the glimpses of interaction of GR and quantum
theory can be hoped for.

The cosmos is too large and too real to be ignored. So the last lecture is devoted to a view
of the standard cosmology.

Some additional material is included in an appendix. A collection of exercises meant for
practice are also included.

These lectures were given at SERC 2002 held at IIT, Mumbai, during Dec 16 – 21, 2002. A
subset of these lectures were given at the National Workshop on Astronomy and Astrophysics
organized by IUCAA, Pune and the St Marthoma College at Tiruvalla, Kerala, held during
Oct 7 – 9, 2002.

It is a pleasure to thank the organizers of the two meetings, in particular Fr. Alexander
Abraham of St. Marthoma College, Prof. Ajit Kembhavi of IUCAA and Prof. Urjit Yajnik
of IIT, Mumbai, for providing the opportunity that lead to these lecture notes and for
the excellent hospitality and encouragement. Thanks are due to Dr. Sushan Konar who
conducted the tutorials at the SERC School and also contributed some exercises related to
astrophysics. Without the enthusiasm of the students, lecturing is less than enjoyable. So I
would like to thank the participants for their alert attention.

December 31, 2002 G. Date
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Chapter 1

Introduction

1.1 Space-time, general relativity and gravitation

To quote Einstein: ‘theory of relativity is concerned with a theory of space and time’ [1].
He was thus primarily concerned with space-time and some how gravity, determining the
falling of an apple (or a coconut!), gate-crashed. We have here three seemingly unrelated
ideas/concepts - - the idea of a space-time, the idea of ‘democracy of observers’ and the
phenomenon of gravity – which are very tightly intertwined. Let us trace through the
arguments that lead to the synthesis. Since you have had an introduction to differential
geometry, let us also keep in mind the hierarchy of mathematical structures, starting with
the most basic,

• Set – of points of a space, or events in space-time;

• Topology – the minimum notion of ‘near-ness’ needed to introduce ‘continuity’;

• Manifold – the minimum notions needed to develop differential and integral calculus on
spaces that only locally look like the familiar RN ; generic intrinsically defined quantities
are tensors and tensor densities and only exterior and Lie differentiation is available;

• Affine Connection – minimum structure needed to introduce the notion of parallelism;
notion of ‘geodesics as straightest lines’ is available and so are the notions of Riemann
and Ricci curvature tensors;

• Metric tensor – Introduces the notion of ‘length of an interval (or curve)’, views
geodesics as curves with extremal lengths, permits notion of a ‘locally inertial observer’
to be incorporated.

The idea of space and time: Intuitively, space is something in which things happen - bodies
can be (and do) moved around. The space of everyday experience is such that what we
perceive as rigid bodies can be moved around, well, rigidly without any distortions. One
uses this fact of experience to set up coordinate systems to label points that could be occupied
by bodies, particles etc. The most familiar coordinate system one sets up is the Cartesian
system of orthogonal axes. An important property of the space one notices is that if one
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has assigned coordinates (x, y, z) and (x′, y′, z′) to two ends of a rigid rod, then its length is
given by:

Length2 = (x′ − x)2 + (y′ − y)2 + (z′ − z)2. (1.1)

This follows from noting that the coordinates are assigned by counting the numbers of unit
rods needed along each axis and the Pythagoras theorem of Euclidean geometry.

Notice however that there are infinitely many Cartesian systems – each observer can choose
his/her orientation of axes and of course the origin. Every one of these coordinate systems
will give the same expression for lengths and the length of a given rod computed by different
observer will turn out to be equal (assuming same units are used!). We know that all
these coordinate systems with common origin are related to each other by rotations or
the orthogonal transformations. Also observe that if a freedom loving observer decides to
use non-orthogonal axes, the expression for length in terms of his/her coordinates will be
different.

We can summarize by saying that space is something that exists and is made ‘manifest’ by
using coordinate systems set up by observers by using physical objects and processes. The
space of everyday experience is three dimensional and is such as to distinguish a class of
coordinate systems - the Cartesian ones - in which the lengths of rigid rods are given by the
specific expression. This distinguished class is generated from any one system, by orthogonal
transformations.

The idea of relativity of observers: We see immediately where an ‘observer’ enters a theory
of space and time. The procedure of making the space and time manifest involves setting up
of coordinate systems which is done by real observers using real rods and clocks and using
real physical processes. This procedure thus can not be independent of properties of physical
objects and therefore the (metrical) properties of space time should not be mandated ab initio
but should be inferred. An obvious question then is whether there are any criteria to be
stipulated for preference for some observers. Just as one can have non-Cartesian coordinate
systems which are equally good as far as assignments of coordinates goes, but they are not
‘preferred’ or naturally singled out because of the expression for the lengths. Identification
of a distinguished (equivalence) class of observers corresponds to a (restricted) ‘Principle of
Relativity’. The class of Cartesian coordinate systems (or observers) can be regarded as a
‘principle of relativity of orientation’.

Now one can ask if there is a relativity with regards to states of motions of observers. Our
experience with mechanics (equations of motion) leads us to identify the so called ‘inertial
observers’ as a distinguished class of observers. Recall that an inertial observer is one who
will verify the Newton’s first law of motion namely, in the absence of an agent of force a
body continues its state of uniform motion. Such observers are realized in practice by being
far away from all known agents of forces (eg shield electromagnetism and/or use neutral test
bodies and be far away from a massive body). We still have to identify relations between two
inertial observers analogous to the orthogonal transformations between Cartesian systems.
The Galilean Relativity makes an explicit statement about it as:

Time is absolute (independent of observer) and is same (up to shifts of origins) for all inertial
observers while space coordinates are related by a time dependent translation i.e.

t′ = t+ a , ~r′ = ~R(n̂)r + ~vt+ ~c (1.2)
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Clearly, these transformations leave the acceleration and hence equation of motion invariant.
Despite the somewhat circular nature of definition of an inertial system, in practice Galilean
Relativity worked very well as far as mechanical phenomena were concerned. It failed for
electromagnetism, Maxwell’s theory being not invariant under the Galilean transformations.

One had two options now: either Galilean relativity is applicable only to mechanical phe-
nomena or that Galilean transformations need to be modified. If the former is valid, then
earth’s velocity relative to an absolute space or ether or whatever should be detectable, say
by doing experiments with light. All such attempts failed. Speed of light was firmly con-
stant independent of earth’s motion. The conflict between electromagnetism and Galilean
transformations must be faced.

Einstein believed that relativity of inertial observers should not be confined only to me-
chanical phenomena. There is also the implicit assumption in the Galilean transformations
that time assignments are independent of observers which could be possible if clocks could
be synchronized by sending instantaneous signals. However if instantaneous transmission of
signals is not possible then Galilean transformations, particularly t′ = t+a will be fictitious.
There is thus a case to doubt Galilean transformations. Thus, while relativity of inertial ob-
servers may still be maintained, Galilean transformations need not be. What should replace
these? Whatever these are, these should lead to same speed of light measured by all inertial
observers.

As we all know, the new set of transformations are the Lorentz transformations which look
like,

x′ = γ(x− βt) β :=
v

c
, γ :=

1
√

1 − v2

c2

t′ = γ(t− β

c
x)

y′ = y

z′ = z (1.3)

These leave invariant the new space-time intervals defined below.

(∆s)2 := c2(∆t)2 − (∆x)2 − (∆y)2 − (∆z)2 (1.4)

We may summarize now as: A principle of relativity with respect to the state of motion of
observers can be formulated by asserting that space and time, now to be regarded as a single
entity space-time, is such as to admit a distinguished class of frames (or observers) called
the ‘inertial frames’. These are obtained from any one member by the Lorentz transforma-
tions which leave the space-time intervals invariant. Neither mechanical nor electromagnetic
phenomena can single out any one inertial frame.

Einstein was still not satisfied. Newtonian gravity did not conform to the principle of special
relativity. There is also no conceivable reason as to why inertial frames are preferred whose
definition itself is somewhat circular. While the space-time was such as to imply modifica-
tions of physical properties eg length contraction, time dilation etc but there is no provision
in the theory to incorporate effects of material bodies on the space-time. Such one way
influencing, being against the Machian view point, was deeply unsatisfying to Einstein.
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At this point Einstein observes the striking numerical equality of the ‘inertial mass’ and
the ‘gravitational mass’. It is striking because both the notions are defined so differently.
Ratios of inertial masses is defined via the ratios of the accelerations suffered by two bodies
subjected to the same force of whatever kind. The gravitational mass on the other hand is
something characteristic of gravitational force between two bodies much the same way as
electric charges are characteristic of electro-static forces. There is no reason for these to be
equal. However if these are exactly equal, then it follows that gravitational effects can be
interpreted in terms of acceleration and hence can be made to ‘disappear’ by referring to an
‘accelerated observer’. Conversely, an observer accelerated relative to an inertial observer
can equally well describe motion by postulating a gravitational field.

One now sees a way to resolve one of the puzzles. Inertial frames are preferred because there
are no gravitational fields. If these are present, then these could be interpreted in terms
accelerated observers. So if one includes gravitational phenomena as well then one might as
well propose a principle of relativity of all observers.

Einstein then considers an inertial observer K and another observer K ′ rotating uniformly
with respect to K. Using properties of Lorentz contraction, he argues that spatial geometry
as determined by the rotating observer should deviate from the Euclidean one as determined
by K since the ratio of circumference to radius will be smaller for K ′. Thus geometry as
inferred by an accelerated observer is non-Euclidean in general. But since K ′ will perceive a
gravitational field, he should conclude that gravity affects geometry. This is very satisfying
since now one sees the possibility of material bodies affecting the geometry of space-time.
Since Newtonian gravity is determined by material bodies and gravity can affect geometry, it
follows that material bodies can affect the geometry of space-time. How exactly this happens
is of course the content of the Einstein Field equations.

But if gravity can be ‘gotten rid off’ by going to a freely falling lift, is gravity completely
fictitious? No! One can nullify effects of gravity only in small portions of space-time. One
can experience weightlessness in a freely falling lift but on earth, which is freely falling in the
gravitational field of the Sun, tides do occur. This in fact suggests that gravitation is really
manifestation of tidal forces which in the geometrical set up are effects of the curvature.
Thus preferred status of inertial frames is not completely discarded but its applicability is
limited to small regions of space-time. Since in such small portions gravity can be nullified,
we can safely stipulate that laws of physics take a form consistent with special theory of
relativity in such locally inertial frames.

One can appreciate the grand synthesis now. Space-time is not some inert, arena in which
things happen but is a dynamical entity. This comes about because space-time must be
manifested via frames of references or coordinate systems to be constructed in conformity
of properties of real physical objects (no fictitious assumptions of infinite speeds). Here in
enters principle(s) of relativity of classes of observers. The phenomenon of gravity is such
that one can simultaneously bypass the vexed question of singling out inertial observers
and non-conformity of Newtonian gravity to special relativity with the additional bonus of
space-time and matter both influencing each other.

From mathematical side we note that there are several intrinsically definable quantities – all
tensors. Why then so much special status for metrical properties of space-time? It is perhaps
useful to recall that one studies “geometry” as properties of shapes such as triangles, circles
etc and one also studies the so called ‘coordinate geometry’. In the first version, Euclid’s
version, one of course has the notion of distance between two points (equated to length of the
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straight line joining the two points). This does not need the notion of metric tensor. In the
coordinate geometry version, all the properties of shapes can be analyzed by postulating the
lengths of coordinate intervals given by the ‘Euclidean’ expression for Cartesian coordinates
and this has the notion of a metric tensor. All our measurements – geographical, astronomical
surveys etc – use the notion of lengths of intervals. In short, all our kinematics – description
of motion – is based on presumed metrical properties of the space-time arena. This is the
reason for the primacy of metric tensor in the specification of a space-time.

The correspondence between the physical ingredients and the mathematical definitions should
be easy to see now. A space-time, to begin with is a manifold being manifested via the use of
coordinate systems (local charts). Distinguished observers are of course special coordinate
systems. Principle of special relativity deals with only a subset of coordinates being generated
by the Lorentz transformations. The physical quantities are then represented by the mathe-
matical tensors which are tensors relative to Lorentz transformations. The metric tensor, in
the special coordinates, is the familiar diagonal matrix (1,−1,−1,−1). The principle of gen-
eral relativity treats all coordinate systems on the same footing. Physical quantities are thus
tensors with respect to arbitrary coordinate transformations. Metric tensor is now generic
(except for the signature). The space-time is thus a four dimensional pseudo-Riemannian
manifold. There are still more aspects to be dealt with. One relates to how to determine a
particular metric tensor in a given physical context. Another one relates to how to adapt
the statements or expressions of laws of physics to the more general space-time geometry
envisaged? This is a non-trivial issue particularly since one does not yet have a relativistic
formulation of Newtonian gravity. The equality of gravitational and inertial mass only hints
that uniform gravity can be considered as equivalent to uniform acceleration. To incorporate
effects of gravity on the special relativistic formulations, some guiding principles are needed.

These are (a) the principle of general covariance and (b) the principle of equivalence. The
former is stated as laws of physics be covariant under general coordinate transformations.
The latter is stated with various versions: (i) equality of gravitational and inertial mass, (ii)
laws of physics assume a form dictated by special relativity in the locally inertial frames.
See the discussion given in Weinberg’s book.

With the knowledge of differential geometry we have, it is clear that general covariance is
the stipulation that laws of physics be expressed as tensor equations. This is eminently
reasonable because these are the only types of equations which retain their form in arbitrary
coordinate systems (alternatively these are the only ones that have an observer independent,
intrinsic meaning). Recall that when one went from Galilean relativity to special relativ-
ity one had to modify the expressions for energy and momenta so as to identify them as
components of 4-vector. The laws of mechanics and electrodynamics including the Lorentz
force were expressed as tensorial expressions where tensors were understood to be Lorentz
tensors. In analogy, the transition to general relativity stipulates use of general tensors. The
promotion of Lorentz tensors to general tensors still leaves wide open the possibilities for
modification in the expressions for the laws of physics. This is sought to be limited by the
“medium version” of principle of equivalence. Whatever tensor equations that we propose
should be such as to reduce to the expression given by special relativity when referred to
locally inertial coordinates. There is an ambiguity involved in this statement. For instance,
suppose a tensor expression involved the curvature. By specializing to locally inertial sys-
tems one can make the Riemann-Christoffel connection vanish at a point, but certainly not
the curvature. Thus covariant derivatives will reduce to ordinary derivatives (as for special
relativity) but curvature terms will still be present and these have no place in special relativ-
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ity whose space time is Riemann flat. This is slightly subtle and an example will illustrate
the point.

Consider Maxwell equations in the special relativistic case:
∑

cyclic µνλ

∂µFνλ = 0 (1.5)

∂µFµν = jν (1.6)

The first first set of equations allow us to define Fµν := ∂µAν − ∂νAµ. Choosing the Lorentz
gauge, ∂µAµ = 0, one can write the second set of equations as,

∂µ∂µAν = jν (1.7)

One can make these equations generally covariant quite simply by replacing the derivatives
by covariant derivatives and declaring the vector potential, field strengths etc as tensors.
The Bianchi identity still allows vector potential to be introduced. The equation (1.5) when
expressed in terms of the vector potential in the Lorentz gauge takes the form:

∇µ∇µAν −Rµ
νAµ = jν (1.8)

If however we covariantized the equation (1.7), we will get the same equation as above but
without the Ricci tensor term. Thus we see that there are more than one ways of generating
general tensor equations.

If we go to locally inertial frame (so that the Γ connection is zero at the origin of the inertial
frame), then neither of these equations go over to the special relativistic equation. Thus
neither the principle of covariance nor the principle of equivalence is useful here to select
one or the other equation. What does select between these two candidate equations is the
conservation of jµ. The covariant divergence of the left hand side of (1.8) is identically zero.

We got this ambiguity in covariantizing the equations because while ordinary double deriva-
tives commute, covariant double derivatives do not commute (except when acting on scalars).
Their commutator contains curvature components. There is no ambiguity in the equations
expressed in terms of the field strengths since only their single derivatives appear.

When covariantizing the Klein-Gordon equation, one does not generate curvature terms since
on scalars the covariant derivatives commute. However, we can add a so called non-minimal
coupling term of the form αRφ which is consistent with both the principles.

As a quick application of principle of covariance and principle of equivalence let us deduce
the equation for the freely falling point particle. In an inertial frame, a free particle obeys
the equation,

d2xµ

dτ 2
= 0 ↔

dxν

dτ

∂

∂xν

dxµ

dτ
= 0 ↔

vν∂νv
µ = 0 whose covariant version is,

vν∇νv
µ = 0 ↔

d2xµ

dτ 2
+ Γµ

αβ

dxα

dτ

dxβ

dτ
= 0 The geodesic equation. (1.9)
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As a by product, We thus deduce that in the geometrical set up of Pseudo- Riemannian
geometry, the trajectories of freely falling test (point) particles are given by the geodesics.

We now come to the final ingredient: What is the law that determines the space- time metric
in a given physical context. In the next lecture we will use the knowledge of Newtonian
gravity combined with principle of covariance to arrive at the Einstein equations.

1.2 ‘Derivation’ of Einstein Equations

Although there is need to modify Newton’s gravity, the modification has to be such as
to make small refinements in the predictions since Newton’s theory has been enormously
successful. So we have to be able to reproduce the equations,

d2xi

dt2
= − ∂

∂xi
Φ

∇2Φ = 4πGρ (1.10)

when a suitable ‘limit’ is taken. Suitable limit means when we identify a space- time appro-
priate for describing motion of a non-relativistically moving test particle in the gravitational
field of an essentially static body. Since this situation corresponds to the Galilean picture
of space and time, we may expect that the geometry be time independent and very close to
the Minkowskian geometry, i.e. gµν ≈ ηµν + hµν .

Let us then imagine a large body producing Newtonian gravitational potential in which a
test particle is ‘freely falling’ (recall that motion under the influence of only gravitational
force is called a free fall). Let (t, xi) denote a coordinate system in the vicinity of the large
body which is at rest. Let xµ(λ) denote the trajectory of the freely falling particle. Clearly
it satisfies the geodesic equation. Now,

Non-relativistic test particle ⇒ |dx
i

dλ
| << | dt

dλ
| ⇒

Γµ
αβ

dxα

dλ

dxβ

dλ
≈ Γµ

00(
dt

dλ
)2

time independence of geometry ⇒
Γµ

00 = −1

2
gµρ∂ρg00

Close to Minkowskian geometry ⇒ gµν ≈ ηµν − hµν ⇒
Γµ

00 ≈ −1

2
ηµρ∂ρh00 (1.11)

The µ = 0 geodesic equation then implies that t = aλ+ b and by eliminating λ in favor of t
the remaining equations become,

d2xi

dt2
=

1

2
ηij∂jh00 = − δij∂j(

1

2
h00) (1.12)

Comparing with the Newtonian equation, we see that the metric component g00 gets iden-
tified with 1 + 2Φ. Thus we obtain a relation between metric and Newtonian potential.
Newton’s theory determines the potential given a mass density ρ via the Poisson equation.
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ρc2 is then an energy density (using special relativity) which we know, again using special
relativity, to be the 00 component of the energy-momentum tensor Tµν . Thus the Newtonian
equation can be expressed as,

∇2g00 =
8πG

c2
T00 (1.13)

This is a highly suggestive form and appealing to covariance one can expect an equation
relating matter distribution and geometry to be of the form,

Fµν(g) =
8πG

c2
Tµν (1.14)

where, Fµν is a tensor constructed from the metric and should satisfy the following properties:

1. Fµν is a symmetric tensor built from the metric and its derivatives and is covariantly
conserved, Fµν

;ν = 0;

2. It has at the most second derivative of the metric and is linear in the second derivative;

3. For gµν ≈ ηµν+hµν the equation should match with the Newtonian form of the equation
(2.1).

These are very natural and reasonable demands. The first one is just consistency with the
known general properties of the energy-momentum tensor (appeal to special relativity and
principle of general covariance). The last one is where we expect Newtonian gravity to be
recovered. The second one is a technical demand that could be justified on the basis of
simplicity and the Newtonian form of the equation.

Recall that the Riemann-Christoffel connection is defined via the equations gµν;λ = 0. This
allows us to express first (ordinary) derivatives of the metric in terms of the connection and
metric. Likewise, the second derivatives of the metric can be expressed in terms of the first
derivatives of the connection, the connection and the metric. We need not go beyond due
to the second requirement. The linearity in the second derivative of the metric implies that
F should be built out of a 4th rank tensor involving first derivatives of the connection and
products of connections. But, mathematically, the only such tensor is the Riemann curvature
tensor! From this we also have the Ricci tensor and the Ricci scalar. This leads to the form,
Fµν = aRµν + bRgµν + Λgµν .

Now we impose the conservation requirement. Blissfully, the Riemann tensor already satisfies
the differential Bianchi identities:

Rρ
σµν;λ +Rρ

σνλ;µ +Rρ
σλµ;ν = 0 ⇒

R ν
µ ;ν =

1

2
R;µ (1.15)

Conservation condition thus implies (a/2 + b)R;µ = 0. If we take gradient of the Ricci
scalar to be zero, then the proposed equation will imply gradient of the trace of the energy-
momentum tensor to be zero. This is not generally true and so would be an undue restriction
on the matter properties. So we must have b = −a/2. This leads to the proposed equation
of the form,

a(Rµν −
1

2
Rgµν) + Λgµν =

8πG

c2
Tµν (1.16)
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We have yet to use the third requirement. For metric close to the Minkowskian metric, the
curvature terms are all order h while the Λ term is order h0 and so will dominate. For large
static body (or non-relativistic matter) the spatial components of Tµν are much much smaller
than the time-time component. This is inconsistent with dominating Λ term. So if we are to
recover the Newtonian limit, Λ = 0 should hold (or it should be exceedingly small to have
escaped detection in Newtonian gravity, in which case we may continue to neglect it.) All
that remains now is to determine a. The spatial components of Tµν being very small implies
that Rij ≈ 1

2
Rgij. This implies

∑
Rii = (R/2)

∑
gii ≈ (R/2)

∑
ηii = −(3/2)R. Furthermore

the Ricci scalar can be likewise simplified as R ≈ R00 −
∑
Rii ⇒ R ≈ −2R00. The equation

then approximates to aR00 ≈ 4πG
c2
T00. By substituting the metric in the definitions, a

straightforward calculation yields R00 ≈ −(1/2)δij∂i∂jh00 ≈ (1/2)∇2h00. Comparison then
gives a = 1. Thus we finally arrive at the Einstein field equations as:

Gµν := Rµν −
1

2
Rgµν =

8πG

c2
Tµν (1.17)

A number of remarks are in order.

(1) The coefficient in front of Tµν is about 1.86 × 10−27cm.gm−1. From cosmology, the
estimate of the possible cosmological constant, Λ, is about 10−56cm−2. So although strict
Newtonian limit would rule out Λ, Newtonian gravity it self is not tested to the extent of
detecting presence of Λ. Thus logically the Λ term is admissible. In fact exactly the same
logic can be applied to seek more general field equations. Our second requirement was based
on the form of the Newtonian limit and simplicity. Simplicity is a matter of taste and level of
accuracy of Newtonian gravity could permit higher derivatives of the metric and hence more
general equations that could nonetheless show the same Newtonian limit. In this sense, to
propose the above equation as ‘the’ equation governing determination of space-time metric
is a postulation and not a ‘derivation’.

(2) There are other alternative heuristic derivations of the Einstein equations. One is based
on the comparison of ‘tidal forces’ as understood in the context of geometry. In the Newto-
nian picture, tidal forces imply relative acceleration between two nearby bodies, both moving
in the same inhomogeneous gravitational field. This is given by the gradient of the force or
double derivatives of the potential. In the geometrical context, one represents the free fall of
the nearby bodies by two neighboring geodesics and obtains an expression for their relative
motion in terms of the Riemann tensor. Identifying the two expressions and referring to
the Poisson equation, leads one to try Rµν = 4πG

c2
Tµν . This in fact was the equation first

considered by Einstein. But contracted Bianchi identity then implies that trace of Tµν must
be constant which is an unphysical demand on matter. The correction is of course replac-
ing the Ricci tensor by the Einstein tensor. This still retains the identification of the tidal
accelerations with the geodesic deviation at least for non-relativistically moving sources of
Newtonian gravity. Details may be seen in Wald’s book. Weinberg also has yet another
derivation allowing the Fµν to be not just dependent on metric and its derivatives. We will
now accept the Einstein equations as a law of nature and turn to study its properties and
implications.

(3) Mathematically, The Einstein tensor is an expression involving double derivatives of the
metric. The equations are thus a system of 10 non-linear, partial differential equations for the
10 unknown functions of 4 coordinates, gµν(x

α). However the equations are not independent.
They satisfy 4 differential identities implied by contracted Bianchi identities. There is also
the freedom to make arbitrary coordinate transformations. To specify a solution therefore
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one has to specify coordinates either by explicit choice/procedure or implicitly by some
‘coordinate conditions’. In this regards, the equations are similar to the Maxwell equations
for the gauge potential.

Being partial differential equations, these are necessarily local determinations. The solutions
thus admit the notion of ‘extension’ as well as ‘matching’ solutions found in different local
regions. We will see examples of this in the context of the Schwarzschild solution.

(4) The equations, on the gravitational side, involve only the Ricci tensor and the Ricci scalar
and not the full Riemann tensor. Likewise, on the matter side, only Tµν is involved and not
always the other details of the matter constituents. For example, we may have a perfect fluid
made up of whatever types of ‘fluid particles’ but the form of the stress-tensor is still the
same – different fluids being distinguished by different ‘equations of states’. When taking a
gas of photons as a source, one needs only to use the Tµν described in terms of pressure and
density without any reference to the underlying electromagnetic fields satisfying Maxwell
equations. In particular this means that even if the stress tensor is zero in a region, the
geometry in the same region is only Ricci-flat but non necessarily Riemann-flat. Empty
space-time does not necessarily mean Minkowski space-time (which is Riemann- flat). This
is good because it permits non-flat space-times in the vicinity of a body even in the region
not occupied by the body. As an aside we note that the Riemann tensor for n dimensional
geometry has 1

12
n2(n2 − 1) independent components. For n = 2 this equals 1 which can be

taken to be the Ricci scalar. Indeed the Einstein tensor vanishes identically for n = 2. For
n = 3 the independent components are 6 in number and can be conveniently taken to the
components of the Ricci tensor. In this case, Ricci-flat implies Riemann-flat. For n ≥ 4,
Riemann tensor has more components than the Ricci tensor and hence Ricci-flat does not
imply Riemann- flat (though the converse is of course true).

(5) Newtonian gravity was described in terms of a single function satisfying a time inde-
pendent Poisson equation. Time dependent gravitational fields are thus possible only due
to the time variation of the matter density. In Einstein’s theory, gravity is much richer and
equations are dynamical. Thus even in the absence of sources one can have propagating
gravitational disturbances – the gravitational waves which have been inferred indirectly by
observations of binary pulsars but direct detection is still awaited.

(6) There is another aspect of the equations related to the conservation property. Bianchi
identities imply that covariant divergence of the Einstein tensor is zero that in turn implies
that the covariant divergence of the stress tensor is zero. From our experience with flat
space-time, we are used to inferring a conservation law from a divergence-free ‘current’ e.g.
∂µJ

µ = 0 ⇒
∫

vol
∂µJ

µ =
∫

surf
JµdSµ = 0 where Gauss’s theorem has been used. However,

if one has a covariant divergence of a tensor to be zero, one does not get a corresponding
(integrated) conservation law except in some special cases. This happens essentially because
an integration on an n-dimensional manifold can be defined only for n-forms whenever ar-
bitrary change of integration variables is permitted (as on a manifold). When a metric is
available, one has a natural invariant volume element available and one can define integration
of 0- forms (scalars) on an n-dimensional manifold. This fact underlies Stoke’s theorem that
implies the Gauss’s theorem that is used in deducing a conservation law from a divergence
equation. One can check easily that invariant volume times the covariant divergence of a
contravariant vector can be expressed as ordinary divergence of a vector density and for this
the Stoke’s theorem can be applied. In equations:

√
g∇µJ

µ =
√
g∂µJ

µ +
√
gΓµ

µνJ
ν
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=
√
g∂µJ

µ +
√
g(∂µℓn

√
g)Jν

= ∂µ(
√
gJµ)

= ∂µ(
√
gǫµν1···νn−1ων1···νn−1)

= Eν1···νn∂ν1ων2···νn

= dω (1.18)

For the stress tensor, however, these manipulations do not go through and hence the diver-
gence equation does not lead to a conservation law. How did one get the usual conservation
laws for special relativity? Recall that in the special relativistic context, the stress tensor
is a tensor only relative to Lorentz transformations. Hence the only changes of integration
variables permitted are the (constant) Lorentz transformations. For these restricted change
of variables, the integration is well defined. Furthermore the space-time is flat and so in the
Minkowskian coordinates the connection is zero. Covariant divergence is then same as the
ordinary divergence.

A physical way of stating this lack of conservation law is to note that the connection term is
like a gravitational force (since metric is analogous to the gravitational potential). Presence
of these terms implies that tidal forces can always do work on the matter and thus one
cannot expect a separate conservation for matter.

There are cases where the divergence equation does lead to conservation equation. If we
have a space-time with a symmetry i.e. transformations generated by a Killing vector which
leave the metric invariant, then one can define conserved quantities. For instance, if ξµ
is a Killing vector field i.e. satisfies ξµ;ν + ξν;µ = 0, then one can define Jµ := T µνξν .
Its covariant divergence is zero and because of the argument presented above the quantity
Q :=

∫

hypersurface
Jµξµ is conserved as one changes the hypersurface orthogonal to the Killing

vector. However, generic space-times do not admit any Killing vectors. For further discussion
I refer you to the books [3, 4].
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Chapter 2

Spherically Symmetric Space-times

2.1 The Schwarzschild (exterior) Solution

To get glimpses of the refined theory of gravity one should now obtain some solutions of the
field equation and compare its properties with the Newtonian gravity. A simplest situation
to consider is the geometry in the presence of a massive, spherically symmetric, non-rotating
body. We know the Newtonian gravitational field out side the body, Φ(r) = −GM

r
. We

would like to know the geometry i.e. the appropriate metric tensor. To obtain this we must
first choose suitable coordinates. Most natural choice, also close to the Newtonian picture,
is to imagine concentric spheres surrounding the body. The sphere’s themselves are labeled
by a label r while the points on each sphere is labeled by the usual spherical polar angles,
θ, φ. We also choose some time label t.

Since the body is non-rotating ( and not moving i.e. t is such that the body does not move)
we expect the geometry to be time independent. Further spherical symmetry implies that
the metric should not depend on the angles except for the ‘metric’ on the spheres. We
therefore make the ansatz,

ds2 = f(r)dt2 − g(r)dr2 − r2(dθ2 + sin2θdφ2) (2.1)

Remarks:

(1) One can show that this ansatz can always be chosen for spherically symmetric, static
space-times. To show this though would need the machinery of Killing vectors etc.

(2) The two dimensional surfaces defined by t = constant, r = constant, have the induced
metric which is the standard ,metric on a sphere. The area of such a sphere is given by,

Area =

∫ √
ginddθdφ =

∫ √
r4sin2θdθdφ = 4πr2 (2.2)

The label r can thus be defined as: r :=
√

area
4π

. r is consequently called the ‘areal radial
coordinate’.

(3) The three dimensional space defined by t = constant, has a metric similar to the standard
Euclidean metric expressed in the spherical polar coordinates. It would be exactly that if
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g(r) = 1. One will then have r also as the radius of the sphere. However g(r) is yet to be
determined, so we cannot interpret r as the usual radius.

(4) The metric is independent of t. By inspection we see that we can scale t by a constant
factor and absorb it by redefining f(r). This freedom will be fixed shortly.

At this stage we have made a judicious choice of coordinates and parameterized the metric in
terms of only two functions of a single variable. We thus expect Einstein equations to reduce
to ordinary differential equations that can always be solved. The procedure is to compute
the connection and then the Ricci tensor components as expressions involving f, g, r. Since
we are looking for the geometry outside of the body, we take Tµν = 0 and then it follows
that the Ricci tensor must be zero.

Straight forward application of the definitions leads to (′ denotes d
dr

) :

Γα
βγ t r θ φ

tt 0 1
2
g−1f ′ 0 0

tr 1
2
f−1f ′ 0 0 0

tθ 0 0 0 0
tφ 0 0 0 0
rr 0 1

2
g−1g′ 0 0

rθ 0 0 r−1 0
rφ 0 0 0 r−1

θθ 0 −rg−1 0 0
θφ 0 0 0 cotθ
φφ 0 −g−1rsin2θ −sinθcosθ 0

−Rtt = −f
′′

2g
+

1

4

(
f ′

g

)(
g′

g
+
f ′

f

)

− f ′

rg
;

−Rrr =
f ′′

2f
− 1

4

(
f ′

f

)(
g′

g
+
f ′

f

)

− g′

rg
;

−Rθθ = −1 +
r

2g

(

−g
′

g
+
f ′

f

)

+ g−1 ;

Rφφ = sin2θ Rθθ; all other components are zero. (2.3)

Clearly, g−1Rrr + f−1Rtt = 0 implies fg = constant. In view of the scaling freedom in the
definition of t we can take this constant to be equal to 1 1. The Rθθ = 0 implies rf ′ = 1− f
which can be immediately integrated to give f(r) = 1 − RSr

−1 where RS is an integration
constant. If we appeal to the Newtonian limit for large r, we see that f(r) = g00 = 1+2Φ(r)
which gives the identification, RS = 2GM . Thus we have the famous Schwarzschild solution

1This has the effect of making the metric approach the standard Minkowski metric for r tending to

infinity.
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(1916):

ds2 =

(

1 − 2GM

r

)

dt2 −
(

1 − 2GM

r

)−1

dr2 − r2(dθ2 + sin2θdφ2) (2.4)

Note that this describes the space-time outside the body (i.e. r > the physical radius of the
body) and is called the exterior Schwarzschild space- time. A natural length scale has crept
in via the constant of integration, RS which in the usual units is given by RS = 2GM

c2
and

is known as the Schwarzschild radius of the body of mass M . Evidently, for r >> RS, the
metric can be expressed as,

ds2 =

(

1 − RS

r

)

dt2 −
(

1 +
RS

r
+
R2

S

r2
+ · · ·

)

dr2 − r2dΩ2

=
[
dt2 − dr2 − r2dΩ2

]
+

[

−Rs

r

(
dt2 + dr2

)
+ o

((
RS

r

)2
)]

(2.5)

= Minkowski metric + deviations

To get a feel, let us put in some numbers. For our Sun:

RS ≈ 2 × (6.67 × 10−8) × (2 × 1033)

(3 × 1010)2
≈ 3 km (2.6)

For contrast, the physical radius of the Sun is about 6,00,000 km. Thus already just outside
the Sun, the deviation from Minkowskian geometry is of the order of 1 part in 105. For earth
the deviation is about 1 part in 109. General relativistic corrections are thus very small. No
wonder Newtonian gravity worked so well. For more compact objects such as white dwarfs
and neutron stars the deviation factors are about 10−3 and 0.5.

This simple solution is useful for practical matters such as solar system tests of general
relativity as well as for hints at the exotic aspects of GR such as black holes. We will first
study the non-exotic aspects. We will take r >> RS and study the small corrections implied
by GR.

2.1.1 Geodesics

The first aspects to study are the geodesics. Let (t(λ), r(λ), θ(λ), φ(λ)) denote a geodesic.
Using over-dot to denote derivative with respect to λ and ′ to denote derivative w.r.t. r and
using the table of Γ’s, we see that,

0 = ẗ+
f ′

f
ṙ ṫ (2.7)

0 = r̈ +
f ′

2g
ṫ2 +

g′

2g
ṙ2 − r

g
θ̇2 − rsin2θ

g
φ̇2 (2.8)

0 = θ̈ +
2

r
ṙθ̇ − sinθcosθφ̇2 (2.9)

0 = φ̈+
2

r
ṙφ̇+ 2cotθθ̇φ̇ (2.10)
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It is clear that θ = constant is possible only for θ = π/2. These are the equatorial geodesics.
The equations simplify to:

0 = ẗ+
f ′

f
ṙ ṫ ⇒ ṫf ≡ E ( a positive constant ) (2.11)

0 = r̈ +
f ′

2g
ṫ2 +

g′

2g
ṙ2 − r

g
φ̇2 (2.12)

0 = φ̈+
2

r
ṙφ̇ ⇒ r2φ̇ ≡ EL ( a constant. ) (2.13)

The radial equation can be integrated once to yield,

gṙ2 + E2

(
L2

r2
− 1

f

)

≡ −E2κ ( κ is a constant. ) (2.14)

It is easy to see by substitution that,

(
ds

dλ

)2

= E2κ ( ≥ 0 ) (2.15)

κ is positive for time-like geodesics (material test bodies such as planets) and is zero for
light-like geodesics. One can eliminate λ in favor of t by using dλ = fdt/E to get,

r2dφ

dt
= Lf (2.16)

g

f 2

(
dr

dt

)2

− 1

f
+
L2

r2
= −κ (2.17)

(
ds

dt

)2

= κf2 (2.18)

Notice that these equations are independent of E. The relevant constants of integration are
κ and L. To get the orbit equation, we eliminate t in favor of φ using dt = r2

Lf
dφ to get,

0 =
g

r4

(
dr

dφ

)2

+
1

r2
+

1

L2

(

κ− 1

f

)

or (2.19)

φ(r) = ±
∫

dr

√
g

r2

(
1

L2
(f−1 − κ) − 1

r2

)− 1
2

(2.20)

These are the general set of equations for geodesics. These are essentially characterized by
two constants, κ, L. We can now distinguished two types of orbits, bounded and unbounded
(scattering). The relevant orbit parameters for bounded orbits are the maximum and the
minimum values, r± and relevant question is whether the orbit precesses or not. For un-
bounded orbits the relevant parameters are asymptotic speed (or energy) and the impact
parameter or the distance of closest approach and the important question is to obtain the
scattering angle.
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∆ φ

(r)φ

b = r sin α  r α

φ
❍❍

2.1.2 Deflection of light

Let us consider the scattering problem first. The geometry is shown in the figure. Asymptot-
ically r is very large and thus f, g ≈ 1. The incoming radial speed v, defined as v := −drcosα

dt

is given by v ≈ −dr
dt

. Radial equation then implies κ = 1−v2. Likewise the impact parameter
b := rsinα ≈ rα. Differentiating w.r.t. t and using the angular equation one finds L = bv.
It is convenient to further eliminate L in favor the distance of closest approach, r0, defined
by dr

dφ
= 0. This yields,

|L| = r0
√

f(r0)−1 − 1 + v2 and the φ integral becomes, (2.21)

φ(r) = φ∞ +

∫ ∞

r

dr

√
g

r2

[
1

r2
0

f(r)−1 − 1 + v2

f(r0)−1 − 1 + v2
− 1

r2

]− 1
2

(2.22)

We have obtained the expression in terms of directly observable parameters, v and r0. The
scattering or deflection angle is defined as ∆φ := 2|φ(r0) − φ∞| − π.

For scattering of light, we have to take v2 = 1 (recall that we are using units in which c = 1).
The integral still needs to be done numerically.

Observe that so far we have used only the spherical symmetry and staticity of the metric and
not the particular f, g of the Schwarzschild solution. If we only use the qualitative fact that
the Schwarzschild solution is asymptotically flat i.e. approaches the Minkowskian metric for
r >> RS, then we can use a general form for f, g as an expansion in terms of the ratio
r/RS. We can now use the fact that for solar system objects RS

r
<< 1 even for grazing

scattering and can thus evaluate the integral to first order in RS

r
. It is convenient to use the

so-called Robertson expansion for the f, g function instead of the exact expression. This is
parameterized as:

f(r) =

(

1 − RS

r
+ · · ·

)

g(r) =

(

1 + γ
RS

r
+ · · ·

)

(2.23)
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For Schwarzschild solution, i.e. for GR, γ = 1. Then to first order one computes,

∆φ =
2RS

r0

(
1 + γ

2

)

=

(
R⊙
r0

)(
2RS

R⊙

)(
1 + γ

2

)

(2.24)

Putting in the values for the solar radius, R⊙ ≈ 7 × 105 km and RS ≈ 3 km one gets,

∆φ⊙ ≈ 1.75′′
(

1 + γ

2

)(
R⊙
r0

)

(2.25)

This prediction was first confirmed by Eddington during the total solar eclipse in 1919. It
has since been tested many times with improved accuracies. Current limits on γ put γ = 1
to within 10−4 [6].

2.1.3 Precession of perihelia

Now let us consider bounded orbits. Clearly any such orbit will have some maximum and
minimum values of r, possibly equal in case of a circular orbit. These are easily determined
from the orbit equation by setting dr

dφ
= 0. This is a cubic equation in r and so has either 1 or

3 real roots. The case where there is only one root corresponds to an unbounded orbit with
a single rmin. The case of three roots is the one that admits bounded orbits. The maximum
(r+) and the minimum (r−) are determined by,

0 =
1

r2
±
− 1

L2f±
+

κ

L2
, f± := f(r±) , ⇒ (2.26)

κ =

r2
+

f+
− r2

−

f−

r2
+ − r2

−
; (2.27)

L2 =

1
f+

− 1
f−

1
r2
+
− 1

r2
−

; also, (2.28)

φ(r) = φ(r−) +

∫ r

r−

dr

r2

√
g

{
1

L2f
− κ

L2
− 1

r2

}− 1
2

(2.29)

The orbit is said to be non-precessing if the accumulated change in φ as one makes one
traversal r− → r+ → r− equals 2π. Otherwise the orbit is said to be precessing with a rate,

Precession per revolution ≡ ∆φ := 2|φ(r+) − φ(r−)| − 2π. (2.30)

Now one substitutes for κ, L2 in terms of the orbit characteristics, r± and evaluates the
integrals. This again has to be done numerically. However again for solar system objects,
one can compute the precession to first order in RS. For this one again uses the Robertson
parameterization (γ = 1, β = 1 for Schwarzschild) ,

g(r) = 1 + γ
RS

r
+ · · ·

f(r) = 1 − RS

r
+

(β − γ)

2

(
RS

r

)2

+ · · · ⇒

f−1(r) = 1 +
RS

r
+

(2 − β + γ)

2

(
RS

r

)2

+ · · · (2.31)
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Now a bit of mathematical jugglery leads to the formula [3],

∆φ = (2 + 2γ − β)πRS

[
1

2

(
1

r+
+

1

r−

)]

(2.32)

The quantity in the square brackets is called the semi-latus-rectum. Usually astronomers
specify an orbit in terms of the semi-major axis a, and the eccentricity e, defined by r± =
(1 ± e)a. The semi-latus rectum, ℓ, is then obtained as ℓ = a(1 − e2). The precession per
revolution is then given by,

∆φ = 3π
2GM

c2
1

ℓ
(2.33)

The precession will be largest for largest RS and smallest ℓ and in our solar system the
obvious candidates are Sun and Mercury. For Mercury ℓ ≈ 5.53 × 107 km while RS for the
Sun is about 3 km. Mercury makes about 415 revolutions per century. These lead to general
relativistic precession of Mercury per century to be about 43′′. This has also been confirmed.
Observationally, determining the precession is tricky since many effects such as perturbation
due to other planets, non-sphericity (quadrupole moment) of Sun also cause precession. For
a more detail discussion of these, please see Weinberg’s book.

2.2 Interiors of Stars

2.2.1 General Equations and Elementary Analysis

Let us now turn attention from vacuum solutions to non-vacuum solutions still continuing
with compact bodies with spherical symmetry and staticity. What do we take for the stress
tensor?

The most general stress tensor consistent with spherical symmetry and staticity can be
constructed as follows. Given the metric ansatz, we can define 4 orthonormal vectors as:

eµ
0 := 1√

f
(1, 0, 0, 0) , eµ

1 := 1√
g
(0, 1, 0, 0)

eµ
2 := 1√

r
(0, 0, 1, 0) , eµ

3 := 1√
rsinθ

(0, 0, 0, 1)
(2.34)

Any stress tensor can then be written as T µν := ρabe
µ
ae

ν
b with ρab symmetric. Spherical

symmetry and staticity implies ρab = diag(ρ0, ρ1, ρ2, ρ3) with ρ2 = ρ3. All these are functions
only of r.

The Einstein equations can now be written down. Previously, the vacuum case we could
just use Ricci tensor equal to zero. Now we must use the Einstein tensor. One gets only
three non-trivial equations coming from G00, G11 and G22. The third one is a second order
equation and can be traded for the conservation equation that is first order. Thus we can
arrange our equations as 3 first order equations [7]:

r
dg

dr
= −g(g − 1) + (8πρ0r

2)g2 (G00 = 8πT00) (2.35)

r
df

dr
= f(g − 1) + (8πρ1r

2)fg (G11 = 8πT11) (2.36)

r
dρ1

dr
= 2(ρ2 − ρ1) −

ρ0 + ρ1

2
r
dℓnf

dr
(Conservation equation) (2.37)
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The (00) equation can be solved for g(r) in terms of ρ0(r) as:

m(r) −m(r1) := 4π

∫ r

r1

ρ0(r
′)r′2dr′ , g(r) :=

(

1 − 2m(r)

r

)−1

(2.38)

Substituting the (11) equation in the conservation equation will give an equation involving
only the ρ′s. Once these are solved we can determine f(r) from the (11) equation. We
already see that we have to provide further information in order the equations can be solved.
This involves specification of the stress tensor. If stress tensor is that of electromagnetism
(spherically symmetric and static of course) then ρ2 = −ρ1 = ρ0 = Q2/r4. Using this leads
to the Reissner-Nordstrom solution. For the case of perfect fluid we have ρ0 ≡ ρ, ρ1 = ρ2 ≡ P
together with an equation of state, P (r) = P (ρ(r)). Now our equation system is determined.

For the interior solution we take r1 = 0 and m(r1) = 0 to avoid getting a “conical singularity”
at r = 0. There is supposed to be a maximum value R at which the density and the pressure
is expected to drop to zero. This R is of course the radius of our static body.

(If ρ0 is not integrable at r = 0, as for the Reissner-Nordstrom case, then the solution should
be understood as an exterior solution. In such a case we can take r1 to be ∞ and m(r1) ≡M .
You can construct the solution easily. It is also a black hole solution.)

With these we can write the final equations as:

m(r) := 4π

∫ r

0

ρ(r′)r′2dr′ , g(r) :=

(

1 − 2m(r)

r

)−1

(2.39)

r
dP (ρ(r))

dr
= − (ρ+ P (ρ))

m(r) + 4πP (ρ)r3

r − 2m(r)
(T-O-V eqn.) (2.40)

r
dℓnf

dr
= 2

m(r) + 4πP (ρ)r3

r − 2m(r)
(2.41)

The ‘T-O-V’ equation stands for Tolman-Oppenheimer-Volkoff equation of hydrostatic equi-
librium. The corresponding Newtonian hydrostatic equilibrium equation is obtained by
taking P << ρ,m(r) << r. In practice, these equations are solved by starting with some
arbitrary central density and corresponding pressure, ρ(0), P (0) = P (ρ(0)) and integrating
the T-O-V equation together with the m(r). One continues integration till a value r = R
at which the density and pressure vanish. Once ρ,m(r) are known the last equation can be
integrated. Its boundary condition is chosen so that the interior solution matches with the
exterior Schwarzschild solution. Clearly, mass of such a body is just M = m(R) while its
surface is at r = R.

Note that ρ(0) and the equation of state are inputs while R and M are the outputs. Since the
equations are non-linear in ρ, we may not find a ‘surface of body’ for all choices of the central
density and/or for all possible equations of states. If we do, then R,M have a complicated
dependence on the central density. There is then an implicit relation between the mass and
radius of a star. The possibility of non-finite size solution makes the question of stability of
star quite non-trivial.

An instructive example which can be done exactly is the so-called incompressible fluid defined
as P is independent of ρ and ρ = ρ̂, a constant, for r ≤ R and zero otherwise. Then,
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m(r) = (4πρ̂r3)/3 and,

P (r) = ρ̂

[
(1 − 2M/R)1/2 − (1 − 2Mr2/R3)1/2

(1 − 2Mr2/R3)1/2 − 3(1 − 2M/R)1/2

]

(2.42)

P (0) = ρ̂

[
(1 − 2M/R)1/2 − 1

1 − 3(1 − 2M/R)1/2

]

(2.43)

The central pressure thus blows up for R = 9M/4! There can be no body with uniform
density and M > 4R/9. A corresponding calculation with Newtonian gravity has no such
limit. Einstein’s gravity has drastic consequences for stellar equilibria. It turns out that
assuming only that the density is a non- negative monotonically decreasing function of r,
the maximum mass possible for any given radius must be less than 4R/9. That there must
be such a limit follows by noting the g(r) must be positive to maintain the Riemannian
nature of the spatial metric. This already implies M < R/2. Further requiring f(r) remain
positive so as to maintain staticity sharpens this limit [4].

Real stars are of course not static. There are a variety of complicated processes going on in a
star. Over a certain period however a star can be assumed to approximately in equilibrium.
If it is also close to being spherical and at most slowly rotating then such a star can be
well modelled by an interior Schwarzschild solution. These solutions are thus useful for
identifying approximate equilibrium states of stars.

However, various possible equilibria may not be stable, a small perturbation in the central
density parameter ρ(0) may result in a solution without a finite size (a non-star solution).
To appreciate this issue, let us consider briefly the so called Newtonian Polytropes.

2.2.2 Newtonian Polytropes

These are models of stars where the basic equations are the Newtonian equations of hy-
drostatic equilibrium and the equation of state has the form P (ρ) = Kργ, where K, γ are
constants. The rationale for Newtonian treatment is that physical stars have sizes much
larger that the corresponding Schwarzschild radious, so that m(r) ≪ r holds and the tem-
paratures are also not too great so that the pressure (due to kinetic motion) is small compared
to the density. The T-O-V equation can then be approximated. The basic equations to be
solved are then:

(2.44)

The rationale for the ‘equation of polytropes’ is the following.

Our current understanding of stages in stellar evolution is as follows. An ordinary body
supports itself against gravitational collapse by simple mechanical forces. If it is massive
so that gravitational forces are significant to over come the mechanical forces, then collapse
proceeds, contracting and heating the body. Up to a certain size, thermal pressure is enough
to balance gravity. For a still heavier body, nuclear fusion starts and a star is born.

The subsequent evolution depends on the range of masses of the star. The mass controls
what happens after the hydrogen is mostly used up. If the mass is at most few times the
solar mass then the star passes through a so called red giant phase at the core of which is
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a white dwarf. If the mass is high, then subsequent contraction reaches higher temperatures
to ignite further nuclear fusions eventually leading up to Iron, Nickel. At this stage the core
collapses producing a shock wave which throws off the mantle in a supernova explosion. Its
remnant is either a neutron star or a black hole.

In the case of compact left over core which is not a black hole, the core is supported by
what is called a degeneracy pressure. This arises from the quantum mechanical behavior of
fermions (electrons, neutrons). The Pauli exclusion principle prevents fermions to occupy
the same quantum state effectively resulting in a pressure. For the white dwarfs this pressure
is provided by the electrons while for the neutron stars it is provided by the neutrons. The
central densities are about 107gm/cc and 1015gm/cc respectively.

These two possible equilibrium states however are stable only up to an upper mass limit, the
Chandrasekhar limit. For the white dwarfs it is about 1.4M⊙ while for the neutron stars it
is about 2.5 − 3M⊙. The uncertainties are due to lack of knowledge about the equation of
state for nuclear matter at high densities.

If a core is more massive than these limits, then presently there is no known mechanism for
gravity to be resisted. Such a core must undergo a complete gravitational collapse to become
a black hole (or a naked singularity?).

While these are details proper to astrophysics, suffice it to say that observationally one
knows white dwarfs, neutron stars and believes that black holes exist too. Equally well, one
does not yet have a good solution describing a rapidly rotating star matched with a suitable
exterior solution (the Kerr solution is not adequate).
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Chapter 3

Black Holes

3.1 The Static Black Holes

3.1.1 The Schwarzschild Black Hole

Imagine now that the gravitational collapse has proceeded so far that candidate ‘surface
of a star’ is inside the sphere of radius equal to the Schwarzschild radius. The exterior
Schwarzschild solution is thus now valid also for R⊙ ≤ r ≤ RS. Here we meet the famous
Schwarzschild singularity that caused enormous confusion in the early history. Quit simply,
for r = RS, gtt vanishes and grr blows up. However if one computes the Riemann curvature
components, then they are perfectly well behaved at r = RS. Hence physical effects of
gravity such as tidal forces are all finite. The apparent singularity is thus a computational
artifact, more precisely it signals breakdown of the coordinate system.

For instance if we consider the flat Euclidean plane and express the Euclidean metric of
Cartesian system in terms of the (r, θ) coordinates, then grr = 1, gθθ = r. Now the inverse
metric is singular at the origin, r = 0. We know this is artificial because we know that (r, θ)
is not a good coordinate system at the origin. For every r > 0, 0 ≤ θ < 2π, one has a one-
to-one correspondence with points in the plane, but as r → 0 no unique θ can be assigned
to the origin in a continuous manner. One has to take the precise definitions of coordinate
systems (charts) seriously.

Let us recall that given a vector field one has its integral curves defined by Xµ = dxµ

dλ
. If

it so happens that as we move along the integral curves, the metric does not change, then
the vector field is said to be a Killing vector and it satisfies the equation: Xµ;ν +Xν;µ = 0.
The parameter λ of the integral curves itself can be taken as one of the local coordinates
and metric will be manifestly independent of this coordinate. Returning to our plane, we
observe that ξi∂i := ∂θ = −y∂x +x∂y is a Killing vector (expressing the rotational symmetry
of the Euclidean metric). This is easiest to see in the Cartesian system where the connection
is zero and ξi,j + ξj,i = 0 follows. Its (norm)2 is r2 which vanishes at r = 0. The angular
coordinate θ is the parameter of integral curves of the Killing vector. The vanishing of the
norm means that the vector field vanishes there (we are in Euclidean geometry) and hence
the angular coordinate cannot be defined. Some thing similar happens at r = RS.

One of the Killing vector expressing stationarity of the metric is ξ = ∂t and its (norm)2 is
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just gtt which vanishes at r = RS. Since the metric is of Lorentzian signature, zero norm
does not mean the vector vanishes. But it does mean that the vector ceases to be time-like
which is needed to interpret t as time (as opposed to one of the spatial coordinate). In the
case of the plane, the coordinate failure is cured by using the Cartesian coordinates which are
perfectly well defined everywhere. Likewise one has to look for a different set of coordinates
which are well behaved around r = RS. These are usually (for effectively two dimensional
space-time) discovered by looking at radial null geodesics crossing the r = RS sphere and
choosing the affine parameters of these geodesics as new coordinates.

To arrive at these new coordinates, write the metric in the form,

ds2 =

(

1 − RS

r

){

dt2 −
(

1 − RS

r

)−2

dr2

}

− r2dΩ2

:=

(

1 − RS

r

)
{
dt2 − dr2

∗
}
− r2dΩ2 (3.1)

Solving for r∗(r) and choosing r∗(0) = 0 without loss of generality gives,

r∗(r) = r +RSℓn

∣
∣
∣
∣

r −RS

RS

∣
∣
∣
∣

(3.2)

Notice that r∗ ranges monotonically from −∞ to ∞ as r ranges from RS to ∞. This new
radial coordinate r∗ is called the tortoise coordinate. The (t, r∗) part of the metric is clearly
conformal to the Minkowskian metric whose null geodesics are along the light cone t = ±r∗.
Introducing new coordinates (u, v) via

t :=
1

2
(ǫuu+ ǫvv) , r∗ :=

1

2
(−ǫuu+ ǫvv) , ǫu, ǫv = ±1,

u = ǫu(t− r∗) , v = ǫv(t+ r∗) (3.3)

implies dt2−dr2
∗ = ǫuǫvdudv and ds2 = (1−RS/r)ǫuǫvdudv− r2dΩ2. Ro retain the signature

of the metric and noting that the pre-factor is positive for r > RS requires ǫu = ǫv = ±1.

As r∗ varies from −∞ to ∞ (r ∈ (RS,∞)), u ∈ (∞,−∞), v ∈ (−∞,∞) for ǫu = +1 (and
oppositely for ǫ = −1). Taking ǫu = 1 for definiteness and substituting for r∗ one sees that,

(

1 − RS

r

)

=
RS

r
e−r/RSe(v−u)/(2RS) (3.4)

ds2 =
RS

r
e−r/RS

(
e−u/(2RS)du

) (
ev/(2RS)dv

)
− r2dΩ2

=
4R3

S

r
e−r/RSdUdV − r2dΩ2 , with (3.5)

U := −e−u/(2RS) := T −X

V := ev/(2RS) := T +X (3.6)

−UV =

(
r

RS

− 1

)

er/RS = X2 − T 2 (3.7)

The coordinates T,X defined in (3.6) are known as the Kruskal coordinates. Their relation
to the Schwarzschild coordinates (t, r) is summarised below.

F (r) = X2 − T 2 :=

(
r

RS

− 1

)

er/RS
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t

RS

= 2 tanh−1

(
T

X

)

(3.8)

X = ±
√

|F (r)| cosh
(

t

RS

)

T = ±
√

|F (r)| sinh
(

t

RS

)

(3.9)

ds2 =
4 R3

S e
−r/RS

r

(
dT 2 − dX2

)
− r2(T,X) dΩ2 (3.10)

r =
 2

 M
,  

t =
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Figure 3.1: Kruskal Diagram for the Schwarzschild space-time

Looking at the figure representing the space-time (“extended”) we can understand the r =
RS singularity. The Schwarzschild time is ill defined at Rs since the stationary Killing
vector becomes null. The full line segments at 450 are labeled by r = RS, t = ±∞. The
Schwarzschild coordinates provide a chart only for the right (and the left) wedge. To ‘see’
the top and the bottom wedges one has to use the Kruskal coordinates. Since the form of
the T −X metric is conformal to the Minkowski metric, the light cones are the familiar ones.
one can see immediately that while we can have time-like and null trajectories entering the
top wedge, we can’t have any leaving it. Likewise we can have such ‘causal’ trajectories
leaving the bottom wedge, we can’t have any entering it. We have here examples of one-way
surfaces. The top wedge is called the black hole region while the bottom wedge is called the
white hole region. The line r = RS (×S2), separating the top and the right wedges is called
the event horizon. In fact existence of an event horizon is the distinguishing and (defining)
property of a black hole. For the corresponding Penrose Diagram, see the appendix.

Incidentally, what would be the gravitational red shift for light emitted from the horizon?
Well, the observed frequency at infinity would be zero but any way no light will be received
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at infinity! For light source very, very close to the horizon (but on the out side), the red
shift factor will be extremely large. Consequently the horizon is also a surface of infinite
red shift (strictly true for static black hole horizons). Imagine the converse now. Place an
observer very near the horizon and shine light of some frequency at him/her from far away.
The frequency he/she will see will be ω∞(1 − RS

robs
)−1/2. If the light shining is the cosmic

microwave background radiation with frequency of about 4 × 1011, to see it as yellow color
light of frequency of about 3× 1015 the observer must be within a fraction of 10−8 from the
horizon. For a Solar mass black hole this is about a hundredth of a millimeter from the
horizon! At such locations the tidal forces will tear apart the observer before he/she can see
any light.

The first, simplest solution of Einstein’s theory shows a crazy space-time! How much of this
should be taken seriously?

What we have above is an ‘eternal black hole’, which is nothing but the (mathematical)
maximally extended spherically symmetric vacuum solution. From astrophysics of stars and
study of the interior solutions it appears that if a star with mass in excess of about 3 solar
masses undergoes a complete gravitational collapse, then a black hole will be formed (i.e.
radius of the collapsing star will be less that the RS. The space-time describing such a
situation is not the eternal black hole but will have the analogues of the right and the top
wedges. It will have event horizon and black hole regions. Are there other solutions that
exhibit similar properties? The answer is yes but again mathematically peculiar. We will
see these in the next lecture.

3.1.2 The Reissner-Nordstrom Black Hole

These space-times are solutions of Einstein-Maxwell field equations. Like the Schwarzschild
solution, these are also spherically symmetric and static. Consequently, the ansatz for the
metric remains the same as in (2.1). In addition, we need an ansatz for the electromagnetic
field. It is straight forward to show that spherical symmetry and staticity implies that the
only non-vanishing components of Fµν are,

Ftr = ξ(r) , Fθφ = η(r)sinθ . (3.11)

The dF = 0 (‘Bianchi identity’) Maxwell equations then imply that η(r) = Qm is a con-
stant while the remaining Maxwell equations imply that ξ(r) = Qe

r2

√

f(r)g(r) where Qe is
a constant. The Q’s correspond to electric and magnetic charges. There is no evidence for
magnetic monopoles yet, so we could take Qm = 0. However we will continue to assume it
to be non-zero in this section.

The stress tensor for Maxwell field is defined as,

Tµν =
1

4π

[
1

4
gµν

(
FαρFβσg

αβgρσ
)
− FµαFνβg

αβ

]

. (3.12)

Note: This can be derived starting from the usual Maxwell action ( ∼ −1
4
FµνF

µν ) with
the Minkowski metric replaced by a general metric. The stress tensor is then defined as the
coefficient of δgµν in the variation of the action. The sign of the action is determined by the
positivity of the Kinetic term (F 2

0i). The factor in front is determined by Make precise.
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The overall sign can be deduced by checking that the energy density Ttt is positive while the
factor can be deduced by matching with the special relativity result.

It follows that the non-zero components of Tµν are given by,

Ttt =
1

8π

Q2

r4
f(r) , Q2 := Q2

e +Q2
m

Trr = − 1

8π

Q2

r4
g(r)

Tθθ =
1

8π

Q2

r2
, Tφφ = sin2θ Tθθ (3.13)

Due to the tracelessness of the stress tensor of electromagnetism, the Einstein equation to
be solved becomes Rµν = 8πTµν . Using the expressions given in (2.3, 3.13), it is straight
forward to obtain the Reissner-Nordstrom solution:

f(r) =
∆(r)

r2
, g(r) = f−1(r)

Ftr =
Qe

r
, Fθφ = Qg sinθ (3.14)

∆(r) := r2 − 2Mr +Q2 , M, Q are constants,

Evidently, for Q = 0 we recover the Schwarzschild solution with the identification RS = 2M .

As before, the metric component gtt vanishes when ∆ = 0 i.e. for r = r± := M±
√

M2 −Q2.
For M2 ≥ Q2 we have thus two values of r at which gtt = 0. For this range of values, we have
a Reissner-Nordstrom Black Hole. For M2 = Q2, it is known as an extremal black hole while
for M2 < Q2 (r± is complex), one has what is known as a naked singularity. As before, the
Riemann curvature components blow up only as r → 0 and since there is no one way surface
cutting it off from the region of large r, it is called a naked singularity. We will concentrate
on the black hole case.

A kruskal like extension is carried out in a similar manner. The tortoise coordinate r∗ is now
given by,

r∗(r) = r +
r2
+

r+ − r−
ℓn

∣
∣
∣
∣

r − r+
r+

∣
∣
∣
∣
− r2

−
r+ − r−

ℓn

∣
∣
∣
∣

r − r−
r−

∣
∣
∣
∣
. (3.15)

There are now three regions to be considered:

A : 0 < r < r− ↔ 0 < r∗ <∞ (Stationary)

B : r− < r < r+ ↔ −∞ < r∗ <∞ (Homogeneous)

C : r+ < r <∞ ↔ −∞ < r∗ <∞ (Stationary)

The Kruskal-like coordinates, U, V are to be defined in each of these regions such that the
metric has the same form and then “join” then at the chart boundaries r±. The corresponding
Penrose diagram is show in the appendix.
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3.2 The Stationary (non-static) Black Holes

3.2.1 The Kerr-Newman Black Holes

It turns out that for the Einstein-Maxwell system, the most general stationary black hole
solution – the Kerr-Newman family – is characterized by just three parameters: mass, M,
angular momentum, J and charge, Q. For J = 0 one has spherically symmetric (static)
two parameter family of solutions known as the Reissner-Nordstrom solution. The J 6= 0
solution is axisymmetric and non-static. This result goes under the ‘uniqueness theorems’
and is also referred to as black holes have no hair. The significance of this result is that even
if a black hole is produced by any complicated, non- symmetric collapse it settles to one of
these solutions. All memory of the collapse is radiated away. This happens only for black
holes!

The black hole Kerr-Newman space-time can be expressed by the following line element:

ds2 =
η2∆

Σ2
dt2 − Σ2sin2θ

η2
(dφ− ωdt)2 − η2

∆
dr2 − η2dθ2 where, (3.16)

∆ := r2 + a2 − 2Mr +Q2 ; Σ2 := (r2 + a2)
2 − a2sin2θ∆

ω := a(2Mr−Q2)
Σ2 ; η2 := r2 + a2cos2θ

a = 0 , Q = 0 : Schwarzschild solution
a = 0 , Q 6= 0 : Reissner-Nordstrom solution
a 6= 0 , Q = 0 : Kerr solution

These solutions have a true curvature singularity when η2 = 0 while the coordinate singu-
larities occur when ∆ = 0. This has in general two real roots, r± = M ±

√

M2 − a2 −Q2,
provided M2−a2−Q2 ≥ 0. The outer root, r+ locates the event horizon while the inner root,
r− locates what is called the Cauchy horizon. When these two roots coincide, the solution
is called an extremal black hole.

When ∆ = 0 has no real root, one has a naked singularity instead of a black hole. A simple
example would be negative mass Schwarzschild solution. The name naked signifies that the
true curvature singularity at η2 = 0 can be seen from far away. While mathematically such
solutions exist, it is generally believed, but not conclusively proved, that in any realistic
collapse a physical singularity will always be covered by a horizon. This belief is formulated
as the “cosmic censorship conjecture”. There are examples of collapse models with both the
possibilities. The more interesting and explored possibility is the black hole possibility that
we continue to explore.

We can compute some quantities associated with an event horizon. For instance, its area is
obtained as:

Ar+ :=

∫

r+

√

det(gind)dθdφ =
√

Σ2

∫

sinθdθdφ = 4π(r2
+ + a2) (3.17)

For Schwarzschild or Reissner-Nordstrom static space-time we can identify (gtt − 1)/2 with
the Newtonian gravitational potential and compute the ‘acceleration due to gravity’ at the
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horizon by taking its radial gradient. Thus,

When a = 0, surface gravity, κ :=
1

2

dgtt

dr
|r=r+ =

r+ −M

r2
+

=
r+ −M

2Mr+ −Q2
(3.18)

Although for rotating black holes ‘surface gravity’ can not be defined so simply, it turns out
that when appropriately defined it is still given by the same formula (i.e. the last equality
above).

There is one more quantity associated with the event horizon of a rotating black hole – the
angular velocity of the horizon, Ω. It is defined in a little complicated manner. For the rotat-
ing black holes we have two Killing vectors: ξ := ∂t (the Killing vector of stationarity) and
ψ := ∂φ (the Killing vector of axisymmetry. Their norms2 are given by gtt, gφφ respectively.
Both are space-like at the horizon. However there is another Killing vector, χ := ξ + Ωψ,
which is null and hence similar to the stationary Killing vector of the static cases. This Ω is
defined to be the angular velocity of the horizon. It turns out to be equal to the function ω
evaluated at r = r+). From the definition given above it follows that,

Ω :=
a

r2
+ + a2

. (3.19)

For charged black holes one also defines a surface electrostatic potential as,

Φ :=
Qr+

r2
+ + a2

(3.20)

Thus we have defined:

M = M ; r+ = M +
√

M − a2 −Q2

A = 4π(r2
+ + a2) ; κ = r+ − M

2Mr+ − Q2

J = Ma ; Ω = a
r2
+ + a2

Q = Q ; Φ = Qr+
r2
+ + a2

(3.21)

Now one can verify explicitly that,

δM =
κ

8π
δA + ΩδJ + ΦδQ (3.22)

This completes our survey of examples of black hole solutions and some of their properties.
All these are stationary solutions of Einstein-Maxwell field equations. In the next section we
will consider more general black holes.

3.3 General Black Holes

One can very well imagine physical processes wherein a star collapses to form a black hole
that settles in to a stationary black hole. However somewhat later another star or other
body is captured by the black hole that eventually falls in to the black hole changing its
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parameters. This process can repeat. Such processes cannot be modeled by stationary space-
times so one needs a general characterization of space-times that can be said to contain black
hole(s).

One always imagines such space-times to be representing compact bodies i.e. sufficiently far
away the space-time is essentially Minkowskian. Now the notion of a black hole is that there
is a region within the space-time from which nothing can escape to “infinity”, ever. ‘Nothing’
can be understood as causal curves (curves whose tangent vectors are either time-like or null)
reaching out to farther distances. ‘Infinity’ and ‘ever’ needs to be defined more sharply in
order to provide a precise enough definition of a black hole. The ‘infinity’ is specified to be
the ‘infinity’ of an asymptotically flat space-time. This has a region identified as “future null
infinity”, J +. Consider now the set of all the points of space-time that can send signals to
this J +. Call this the past of the future null infinity. If the space-time still has some points
left out, then it is said to contain a black hole region ( a four dimensional sub-manifold). The
boundary of this region, (a three dimensional hypersurface) is called the event horizon. One
can look at the intersection of the black hole region with a “t = constant” slice (technically
a Cauchy surface) and identify each connected component as a black hole at the instant, t.

In a general space-time containing black holes various things can happen: new black holes
may form, some may merge, some will grow bigger etc. However some things cannot happen.

For instance, once a black hole is formed, it can never disappear. A black hole may also
never split in to more black holes (no bifurcation theorem). This result depends only on the
definition of black holes and topology. It stipulates that while black holes can merge and/or
grow, they can not split.

The ‘evolution’ of such black holes is tracked by a family of Cauchy surfaces. One can
thus obtain the areas of the intersection of the horizon and the Cauchy slices. Extremely
interestingly, the area of a black hole may never decrease (the Hawking’s area theorem). This
result prompted Bekenstein to think of black hole area as its entropy.

Note that the no-bifurcation theorem put some conditions on possible evolution of black
holes. The area of a black hole may change due to accretion from other objects or merging
of black holes. The Hawking theorem stipulates that in either of these processes, the area
must not decrease. This is a stronger statement.

Indeed one can imagine processes involving black holes wherein a black hole does change
its properties (eg. area) consistent with the above theorems. However the accretion/merger
processes may be separated by long periods of ‘inactivity’. During these periods, the black
hole may be well approximated by stationary black hole solutions. For these a lot is known.
Some of these results are summarized in the appendix [4, 9].

3.4 Black Hole Thermodynamics

In light of these results, the variational equation (5.7) we had above looks very much like the
first law of thermodynamics. Indeed one can define general stationary black holes and obtain
expressions for the area (A), surface gravity (κ), mass (M), angular momentum (J), angular
velocity (Ω), charge (Q), surface potential (Φ) etc. Three of these, M,J,Q are defined with
reference to infinity while the remaining four are defined at the horizon and are constant

33



over the horizon. One can then consider variations of these quantities and prove that the
first law expression seen explicitly actually holds much more generally. One thus has laws of
black hole mechanics which are completely analogous to the usual laws of thermodynamics.
Here is a table of analogies:

Laws of Black Hole Mechanics Thermodynamics

Zeroth law κ is constant T is constant

First law δM = κ
8π
δA + ΩδJ + ΦδQ δU = TδS + PδV + · · ·

Second law δA ≥ 0 δS ≥ 0

Third law Impossible to achieve κ = 0 Impossible to achieve T = 0

The analogy is very tempting, in particular, κ ∼ T,A ∼ S is very striking. Like a ther-
modynamical system, black hole space-times are characterized by a few parameters. Just
as for thermodynamical systems at equilibrium, all memory of the history of attaining the
equilibrium is lost, so it is for the stationary black holes thanks to the uniqueness theorems.
A typical thermodynamical system has a total energy content, U and a volume, V which are
fixed externally. In equilibrium the system exhibits further response parameters such as tem-
perature, T and pressure, P which are uniform through out the system. In going from one
equilibrium state to another one the system ensures that its entropy, S has not decreased
and of course the energy conservation is not violated. It is also important to note that
the thermodynamic quantities T, P, ... are functions only of ‘conjugate’ quantities S, V, ....
Black holes also have parameters, referring to the global space-time, such as M,J,Q and
also ‘response’ parameters, referring to the horizon, such as κ,A,Ω,Φ and these must also
be functions only of the previous set of parameters. This of course is true for the explicit
stationary black hole solutions. A natural and some what confusing question is: what is
the thermodynamic system here - the entire black hole space-time or only the horizon? If
it is the former then equilibrium situation should correspond to stationary space-times. If
it is the latter it is enough that the geometry of the horizon alone is suitably ‘stationary’.
The latter is physically more appealing while historically black hole thermodynamics was
established using the global definitions of black holes. Only over the past few years the more
local view is being developed using generalization of stationary black holes called “isolated
horizons”. For these also the mechanics-thermodynamics analogy is established [10].

However if taken literally one immediately has a problem. If a black hole has a non-zero
temperature, it must radiate. But by definition nothing can come out of a black hole (since
the surface gravity is defined for the horizon, we expect horizon to radiate). So how can
we reconcile these? Here Hawking became famous once more. He observed that so far
quantum theory has been ignored. There are always quantum fluctuations. It is conceivable
then that positive and negative energy particles that pop out of the vacuum (and usually
disappear again) can get separated by the horizon and thus cannot recombine. The left over
particle can be thought of as constituting black hole radiation. He in fact demonstrated
that a black hole indeed radiates with the radiation having a black body distribution at a
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temperature given by kBT = ~κ
2π

! This provides the proportionality factor between surface

gravity and temperature. Consequently, the entropy is identified as S = kB

~

A
4
. How much is

this temperature? Restoring all dimensional constants the expression is [4]:

T =
~c3

8πGkBM⊙

(
M⊙
M

)

0K

= 6 × 10−8

(
M⊙
M

)

(3.23)

Notice that heavier black hole is cooler, so as it radiates it gets hotter and radiates stronger
in a run-away process. A rough estimate of total evaporation time is about 1071(M/M⊙)3.
The end point of evaporation is however controversial because the semi-classical method
used in computations cannot be trusted in that regime.

Another fertile area for research has been the microscopic i.e. statistical mechanical under-
standing of black hole entropy. For normal systems, the entropy being an extensive quantity
goes as volume while for a black hole it goes as area of the horizon (this may be thought of as
another argument for thinking of horizon as the thermodynamic system). A simple way to
see that entropy can be proportional to the area is to use the Wheeler’s ‘it from bit’ picture.
Divide up the area in small area elements of size about the Planck area (ℓ2p ∼ 10−66cm2). The
number of such cells is n ∼ A/(ℓ2p). Assume there is spin-like variable in each cell that can
exist in two states. The total number of possible such states on the horizon is then 2n. So
its logarithm, which is just the entropy, is clearly proportional to the area. Of course same
calculation can be done for volume as well to get entropy proportional to volume. What the
picture shows is that one can associate finitely many states to an elementary area.

There are very many ways in which one obtains the Bekenstein entropy formula. Needless to
say, it requires making theories about quantum states of a black hole (horizon). Consequently
everybody attempting any theory of quantum gravity wants to verify the formula. Indeed
in the non-perturbative quantum geometry approach the Bekenstein formula has been de-
rived using the ‘isolated horizon’ framework, for the so-called non-rotating horizons. String
theorists have also reproduced the formula although only for black holes near extremality.

Recall that extremal solutions are those which have r+ = r− which implies that the surface
gravity vanishes. For more general black holes this is taken to be the definition of extremality.
For un-charged, rotating extremal black holes M = |a| while for charged, non-rotating ones
M = |Q|. Since vanishing surface gravity corresponds to vanishing temperature one looks
for the third law analogy. It has been shown that the version of third law, which asserts
that it is impossible to reach zero temperature in finitely many steps, is verified for the black
holes - it is impossible to push a black hole to extremality (say by throwing suitably charged
particles) in finitely many steps. There is however another version of the third law that
asserts that the entropy vanishes as temperature vanishes. This version is not valid for black
holes since extremal black holes have zero temperature but finite area.

What began as a peculiar solution of Einstein equations has evolved in to fertile research
area particularly offering testing ground for glimpses at the quantum version of GR. Black
holes is an arena where GR, statistical mechanics and quantum theory are all called in for
an understanding.
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Chapter 4

Cosmology

4.1 Standard Cosmology

Let us now leave the context of compact, isolated bodies and the space-times in their vicinity
and turn our attention to the space-time appropriate to the whole universe. We can make no
progress by piecing together space-times of individual compact objects such as stars, galaxies
etc, since we will have to know all of them! Instead we want to look at the universe at the
largest scale. Since our observations are necessarily finite (that there are other galaxies was
discovered only about 80 years ago!), we have to make certain assumptions and explore their
implications. These assumptions go under the lofty names of ‘cosmological principles’.

One fact that we do know with reasonable assurance is that the universe is ‘isotropic on
a large scale’. What this means is the following. If we observe our solar system from any
planet, then we do notice its structure, namely other planets. If we observe the same from
the nearest star (alpha centauri, about 4 light years), we will just notice the Sun. Likewise is
we observe distant galaxies, they appear as structure less point sources (which is why it took
so long to discover them). If we look still farther away then even clusters of galaxies appear
as points. We can plot such sources at distances in excess of about a couple of hundred
mega-parsecs on the celestial sphere. What one observes is that the sources are to a great
extent distributed uniformly in all directions. We summarize this by saying that the universe
on the large scale is isotropic about us. We appear to occupy a special vantage point! One
may accept this as a fact and ponder about why we occupy such a special position. However
since Copernicus we have learnt that it is theoretically more profitable to systematically
deny such privileged positions. The alternative is then to propose that universe must look
isotropic from all locations (clusters of galaxies). Since universe appears isotropic to us at
present, we assume that the same must be true for other observers else where i.e. there is
a common ‘present’ at which isotropic picture hold for all observers. Denial of privileged
position also amounts to assuming that the universe is spatially homogeneous i.e. at each
instant there is a spatial hypersurface (space at time t) on which all points are equivalent.
Isotropy about each point means that there must be observers (time-like vector field) who
will not be able to detect any distinguished direction. It follows then that these observers
must be orthogonal to the spatial slices. The statement that on large scale the universe is
spatially homogeneous and isotropic is called the ‘cosmological principle’. There is a stronger
version, the so-called ‘perfect cosmological principle’ that asserts that not only we do not
have special position, we are also not in any special epoch. Universe is homogeneous in time
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as well. It is eternal and unchanging. This principle leads to the ‘steady state cosmologies’.
The so-called standard cosmology is based on spatial homogeneity and isotropy and this is
what is discussed below. Weinberg presents discussions on alternative cosmologies.

A spatially homogeneous space-time can be viewed as a stack of three dimensional spatial
slices. Spatially homogeneity (and indeed isotropy about each point of a slice) also implies
that these spatial slices must have a “constant curvature” i.e. the curvature tensors must
have a specified form involving a constant, in particular the Ricci scalar is a constant. Such
three dimensional Riemannian spaces are completely classified and come in three varieties
depending on the sign of the curvature. Labeling each of the slices by a time coordinate, τ ,
and denoting the normalized constant curvature by k, one can write the form of the metric
for the universe as:

ds2 = dτ 2 − a2(τ)







dψ2 + sin2ψdΩ2 Spherical, k = 1
dψ2 + ψ2dΩ2 Euclidean, k = 0
dψ2 + sinh2ψdΩ2 Hyperbolic, k = −1






where, (4.1)

dΩ2 := dθ2 + sin2θdφ2

The a2(τ) determines the value of the constant spatial curvature and is accordingly called
the scale factor. It is allowed to depend on τ . The space-times with the above form for the
metric are called Robertson-Walker geometries. Most of modern cosmography – mapping of
the cosmos – is based on these geometries.

Universe is of course not empty. The stress tensor must also be consistent with the assump-
tions of homogeneity and isotropy. This turns out to be of the form of perfect fluid:

Tµν = ρ(τ)uµuν + P (τ)(uµuν − gµν), (4.2)

where P is the pressure, ρ is the energy density and uµ is the normalized velocity of the
observers, orthogonal to the spatial slices. Our system of equations now have 3 unknown
functions, a, ρ, P of a single variable τ for each choice of the spatial curvature, k. Turning
the crank, the Einstein equations reduce to:

3
ä

a
= −4π(ρ+ 3P ) (second order) (4.3)

3
ȧ2

a2
= 8πρ− 3

a2
k k = ±1, 0 ; (first order) (4.4)

ρ̇ = −3(ρ+ P )
ȧ

a
(Conservation equation) (4.5)

The first striking inference is that if ρ, P are both positive, as they are for normal matter, then
we can not have a static universe, a = constant, for any choice of k. Further, ä < 0 implies
ȧ must be monotonically decreasing implies that it can not change sign. Hence the universe
is always expanding or always contracting except possibly when there is a change over from
expanding to contracting phase. Note that the scale factor affects all length measurements
in a given slice in the same manner.

Thus if R(τ) is a distance between two galaxies at the same τ , then its change with τ can
be obtained as:

v :=
dR(τ)

dτ
=
R(τ0)

a(τ0)

da(τ)

dτ
=
R(τ)

a(τ)
ȧ ≡ H(τ)R(τ) (4.6)
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Hence, for example, speed of recession of galaxies is proportional to their separation. This
is the famous conclusion drawn by Hubble. He actually observed the relation between the
red-shift factor and separation. Let us obtain the red shift factor by methods discussed
before.

Let kµ denote the null geodesic of the light emitted from a source P1 in the slice at τ1
being received at P2 in the slice at τ2. Assume for the moment that one can always find
a Killing vector, ξµ, such that it coincides with the component of kµ along Σi at points
Pi. Such a Killing vector is necessarily spatial and orthogonal to uµ. Since k is null, it
follows that ω := k · u = ±k · ξ/(||ξ||). Now applying our previous result that k · ξ is
constant along the null geodesic, it follows that ω2/ω1 = ||ξ||1/||ξ||2 = a(τ1)/a(τ2). Therefore
z := ω1/ω2−1 = (a(τ2)−a(τ1))/a(τ1). For nearby galaxies we may approximate τ2− τ1 ≈ R
(c = 1 units) and a(τ2) ≈ a(τ1) + ȧ(τ2 − τ1) to get z ≈ H(τ)R(τ). This was the relation
observed by Hubble and is known as the Hubble law. It was the red shift (H > 0) that was
observed so one inferred that the universe is actually expanding.

This observed fact of expanding universe immediately implies that the universe must have
been extremely small a finite time ago. If H is assumed to be constant then the age of the
universe must be about H−1! Calling τ = 0 when a = 0 held, one says that the universe
began in a “big bang”, from a highly singular geometry. All these are consequences of the
Robertson-Walker geometry and qualitative properties of the pressure and density. This is
a very striking prediction of GR, which is consistent with observation. Let us return to the
equations again.

Our equations are still under-determined. One can verify that the first order equations
(1.78) and (1.79) imply the second order equation (1.77). Thus we have two equations for
three unknown functions. We need a relation between the density and the pressure. Such
a relation is usually postulated in the form P = P (ρ) and is called an equation of state for
the matter represented by the stress tensor. At a phenomenological level it characterizes
internal dynamical properties of matter. There are two popular and well-motivated choices,
namely, P = 0 (dust) and P = 1

3
ρ (radiation). Once this additional input is specified, one

can solve the conservation equation to obtain a as a function of ρ (or vice a versa). Plugging
this in the 2nd equation gives a differential equation for ρ(τ). This way one can determine
both the scale factor and the matter evolutions. Here is a table of solutions from Wald’s
book. These are referred to as Friedmann-Robertson-Walker (FRW) cosmologies.

Dust, P = 0 Radiation, P = 1
3
ρ

k = 1
a = (C/2)(1 − cosη)
τ = (C/2)(η − sinη)

a =
√
C ′
{

1 −
(

1 − τ√
C′

)2
}1/2

k = 0 a = (9C
4

)1/3τ 2/3 a = (4C ′)1/4
√
τ

k = − 1
a = (C/2)(coshη − 1)
τ = (C/2)(sinhη − η)

a =
√
C ′
{(

1 + τ√
C′

)2

− 1

}1/2

ρa3 = constant ρa4 = constant
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One can get this far with just cosmological principle, GR and some assumptions about the
matter. How do we observationally determine what is the spatial geometry of our universe?
What is its age and its precise evolution? To answer such questions, cosmologists find
it convenient to define a few basic observationally determinable parameters in terms of
which all other observable quantities are expressed. One can then put bounds on these
parameters. The most basic ones are the Hubble constant, H0 := ˙a(τ0)/a(τ0) and the

deceleration parameter, q0 := −( ¨a(τ0)a(τ0))/(ȧ
2(τ0)). The present total energy density,

ρ0 := ρ(τ0) is also an important parameter only partially determinable from observations.
One also defines the critical density, ρc := (3H2

0 )/(8πG). The suffix 0 refers to present epoch
quantities.

The H0 and q0 parameters are determined by constructing a distance vs. red shift graph.
Estimation of distance of sources is a non-trivial affair involving a series of steps. One can
infer a distance if one knows the absolute luminosity of a source since one can observe the
apparent luminosity. Such astronomical sources are called ‘standard candles’, the so-called
type-1a supernovae being an example 1 . In the context of a presumed geometry, one can
obtain a distance vs. red shift relation and comparing with astronomical observation one can
determine the H0, q0 parameters. Currently such relation is available for z ∼ 5 and present
best estimate for the H0 is H0 = 70 kms−1Mpc−1.

How does this help us?

The epoch accessible by observations (and indeed most of the life of the universe so far)
is where non-relativistic matter (as opposed to relativistic matter or radiation) gives the
dominant contribution. This has pressure negligible to the density. Hence one takes P = 0.
Evaluating the 1st and the 2nd equations at τ = τ0 and using the definitions gives:

ρ0 =

(
3

8π

)(
k

a2
0

+H2
0

)

(4.7)

P0 = −
(

1

8π

)[
k

a2
0

+ (1 − 2q2
0)H

2
0

]

(4.8)

= 0 for matter dominated era and ⇒ (4.9)

k

a2
0

= (2q0 − 1)H2
0 , (4.10)

8π

3
ρ0 = 2q0H

2
0 ↔ Ω0 :=

ρ0

ρc

= 2q0 (4.11)

We see directly that knowing H0, q0 gives k and ρ0. To obtain the age of the universe, again
using matter dominance, one uses ρ/ρ0 = (a0/a)

3 in the equation (1.78) to express it as:

(
ȧ

a0

)2

= H2
0

[

1 − 2q0 + 2q0
a0

a

]

⇒ (4.12)

τ(a) =
1

H0

∫ a/a0

0

{

1 − 2q0 +
2q0
x

}− 1
2

dx (4.13)

We notice that a(τ) can be determined from the two parameters. In the above τ = 0 has
been understood as a << a0. For age of the universe the upper limit of the integral is 1.

1These are white dwarfs accreeting from a companion star and the entire star exploding after crossing

the Chandrasekhar limit.
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The three spatial geometries correspond to the three cases of q0 being greater than, equal to
or less than 1/2. With the current values given above, the age of the universe is about 12 to
18 billion years.

A more detailed picture of the evolution of the universe together with its content can be
obtained by combining our knowledge of the micro-world of molecules, atoms ... elementary
particles. We have already noted in some examples that the density diverges near the
big bang. As matter constituents come closer their collisions will increase and so will the
temperature. One may therefore imagine that the early universe was a hot soup of elementary
constituents, which subsequently cooled as the universe expanded. This is the basic idea of
the hot big bang cosmology. Using particle physics knowledge one can now build a more
detailed picture of important stages in the evolution of the universe.

The basic idea is to use microscopic physics to obtain the density and pressure of a gas
of elementary particles in thermodynamic equilibrium. At high temperatures the typical
thermal energy kT is much larger than the rest mass energies, so the gas can be taken to
be relativistic. Roughly then the equation of state is P = ρ/3 and hence ρa4 is a constant.
However the density also goes as T 4 so aT is a constant. A temperature drop thus gives the
expansion factor. We noted earlier that given an equation of state one can obtain τ depen-
dence of ρ. Detailed thermodynamics how ever also gives ρ as a function of temperature, T .
Thus we obtain a relation τ = τ(T ) (say). This gives the time scales needed for a given drop
in temperature. At any given temperature below about 1012 0K say, we know which species
of particles will contribute (those with rest mass << kT ). We also know their interactions
to see which species will decouple at what temperature. With these one can build a fairly
detail ‘thermal history’ of the universe. I refer you to Weinberg’s book.

As an example, consider the stage when the constituents in equilibrium are photons, elec-
trons and protons. At a temperature of about 4000 0K, atoms will be formed which won’t
dissociate since thermal energy is less than the dissociation energy. At this point photons
cease to interact with the neutral constituents and decouple from the thermalization process.
Their energy distribution will thus be a black body radiation with temperature falling due
to the expansion of the universe. These relic photons will still be around in the form of a
background radiation. In today’s epoch its temperature is expected to be about 2.7 0K.

This is the famous Cosmic Microwave Background Radiation. It was first predicted by
George Gamow and his collaborators in the late 40’s when they were trying to obtain abun-
dance of chemical elements via the hot big bang. As they did not obtain correct abundance
(and could not have obtained it since most heavier elements are cooked up in stars and are
not primordial), the prediction of CMB was forgotten until it was discovered accidentally by
Wilson and Penzias in 1965. The observed black body spectrum and isotropy at the level
of 1 part in 105 is a very strong corroboration of both the cosmological principle and the
hot big bang model. There are anisotropies though which were conclusively demonstrated
by the COsmic Background Experiment [12]. These anisotropies, particularly the so-called
acoustic peaks, contain a wealth of information about the early universe and are compar-
atively easier to determine. One can infer primordial density inhomogeneities imprinted in
these anisotropies and correlate them with the present galaxy distributions. With these
types of measurements, cosmology (with its large component of philosophies), can now be
observationally probed at detailed quantitative levels [13].

Note that while much of the thermodynamical computations are independent of GR, the
evolutionary time scales are very much controlled by GR. It is GR that provides qualitatively
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a universe expanding from a big bang. Interestingly, right close to the big bang, GR fails
gracefully leaving the stage open for (possibly) its quantum version.
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Chapter 5

Appendix I

This is a summary of basic definitions which also serves to state some of the conventions.

1. A Chart (uα, φα) around a point p ∈ M means that p ∈ uα and φα gives local
coordinates around p : φα(p) ↔ (x1(p), x2(p), · · · , xn(p)).

2. An Atlas is a collection of compatible charts such that the uα provide an open cover
of underlying topological space and compatibility refers to coordinate transformations
for overlapping uα, uβ being differentiable (C∞) with a differentiable inverse.

3. Equivalence classes of Atlases with respect to the compatibility relation defines Dif-
ferentiable Structures.

4. By a Manifold we will always mean a connected, locally connected, Hausdorff topo-
logical space with a C∞ structure of dimension n; typically denoted by M.

5. A Differentiable Function f : M → R means that f(xi) is a differentiable (C∞)
function of the n variables which are the local coordinates.

6. A Differentiable Curve γ on M means a map γ : (a, b) →M ↔ (x1(t), · · · , xn(t)) ∈
γ, t ∈ (a, b) and xi(t) are differentiable functions of the single variable t.

7. A Tangent Vector to M at p is an operator, d
dt
|γ associated with every smooth curve

γ through p, which maps smooth functions on M to real numbers by the expression:

d

dt
f |γ := lim

ǫ→0

f(γ(ǫ)) − f(γ(0) = p)

ǫ
=

dxi(t)

dt
|γ
∂

∂xi
f .

The set of all tangent vectors is naturally a vector space of dimension n and is called
the Tangent Space. It is denoted by Tp(M).

Every chart (i.e. local coordinate system) around p gives a natural basis for Tp(M),
namely,

{
∂

∂x1 , · · · , ∂
∂xn

}
and is called a coordinate basis. A generic basis is denoted by

{Ea, a = 1, · · · , n}.

8. The vector space Dual to Tp(M) is called the Cotangent Space and is denoted by
T ∗

p (M). The basis dual to
{

∂
∂xi

}
is denoted as {dx1, · · · , dxn} and satisfies, dxi(∂j) =

δi
j. Likewise, the basis dual to a generic basis {Ea} is denoted by {Ea} and satisfies,
Ea(Eb) = δa

b .
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9. Given the tangent and the cotangent spaces at p, Tp(M), T ∗
p (M) one defines tensor

products of these as:

(Πs
r)p :=

T ∗
p ⊗ · · · ⊗ T ∗

p
︸ ︷︷ ︸

⊗ Tp ⊗ · · · ⊗ Tp
︸ ︷︷ ︸

r-factors s-factors

This is a vector space of dimension (n)r+s and its elements are ordered (r+ s)−tuples:

(ω1, · · · , ωr, X1, · · · , Xs) ∈ (Πs
r)p ⇔ ωi ∈ T ∗

p and Xj ∈ Tp .

A Tensor of rank (r, s) at p ∈ M is a real valued function T : (Πs
r)p → R which is

linear in each of its arguments. r is called the contravariant rank and s is called the
covariant rank. Evidently, a tensor of rank (r, s) is an element of the vector space dual
to (Πs

r)p. The dual vector space is denoted as T
r
s.

Given a basis Ea of Tp and its dual basis Ea of T ∗
p , one defines basis tensors,

Ea1···ar

b1,···,bs := Ea1 ⊗ · · ·Ear
⊗ Eb1 ⊗ · · ·Ebs

such that
Ea1···ar

b1,···,bs(Ec1 , · · · , Ecr , Ed1 , · · · , Eds
) := δc1

a1
· · · δbs

ds

A generic tensor is then expanded as:

T =
∑

T a1···ar
b1···bs

Ea1···ar

b1,···,bs ⇔ T a1···ar
b1···bs

= T (Ea1 , · · · , Ear , Eb1 , · · · , Ebs
)

The T a1···ar
b1···bs

are the components of the tensor. When specialized to coordinate
bases, they have the familiar transformation under a change of local coordinates:

(T ′)i1···ir
j1···js

(x′) =
∂(x′)i1

∂xm1
· · · ∂(x′)ir

∂xmr

∂xn1

∂(x′)j1
· · · ∂xns

∂(x′)js
(T )m1···mr

n1···ns
(x)

The vector space structure takes care of the operations of addition of tensors and of
scalar multiplication.

There are three more common operations: tensor (or outer) product, interior product
and contractions. These are defined as,

Tensor Product (Outer Product):

(T1 × T2)(ω
1, · · · , ωr1 , ωr1+1, · · · , ωr1+r2 ;X1, · · · , Xs1 , Xs1+1, · · · , Xs1+s2) :=

T1(ω
1, · · · , ωr1 ;X1, · · · , Xs1) T2(ω

r1+1, · · · , ωr1+r2 ;Xs1+1, · · · , Xs1+s2)

In terms of components:

(T1 × T2)
a1···ar1ar1+1···ar1+r2 b1···bs1bs1+1···bs1+s2

:=

(T1)
a1···ar1 b1···bs1

(T2)
ar1+1···ar1+r2 bs1+1···bs1+s2

Interior Products: There are two of these, one with an element X of the tangent
space and one with an element ω of the cotangent space.

(iXT )(ω1, · · · , ωr;X1, · · · , Xs−1) := T (ω1, · · · , ωr;X,X1, · · · , Xs−1) ⇔
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(iXT )a1,···,ar
b1,···,bs−1 := Xb (T )a1,···,ar

b,b1,···,bs−1

(iωT )(ω1, · · · , ωr−1;X1, · · · , Xs) := T (ω, ω1, · · · , ωr−1;X1, · · · , Xs) ⇔
(iωT )a1,···,ar−1

b1,···,bs
:= ωa (T )a,a1,···,ar−1

b1,···,bs

Contraction:

T (ω1, · · · , ωr−1;X1, · · · , Xs−1) := T (ω1, · · · , Ea, · · · , ωr−1;X1, · · · , Ea, · · · , Xs−1) ⇔

T a1,···,ar−1
b1,···,bs−1 := T a1,···,c,···,ar−1

b1,···,c,···,bs−1

10. A tensor of rank (0, k) is called a k-form if it satisfies:

T (X1, · · · , xi, · · · , xj, · · · , xk) = −T (X1, · · · , xj, · · · , xi, · · · , xk) ∀ i, j

These are completely antisymmetric covariant tensors of rank k. Evidently, 0 ≤ k ≤ n
must hold.

Given any tensor of rank (0, k) we can always construct a k − form by the process of
antisymmetrization:

(anti T )(X1, · · · , Xk) :=
1

k!

∑

σ∈Sk

sign(σ) T (Xσ(1), · · · , Xσ(k)) ⇔

(anti T )a1,···,ak
:=

1

k!

∑

σ∈Sk

sign(σ) Taσ(1),···,aσ(k)
:= T[a1,···,ak]

The space all k − forms forms a vector space, denoted as Λk and has the dimension
nCk.

Denote by Λ the direct sum of all these Λk : Λ =
∑n

k=0 ⊕Λk.

On Λ one defines the Exterior (or Wedge) Product. Let ω be a p-form and η be
q-form such that p+ q ≤ n. Then we define the wedge product of these to be the (p +
q)-form, denoted as ω ∧ η, by,

ω ∧ η :=
(p+ q)!

p!q!
anti [ω ⊗ η]

In terms of components,

(ω ∧ η)a1,···,ap+q
=

(p+ q)!

p!q!
ω[a1,···,ap

ηap+1,···,ap+q ]

=
1

p!q!

∑

σ∈Sp+q

sign(σ) ωaσ(1),···,aσ(p)
ηaσ(p+1),···,aσ(p+q)

These definitions, in particular the normalization factors, imply:

(ω ∧ η) ∧ ζ = ω ∧ (η ∧ ζ) Associativity of wedge product

ω ∧ η = (−1)pqη ∧ ω Commutation property

This takes care of the Tensor Algebra that we will need.
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11. Exterior Differentiation: The exterior differentiation is defined for k-forms to pro-
duce a (k + 1)-form. It is defined as:

d : Λk → Λk+1 , k = 0, 1, · · · , n such that

(i) for f ∈ Λ0, d(f) := df ∈ Λ1 is given by, df(X) = X(f) ∀ X ∈ Tp(M). In local
coordinates, df = ∂f

∂xidx
i . This is called the differential of f .

(ii) For ω of higher ranks, express it in terms of its expansion in a coordinate basis,

ω = ω[i1,···,ik]dx
i1 ∧ · · · ∧ dxik , i1 < i2 < · · · < ik

=
1

k!
ω[i1,···,ik]dx

i1 ∧ · · · ∧ dxik , unrestricted sum,

its exterior derivative is then defined by,

dω = (dω[i1,···,ik]) ∧ dxi1 ∧ · · · ∧ dxik , i1 < i2 < · · · < ik where

dω[i1,···,ik] =
n∑

ik+1=1

(
∂ω[i1,···,ik]

∂xik+1

)

dxik+1 ∈ Λ1.

Alternatively, the components of dω are also given by,

(dω)i1···ik+1
= (k + 1)∂[i1ωi2···ik+1]

Some of its basic properties are:

(a) The exterior differentiation is obviously a linear operation.

(b) d(ω ∧ η) = dω ∧ η + (−1)pω ∧ dη ∀ ω ∈ Λp, η ∈ Λq.

Due to the presence of sign factor, this is called the anti-derivation property.

(c) d2ω = 0 ∀ ω ∈ Λ (Nil-Potency property).

(d) If d′ is any other map from Λk → Λk+1 satisfying linearity, anti-derivation, nil-
potency and the action on functions producing their differential, then such a map
coincides with the exterior differentiation defined above. In other words, the four
properties uniquely characterize exterior differentiation.

(e) ω ∈ Λk is called a Closed Form if dω = 0 and it is called an Exact Form if it
can be expressed as ω = dξ, where ξ ∈ Λk−1. Clearly, every exact form is closed
but the converse need not be true.

Denote: Zk := the (vector) space of all closed k-forms (dω = 0, ∀ p ∈ M) and
Bk := the vector space of all exact k-forms, Bk ⊂ Zk. Define Hk := Zk/Bk, i.e.
the space of all closed forms modulo exact forms. This vector space is called the
kth Cohomology Class of M . For compact manifolds, its dimension is finite,
bk := dimHk, and is called the kth Betti Number of the manifold. This number
turns out to be a Topological Invariant.

(f) Poincare Lemma: Every closed form is locally (i.e. in a contractible neighbor-
hood) is exact. In particular, R

n being contractible, all closed forms are exact
and hence all its Betti numbers are zero.

Exercise: For S1 compute b1.

12. Lie Differentiation: This is defined by using diffeomorphisms generated by vector
fields, X i∂i (locally: xi → (x′)i := xi + ǫX i(x)). Abstractly, for each smooth vector
field X on M , it is defined as a map LX : T

r
s → T

r
s satisfying the following properties:
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(a) It is linear;

(b) LXf := X(f) ∀ f : M → R;

(c) LX Y := [X,Y ] ∀ vector fields Y on M ;

(d) LX(S ⊗ T ) := (LXS) ⊗ T + S ⊗ LXT ). In particular,

LX(〈ω, Y 〉) := 〈LXω, Y 〉+ 〈ω,LXY 〉, ∀ ω, 1-forms and ∀ Y, vector fields, on M .

The corresponding local expressions are:

(a) LXf = X i ∂
∂xif(x);

(b) LXY =
[

Xj ∂Y i

∂xj − Y j ∂Xi

∂xj

]
∂

∂xi ;

(c) LXω =
[

ωj
∂Xj

∂xi +Xj ∂ωi

∂xj

]

dxi;

(d) More generally, one can show (Prove this!):

LXω = iXdω + d(iXω), ∀ ω ∈ Λk, k = 0, · · · , n; It follows that dLXω = LXdω,
i.e. the Lie-derivative and the exterior derivatives commute. (prove this).

13. Covariant Differentiation: Let X,Y, · · · denote smooth vector fields on M and let
S, T, · · · denote tensor fields of rank (r, s). Let ∇X : T

r
s → T

r
s denote a family of maps,

labelled by vector fields X, satisfying the following properties:

(a) ∇X is linear;

(b) ∇X(f) := X(f) ∀ f : M → R ;

(c) ∇fX+gY (T ) = f∇X(T ) + g∇Y (T ) ∀ functionsf, g and vector fields X,Y ;

(d) ∇X(S ⊗ T ) = (∇XS) ⊗ T + S ⊗ (∇XT ) and in particular,

∇X〈ω, Y 〉 = 〈∇Xω, Y 〉 + 〈ω,∇XY 〉 ;

Then ∇XT is called a Covariant derivative of T with respect to X.

Note: This is similar to the definition of the Lie derivative. It differs crucially in the
property (13c). Also, while Lie derivative of vector fields is specified as part of its
definition, there is no such stipulation for covariant derivative. These differences allow
several different covariant derivatives to be defined. Given a family ∇X satisfying the
above properties, one can define a map ∇ : T

r
s → T

r
s+1 by,

(∇T )(η1, · · · , ηr;X,X1, · · · , Xs) := (∇XT )(η1, · · · , ηr;X1, · · · , Xs)

This map ∇ is well defined provided ∇X satisfies the property (13c).

The freedom in the possible maps ∇X is parametrized (locally) by an Affine Con-
nection, Γ, introduced via the covariant derivatives of vector fields Ea:

∇Eb
Ec := Γa

bcEa, ∇∂j
∂k := Γi

jk∂i

Note that the right hand sides in the above equations being vector fields they are
expressed as linear combinations of the basis vector fields and the expansion coefficients
are the ‘components’ of the affine connection.

Exercise: Changing to a different coordinate basis and using the definition of the
corresponding components, deduce the transformation law for the components of the
affine connection and verify that the affine connection is not a tensor.

46



The familiar ‘semicolon notation’ for covariant derivatives is obtained as follows. For
a (contravariant) vector field, A := Ai∂i denote: ∇∂i

A := Aj
;i∂j.

∇∂i
(Aj∂j) = (∇∂i

Aj)∂j + Aj∇∂i
∂j =⇒

Ak
;i∂k = (∂iA

j)∂j + AjΓk
ij∂k =⇒

Ak
;i = Ak

,i + Γk
ijA

j The usual definition.

Exercise: For a 1-form field B := Bidx
i, denote ∇∂i

B := Bj ;idx
j and show that

Bk ;i = Bk
,i − Γj

ikBj.

Watch out for the position of the lower indices since Γ is not necessarily symmetric in
these.

14. Parallel Transport and Affine Geodesics: We have defined covariant derivative
of a tensor field T , along a vector field X, as ∇XT . Let X = X i∂i in some coordinate
neighborhood around a point p. Let γ be an integral curve of X through p, i.e. around

p, X i(γ(t)) = dxi(t)
dt

. Then,

∇XT = ∇Xi∂i
T = X i∇∂i

T, Denote: ∇i := ∇∂i

= X i∇iT := X · ∇T

=
dxi

dt
∇iT

=
dxi

dt
(∂iT ± connection terms.)

=
dT (xi(t))

dt
± dxi

dt
times connection terms.

Therefore, if ∇XT ( = X · ∇T ) = 0, then we get a first order, ordinary differential
equation for T (xi(t)). This always has a solution in a sufficiently small neighborhood
t ∈ (−ǫ, ǫ) and the solution is uniquely determined by giving the initial value; T (p).
Therefore, given a tensor at p and a vector field X, we can determine a tensor along an
integral curve of X through p. The tensor so determined is called a Tensor parallelly
transported along γ. Notice that this is determined by the connection.

What is parallel about it? If the connection vanished, then the parallelly transported
tensor just equals the tensor at p i.e. is “parallel” in the intuitive sense.

Thus, by definition, a tensor parallelly transported along X satisfies: X · ∇T|| = 0. A
non-zero covariant derivative thus measure the the deviation from “parallality”.

Such parallelly transported tensors are defined for arbitrary rank. In particular, one
can consider parallel transport of X along itself. In general, this will be non-zero.
Equivalently, X|| ≁ X. However, for special cases of vector fields we may actually find
X ·∇X = 0. The integral curves of such a vector field are called (Affinely parametrized)
Affine Geodesics. If we allow X to satisfy X ·∇X ∝ X, then integral curves of such
vector fields are called non-affinely parametrized affine geodesics.

Exercise: Derive the coordinate form of the geodesic equations (X · ∇X)i = 0. Show
that a non-affinely parametrized geodesic can always be re-parametrized to an affine
parameterization.

Although an affine connection is not a tensor, one can construct two natural tensors
from it and its derivatives.
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15. The Torsion Tensor: Given an affine connection (or covariant derivative) via ∇X

(or ∇), one naturally defines the Torsion Tensor T as:

T (ω,X, Y ) := 〈 ω,∇XY −∇YX − [X,Y ] 〉 ∀ ω,X, Y.

Clearly, this is a tensor of rank (1, 2) and is manifestly antisymmetric in its covariant
rank arguments. To show that this is well defined (i.e. does define a tensor) one has to
show: T (fω, gX, hY ) = fghT (ω,X, Y ) ∀ functionsf, g, h. The stipulated properties
of ∇X are crucial for this proof.

Exercise: Show that T i
jk := T (dxi, ∂j, ∂k) = Γi

jk − Γi
kj.

An affine connection is said to Symmetric if its Torsion tensor is zero.

Exercise: For a symmetric connection, show that,

LXY = ∇XY −∇YX ⇔ (LXY )i = XjY i
;j − Y jX i

;j .

16. The Riemann Curvature Tensor and the Ricci Tensor: Given an affine connec-
tion one naturally defines another tensor of rank (1, 3), called the Riemann Curva-
ture Tensor as:

R(ω,Z,X, Y ) := 〈 ω,∇X(∇YZ) −∇Y (∇XZ) −∇[X,Y ]Z 〉 ∀ ω,X, Y, Z.

Exercise: Show that Ri
jkl := R(dxi, ∂j, ∂k, ∂l) are given by,

Ri
jkl = ∂kΓ

i
lj − ∂lΓ

i
kj + Γi

kmΓm
lj − Γi

lmΓm
kj

The definition is independent of the torsion being zero or non-zero.

The Ricci Tensor is a tensor of rank (0,2) and is defined as:

R(X,Y ) := R(Ea, X,Ea, Y ) ⇔ Rij := Rk
ikj .

17. Cartan Structural Equations: The definitions associated with an affine connec-
tion imply certain identities which can be interpreted as alternative definitions of the
curvature and the torsion tensors. To see this recall (and define) for generic bases,
Ea, E

a:

∇Eb
Ec := Γa

bcEa ; [Eb, Ec] := Ca
bcEa ; Ea

b := Γa
cbE

c (Connection 1-forms);

T a
bc := T (E1, Eb, Ec)

= Γa
bc − Γa

cb − Ca
bc;

Ra
bcd := R(Ea, Eb, Ec, Ed)

= Ec(Γ
a

db) − Ed(Γ
a

cb) + Γa
cfΓ

f
db − Γa

dfΓ
f

cb − Γa
fbC

f
cd;

T a :=
1

2
T a

bcE
b ∧ Ec; Torsion 2-forms

Ra
b :=

1

2
Ra

bcdE
c ∧ Ed Curvature 2-forms.
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These definitions imply the relations:

dEa = −Ea
b ∧ Eb +

1

2
T a

bcE
b ∧ Ec

dEa
b = −Ea

c ∧ Ec
b +

1

2
Ra

bcdE
c ∧ Ed

These are rewritten as (the Cartan Structural Equations) :

T a = dEa + Ea
bE

b;

Ra
b = dEa

b + Ea
c ∧ Ec

b

Note: The connection, the torsion and the Riemann curvature have been defined in a
manifestly coordinate (or basis) independent manner. If an arbitrary basis is used and
components relative to this are obtained, the these must satisfy the Cartan structural
equations.

In practice, these are also used to compute the connection 1-forms and curvature
2-forms especially when the torsion vanishes. The structural equations immediately
imply the two famous identities: the cyclic identity and the Bianchi identity by simply
taking the exterior derivative of these equations.

These are identities in the sense that these are valid for all affine connections and for
for all choices of bases.

18. The Cyclic Identity:

dT a = 0 + dEa
b ∧ Eb − Ea

b ∧ dEb

= (Ra
b − Ea

c ∧ Ec
b) ∧ Eb − Ea

b ∧ (T b − Eb
c ∧ Ec)

= Ra
b ∧ Eb − Ea

b ∧ T b

Exercise: Specializing to coordinate bases and using the explicit definitions of wedge
products, covariant derivatives etc show that the above relation in terms of forms is
equivalent to:

∑

(jkl)

Ri
jkl =

∑

(jkl)

T i
jk;l +

∑

(jkl)

T i
mjT

m
kl

The (jkl) denotes sum over cyclic permutations of the indices.

The right hand side is zero for a symmetric connection and is the more familiar form
of the cyclic identity.

19. The Bianchi Identity:

dRa
b = 0 + dEa

c ∧ Ec
b − Ea

c ∧ dEc
b

= (Ra
c − Ea

d ∧ Ed
c) ∧ Ec

b − Ea
c ∧ (Rc

b − Ec
d ∧ Ed

b)

= Ra
c ∧ Ec

b − Ea
c ∧Rc

b

Exercise: Specializing to coordinate bases, show that this is equivalent to:

∑

(klm)

Ri
jkl;m =

∑

(klm)

Ri
jknT

n
lm
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Again the right hand side vanishes for symmetric connection and is the more familiar
form of the Bianchi identity.

Convince yourself that one can not obtain any more identities from the structural
equations.

20. The Ricci Identities: There is another set of identities known as the Ricci identities
which are usually given in component form relative to coordinate bases. In a local
approach, these are also used to define the curvature tensor. These are obtained by
evaluating double covariant derivatives on an arbitrary tensor and antisymmetrizing.

Recall that covariant derivative of a tensor is tensor and so is its double covariant
derivative. However, only for an antisymmetric combination, the result has a term
independent of derivatives of the tensor and a term involving a covariant derivative of
the tensor. The coefficients involve the curvature and the torsion tensors respectively.

Exercise: Using the definitions: ∇iBj := ∂iBj − Γk
ijBk and ∇iA

j := ∂iA
j + Γj

ikA
k

show that,

(∇l∇k −∇k∇l)A
i = −Ri

jklA
j + T j

kl ∇jA
i

(∇l∇k −∇k∇l)Bj = Ri
jklBi + T i

kl ∇iBj .

These extend to arbitrary rank tensors in an obvious manner (index-by-index).

21. Implications of Curvature and Torsion:

(a) An infinitesimal parallelogram with all sides being geodesics exists iff the Torsion
tensor vanishes.

(b) A tensor field T satisfying ∇XT = 0 exists through out a neighborhood up iff
the Riemann tensor vanishes in the neighborhood. Riemann = 0 is thus an in-
tegrability condition for a parallelly transported tensor field to be definable in a
neighborhood.

(c) A tensor field, parallelly transported along a closed (and contractible) loop equals
the original tensor iff the Riemann tensor vanishes.

Therefore, in general, geodesics which begin as parallel do not remain so subse-
quently. Curvature is thus a measure of geodesic deviation. See item (27).

Notice that we have got all the notions of geodesics, curvature etc without

introducing any metric tensor.

22. The Metric Tensor: A symmetric tensor field g of type (0, 2) is called a Metric
Tensor field on the manifold. This is of course to be distinguished from the (metric
= ) distance function introduced while motivating the definition of topology.

At any point p, we can define a symmetric Matrix, gab := g(Ea, Eb) by choosing a basis
for the tangent space. This can always be diagonalised by a real linear, orthogonal
basis transformation and by scaling the basis vectors (or local coordinates in case of
coordinate basis) can be further brought to a form:

g(ei, ej) = ηij = ηiδij, ηi = ±1, 0 .

Let n±, n0 be the number of positive, negative and zero values of ηi, n = n+ + n− + n0.
These numbers are characteristic of the matrix i.e. are independent of the initial basis
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chosen to obtain the matrix. Furthermore, on a connected manifold and smooth metric
tensor, these numbers cannot change from point-to-point and are thus characteristic
of the metric tensor itself.

The metric tensor g is said to be Non-Degenerate if n0 = 0. In this case, one
can define a smooth tensor field, g−1 of the rank (2, 0) such that at every point, gab :=
g−1(Ea, Eb) satisfies, gab = gba, gacgcb = δa

b . g
−1 is naturally called the Inverse Metric

Tensor. In practice, one does not use a separate symbol for the inverse metric, it is
inferred from the index positions.

n− is called the Index of g, ind(g) while n+ − n− is called the Signature of g,
sig(g).

For the case of ind(g) = 0, the metric is said to Riemannian (or Euclidean); otherwise
it is generically called Pseudo-Riemannian. When n− = n− 1, the metric is said to
be Lorentzian (or Minkowskian).

Our Convention: diagg ∼ (+1,−1, · · · ,−1) and we will be considering only non-
degenerate, Lorentzian signature metrics.

Such Manifolds with metric will be referred to as Pseudo-Riemannian manifold or
Space-Times.

Basic existence results: (See Hawking-Ellis)

(a) Any paracompact manifold admits a Riemannian metric;

(b) Any non-compact, paracompact manifold admits a Lorentzian metric;

(c) A compact manifold admits a Lorentzian metric iff its Euler character, χ(M) :=
∑n

k=0(−1)kbk, is zero.

23. Weyl, Diffeomorphism and Conformal Equivalences and Isometries: There
are many different notions of equivalence in use. These are:

(a) Two metrics g1, g2 are said to be Weyl Equivalent if g2 = eΦg1 for some smooth
Φ : M → R.

(b) Two metrics g1, g2 are said to be Diffeomorphism Equivalent if g2 = φ∗g1 for
some diffeomorphism φ : M → M and φ∗ denotes the corresponding pull-back
map.

(c) Two metrics g1, g2 are said to be Conformally Equivalent if there exists a
diffeomorphism φ : M → M such that g2 = eΨ(φ∗g1) for some smooth function
Ψ : M → R.

(d) A diffeomorphism φ : M → M is said to be an Isometry of a metric g, if
φ∗g = g. Likewise, it said to be a Conformal Isometry of g if φ∗g = eΨg for
some smooth Ψ : M → R.

24. Extra Operations available due to a Metric Tensor: There are many additional
features that a manifold with metric acquires. Since a non-degenerate metric gives us
both gab and gab, it allows us to set up a canonical (standard/natural) isomorphism
between the tangent and the cotangent spaces. In other words it allows us to raise
and lower indices of tensors of rank (r, s). (This is a property of second rank,
non-degenerate tensors. In Hamiltonian formulation one has the anti-symmetric non-
degenerate (0, 2) tensor – the symplectic 2-form – which also plays a similar role. It
leads to symplectic geometry.)
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(a) A metric defines a unique affine connection via the

Result: Given a non-degenerate metric, there exists a unique affine connection, Γ
satisfying,

(i) T i
jk(Γ) = 0;

(ii) ∇kgij = 0 ∀ i, j, k.

The condition (ii) alone allows us to obtain the affine connection as:

Γk
ij =

{
1

2
gkl (glj,i + gli,j − gij,l)

}

− 1

2

{
gimT

m
jng

nk + gjmT
m

ing
nk
}

+
1

2
T k

ij

For the zero-torsion case, the connection is given only by the first term and is
called the Riemann-Christoffel Connection of the metric connection. This is
the connection used in general relativity.

All the definitions of curvature etc are immediately applicable for this special
connection. However, in addition now one can also define the Ricci Scalar
R := gijRij.

Because of the vanishing torsion and availability of raising and lowering of indices,
the Riemann tensor has further properties under interchange of its indices. These
are summarized in the item 25.

(b) A metric tensor also allows us to define an invariant volume form, the Hodge
Dual, the co-differential and the Laplacian. These are seen as follows.

i. Recall that Λn is one dimensional. An n-form at p, ω ∈ Λn is said to be
a Volume Element at p. Two volume elements are said to be equivalent
if ω2 = λω1, λ > 0. This is an equivalence relation and has exactly two
equivalence classes which are called Orientations on Λn. The n-form ω :=
E1 ∧ · · · ∧ En always defines a volume element.
A basis {Ea} for Tp(M) is said to be Positively Oriented with respect
to [ω] if ω(E1, · · · , En) > 0.
An n-form field µ on M is said to be Volume Form on M if µ(p) 6= 0, ∀ p ∈
M .
M is said to be Orientable if it admits a volume form and is said to be
Oriented if a particular choice of volume form is made. This definition of
orientability turns out to be equivalent to the one given in terms of the sign
of the Jacobian of coordinate transformations in the overlapping charts.
Locally,

µ =
1

n!
µi1···indx

i1 ∧ · · · ∧ dxin = µ1···ndx
1 ∧ · · · ∧ dxn

= µ′
1···ndx

′1 ∧ · · · ∧ dx′n

= µ′
1···n

∂x′1

∂x1
· · · ∂x

′n

∂xn
dx1 ∧ · · · ∧ dxn

=
1

n!
µi1···in

∂x′i1

∂xi1
· · · ∂x

′in

∂xin
dxi1 ∧ · · · ∧ dxin ⇒

µi1···in = µ′
j1···jn

∂x′j1

∂xj1
· · · ∂x

′in

∂xin

=

(

det
∂x′

∂x

)

µ′
j1···jn
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The components of an n-form thus transform by a determinant. Such a
quantity is called a Tensor Density.
It follows that

√

|detgij| transforms as,

√

|detg′ij| = |
(

det
∂x

∂x′

)

|
√

|detgij|

It is apparent now that µg :=
√

|detgij|dx1 ∧ · · · ∧ dxn defines a volume
form (since the metric is non-degenerate) and is invariant under coordinate
transformations. Notationally this Invariant Volume Form is also denoted
as

µg :=
√

|detgij|dx1 ∧ · · · ∧ dxn :=
√
g dnx .

ii. Levi-Civita Symbol Ei1···in
:

Ei1···in :=







1 if i1 · · · in is an even permutation of (1 · · ·n)
−1 if i1 · · · in is an odd permutation of (1 · · ·n)
0 otherwise.

This allows us to write,

dx1 ∧ · · · ∧ dxn =
1

n!
Ei1···indx

i1 ∧ · · · ∧ dxin etc.

iii. On Λk, the space of k-forms, define an inner product (or pairing) as,

(ω, η)|p =
1

k!
ωi1···ikη

i1···ik |p , ηi1···ik := gi1j1 · · · gikjkηi1···ik .

It is obvious (ω, η) = (η, ω) (symmetry) and (ω, η) = 0 ∀ η ⇒ ω = 0 (non-
degeneracy).
Now the Hodge Isomorphism (or Hodge * operator) is defined as:
∗ : Λk → Λn−k such that

α ∧ (∗β) := (α, β)µg ∀ α ∈ Λk This defines ∗ β.

Exercise: Show that

α ∧ ∗β = β ∧ ∗α ;

∗β = (−1)index(g) (−1)k(n−k) β;

(∗α, ∗β) = (−1)index(g)(α, β) .

Exercise: Using these definitions obtain the local expressions for components
of ∗β:

(∗β)i1···in−k
=

1

k!
(−1)k(n−k)ǫi1···in−kj1···jk

βj1···jk , ǫi1···in := Ei1···in
√
g .

Note: The Levi-Civita symbol is just a numerical quantity and as such is
not subject to coordinate transformations. The ǫi1···in on the other hand
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transforms under coordinate transformations due to the explicit factor of
√
g.

Indeed,

ǫ′i1···in := Ei1···in
√

g′

= |det ∂x
∂x′

|ǫi1···in

=
∂xj1

∂xi1
· · · ∂x

j1

∂xi1
ǫi1···in .

Thus ǫi1···in transforms as a tensor density of rank (0,n).

iv. On k-form fields we defined the exterior differential d : Λk → Λk+1. With a
non-degenerate metric tensor available, one also defines the Co-Differential
δ as: δ : Λk → Λk−1,

δω := (−1)index(g)(−1)nk+n+1 ∗ d ∗ ω .

Exercise: Show that δ2ω = 0 ∀ ω ∈ Λ.

The nil-potency of δ allows us to define:
ω is said to be Co-Closed if δω = 0;
It is said to be Co-Exact if it can be written as ω = δξ, ξ ∈ Λk+1;
It is said to be Harmonic if it is both closed and co-closed, dω = 0 = δω.

Using the Exterior differential and the co-differential one defines the Lapla-
cian Operator on kforms as: ∆ := dδ + δd. Evidently it maps k-forms
to k-forms.

v. On n-dimensional manifolds only integrals of n-forms are well defined. These
are locally given by,

∫

M

ω :=

∫

dx1 ∧ · · · ∧ dxnω1···n :=

∫

dnx(ω1···n) .

On the space of smooth k − formfields one defines a bilinear, symmetric,
non-degenerate quadratic form:

〈ω|η〉 :=

∫

M

ω ∧ ∗η =
1

k!

∫

M

ωi1···ikη
i1···ik√gdnx .

Exercise: For Riemannian manifolds without boundary show that

〈ω|δη〉 = 〈dω|η〉 .

For the case of a Riemannian metric, index(g) = 0, the d and δ are Adjoints
of each other and the Laplacian is “Self-Adjoint” (for suitable boundary con-
ditions). One can then also write the Hodge Decomposition (which is an
orthogonal decomposition) for any k-form as:

ω = α+ dβ + γ , dα = 0 , dγ = 0 = δγ .

25. Number of Independent Components of the Riemann Tensor for the Metric
Connection (without Torsion): Availability of metric tensor allows us to define
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Rijkl := gimR
m

jkl. Use of the Riemann-Christoffel connection, which implies zero
torsion, simplifies many expressions. These are summarized as:

Rijkl = −Rijlk From definition ;
∑

(jkl)

Rijkl = 0 Cyclic identity;

∑

(klm)

Rijkl;m = 0 Bianchi identity;

(∇l∇k −∇k∇l)T
i1···im

j1···jn
= −

m∑

σ=1

Riσ
jklT

i1···j···im
j1···jn

Ricci Identities

+
n∑

σ=1

Ri
jσklT

i1···im
j1···i···jn

Further Properties:

Rijkl = −Rjikl

Rijkl = Rklij

Rij = Rji Symmetry of Ricci Tensor

R := gijRji The Ricci Scalar

Gij := Rij −
1

2
Rgij The Einstein Tensor

∇jG
ij = 0 “Contracted Bianchi Identity”.

The calculation of the number independent components the Riemann tensor is slightly
tricky due to the various symmetries and the cyclic identities.

Given (ijkl) consider sub-cases (i) two of the indices are equal, eg Rijil with i 6= j, i 6= l,
(ii) two pairs of indices are equal eg Rijij and (iii) all indices are unequal. For the
first two sub-cases, the cyclic identities give no conditions (are trivially satisfied).

The number of components in case (i) is n(n−1)
2

× (n − 2). For the case (ii), the

number is n(n−1)
2

. For the case (iii) a priori we have n(n − 1)(n − 2)(n − 3). Since
i↔ j, k ↔ l, (ij) ↔ (kl) are the same components we divide by 2 · 2 · 2 = 8. The cyclic
identity is non-trivial and allows one term to be eliminated in favor of the other two.
This gives the number to be 2

3
1
8
n(n − 1)(n − 2)(n − 3). Thus, the total number of

independent components is given by,

n(n− 1)(n− 2)

2
+
n(n− 1)

2
+

1

12
n(n− 1)(n− 2)(n− 3) =

n2(n2 − 1)

12
.

For n = 2, the number of independent components is just 1 and the Riemann tensor
is explicitly expressible as:

Rijkl =
R

2
(gikgjl − gjkgil) .

For n = 3, the number of independent components is 6 and equals the number of
independent components of the Ricci tensor. One can express,

Rijkl = (gikRjl − gjkRil − gilRjk + gjlRik) −
1

2
R(gikgjl − gjkRil) .
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For n ≥ 4, the number of independent components of the Riemann tensor is larger
than those of the Ricci tensor plus the Ricci scalar. Hence in these cases, the Riemann
tensor cannot be expressed in terms of R,Rij, gij alone. We need the “fully traceless”
Weyl or Conformal tensor.

26. The Weyl Tensor: This is a combination of the Riemann tensor, the Ricci tensor, the
Ricci scalar and the metric tensor which vanishes when any pair of indices is ‘traced’
over by the metric (contracted by the metric). It is given by,

Cijkl := Rijkl−
1

n− 2
(gikRjl−gjkRil−gilRjk +gjlRik)+

1

(n− 1)(n− 2)
(gikgjl−gjkRil) .

27. Geodesic Deviation – Relative Acceleration: In the following the connection is
a metric connection.

Consider a smooth, 1-parameter family of affinely parametrized geodesics, γ(t, s) so
that for each fixed ŝ in some interval, γ(t, ŝ) is a geodesic. Smoothness of such a family
means that there is a map from (t, s) ∈ I1 × I2 into M and this map is smooth. Let
this map be denoted locally as xi(t, s).

We naturally obtain two vector fields tangential to the embedded 2-surface: ui(s, t) :=
∂xi(s,t)

∂t
and X i(s, t) := ∂xi(s,t)

∂s
. The former is tangent to a geodesic and hence u·∇xi = 0.

The latter is called a generic deviation vector. From the smoothness of the family
(i.e. existence of 2-dimensional embedded surface) it follows that [∂t, ∂s] = 0 and this
translates into (for zero free connection) X · ∇ui = u · ∇X i.

Claim: By an s−dependent affine transformation of t one can ensure that X ·∇u2 = 0.

Corollary: u2 is independent of t, s and u ·X is a function of s alone.

Claim: For non-null geodesics u2 6= 0, it is possible to make a further affine transfor-
mation to arrange u ·X = 0.

In other words, for a family of time-like or space-like geodesics it is possible to arrange
the parameterization such that the deviation vector is orthogonal to the geodesic tan-
gents. One defines:

X i, X · u = 0 the Displacement vector;

vi := u · ∇X i the Relative Velocity;

ai := u · ∇vi the Relative Acceleration.

By contrast, for any curve, Y · ∇Y i is called the Absolute Acceleration.

It follows:

ai = uj∇j(u
k∇kX

i) = u · ∇(X · ∇ui) ([X, u] = 0)

= Xju · ∇(∇ju
i) + (∇ju

i)u · ∇Xj

= Xjuk∇k∇ju
i + (∇ju

i)X · ∇uj

= Xjuk∇j∇ku
i −Ri

kjlu
kXjul + (X · ∇uj)∇ju

i

= (X · ∇)(u · ∇ui) −Ri
kjlu

kXjul Or,

ai = −Ri
jklu

jXkul The Deviation Equation.
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Chapter 6

Appendix II

The following is some additional material which could be of use. Again only simplest of the
cases are discussed and further details are to be found in the references included at the end.

Conformal Diagrams (Penrose Diagrams)

There are diagrams which enable one to represent the space-time as finite regions. These
arise out of discussion of “Asymptotic Flatness”. In the following only Minkowski and
Schwarzschild space-times are discussed.

The Minkowski space-time:

/2πu = −

/2πv = −

u = π /2

v = π /2
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0

+

−

−

+

J

J 

i

J

+

0

−

u v

The metric in the standard t, r, θ, φ coordinates is,

ds2 = dt2 − dr2 − r2dΩ2.
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Define U ≡ t− r and V ≡ t+ r. Suppressing the angular part,

ds2 = dUdV

Clearly r ≥ 0 implies V ≥ U but otherwise both U, V range over the full real line. Now define
U ≡ tan(u) and V ≡ tan(v). The u and v now range over (−π/2, π/2) giving the diamond
shape shown in the figure. The Minkowski space-time (θ, φ suppressed) is the shaded portion
reflecting the restriction v ≥ u . The terminology used for various points/segments of the
diagram is shown in the figure.

Problem: If one considers 2 dimensional Minkowski space-time how will the corresponding
diagram look like?

The (Kruskal) Extended Schwarzschild space-time:

J +J +

J
J

i0
i0

r = 0 (singularity)

r = 0 (singularity)

Eve
nt

 H
or

izo
n

t = constant > 0

r = constant

W H Region

IV

II

B H Region

III

I

The metric in the standard t, r, θ, φ coordinates is, (θ, φ part suppressed)

ds2 = (1 − 2m/r) { dt2 − 1

(1 − 2m/r)2
dr2 }

In terms of the “tortoise coordinate”, r⋆,

r⋆ ≡ r + 2m ℓn ( |r/2m− 1| ),

the metric is:
ds2 = (1 − 2m/r) {dt2 − dr2

⋆}
Define U ≡ −e(r⋆−t)/4m and V ≡ e(r⋆+t)/4m. We see that U ≤ 0 and V ≥ 0 and that the
metric is non-singular across r = 2m. The Kruskal extension now consists of keeping the
same form of the metric but allowing U, V to range over full real line. Further defining
U ≡ T −X and V ≡ T +X one has the familiar Kruskal form of the metric:

ds2 =
32m3

r
e−r/2m (dT 2 − dX2)

with r defined implicitly in terms of T,X by,

X2 − T 2 = (
r

2m
− 1) er/2m

If one wants one can obtain t in terms of T,X but is not essential. The condition that r > 0
translates in to T 2 − X2 < 1 (or UV < 1). As in the Minkowski case one can obtain a
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bounded picture by defining U ≡ tan(u) and V ≡ tan(v). The u, v range over (−π/2, π/2)
and the r = 0 UV = 1 translates in to u + v = ±π/2. (Do you see this?). In terms of u, v
coordinates the extended Schwarzschild space-time is shown in the figure above.

Similar analysis is done for the Kerr-Newman family of solutions. The resulting Penrose
diagram is shown in the figure below.

Ring SingularityΣ = 0Ring SingularityΣ = 0

−r −r

−r −r

+r +r

+r +r

+J+J

−J −J

−r −r

−r −r

i0 i0

Cauchy Surface

The above are all examples of the so called Asymptotically flat space-times. The gen-
eral definition in essence stipulates that an asymptotically flat space-time has as (confor-
mal)“boundary” components three crucial segments: the the future Null infinity (J +), the
past Null infinity (J −) and the Spatial infinity (i0) .

Black Holes and “Uniqueness” Results

A general definition of a Black Hole space-time requires it to be larger than the set of points
from which one can send physical signals (time-like or null curves) to the Future Null Infinity.
The “extra” region is the Black Hole region, its boundary is the Event Horizon (3 dimensional)
while the intersection of the event horizon with a “Cauchy surface” (eg constant t surface in
the above examples) is the more familiar 2-dimensional event horizon. The event horizon is
always a Null hyperface (3 dimensional surface whose normal is light-like)

As an exercise identify the black hole region and event horizon in the Kerr-Newman example.
For precise definitions see the Wald’s book for instance.

Some general results about black holes.

Result a : A black hole at “instant” Σ (a Cauchy surface) may never bifurcate.

This result which says that a black hole may never disappear (Classically of course) does
not even use Einstein’s equations, and follows purely from the definition of black hole and
topological arguments.

The event horizon at instant Σ is a 2 dimensional surface and the induced metric on it gives
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us the definition of its area. This is defined as the AREA of an instantaneous black hole.
For stationary black holes the 2 dimensional surface is compact and thus has finite area.

Problem: Take the metric for the Kerr-Newman solution. From the Penrose diagram notice
that r = r+, t = constant is the instantaneous event horizon. Find the induced metric on this
2 dimensional surface. Intergrate over the surface the

√

det( induced metric ) and compute
the area.

Result b : The area of a black hole never decreases.

This result depends on the condition Rµνk
µkν ≥ 0 ∀ null kµ being true. Via the Einstein

equations, this is translated in to a condition on the stress-energy tensor Tµν . These “energy
conditions” are listed separately.

Now a few results for stationary, black hole solutions of source free Einstein equations are
collected.

Result c : Stationary, vacuum, black holes are either static or axisymmetric.

Result d : For stationary vacuum black holes, the instantaneous event horizon is topologically
the two sphere, S2.

Result e : For stationary vacuum black holes, the Killing vector ξ corresponding to station-
arity, is tangential to the event horizon. Thus it has to be either space-like or light-like.

If ξ is every where non space-like outside the horizon (No ergosphere) then on the horizon it
is light-like. The solution then must be static.

If ergosphere is present but intersects the event horizon, then ξ is space-like on a portion of
the event horizon. In this case there exist another Killing vector χ which commutes with ξ
and is light-like on the event horizon. A linear combination ψ, of ξ and χ can be constructed
which is space-like and whose orbits are closed. In other words the space-time is stationary
and axisymmetric.

This leads to two further definitions:

χ ≡ ξ + ΩH ψ;

ΩH is called the “angular velocity” of the event horizon.

∇µ χ2 ≡ − 2κχµ On the event Horizon

where κ is called the “surface gravity”.

Result f : The surface gravity is constant over the horizon

This result depends on the stress-tensor satisfying the so called “dominant energy condition”.
This result allows the interpretation of κ being the “temperature”.

A useful equivalent expression for the surface gravity is: Define:

V ≡
√

|χ2| ,

aµ ≡ χ · ∇ χµ

V 2
, a ≡ a2
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Then,
κ = lim(V a) = lim(

√

V 2aµaµ)

Here lim means that the quantity is to be evaluated in the limit of approaching the horizon.

Problem: For the Kerr-Newman solution find the angular velocity of the horizon.

Problem: For the Kerr-Newman solution find the surface gravity

The algebra simplifies considerably if you first express χ2 (away from the horizon) in the
form (..)∆ + (..)∆2. Here ∆ is the usual expression for the Kerr-Newman solution. The
lim of course is the limit r → r+ or ∆ → 0 You should get the answer stated in the class.

It is instructive to compute κ for the Schwarzschild solution using the basic definition of κ.
You will notice a problem in using the t, r, θ, φ coordinates. Use of Kruskal coordinates will
remove the problem. (Of course, for Schwarzschild solution, χ = ξ) Try it!

NOTE: In the class the laws of black hole thermodynamics were derived using the particular
explicit Kerr-Newman solution. For a general stationary black hole, without knowing its
explicit form, the derivation is more involved. One needs to also define the Mass, Angular
Momentum, Charge of such a black hole which is done in terms of the so called “Komar”
integrals (expressions). For these details you have to see Wald for instance.

The Energy Conditions

The energy conditions, conditions that any stress-energy tensor Tµν representing “physical”
matter (sources of gravity) has to satisfy, essentially incorporate the qualitative feature of
gravitational interactions that these are always attractive (for “positive masses” , at least
classically). This means that nearby future directed causal geodesics (i.e. future directed
time-like or light-like) tend to come closer. From analysis of families of such geodesics via the
Raychoudhuri equations, this translates in to the statement that Rµνk

µkν ≥ 0, for all time-
like or light-like vectors. Using the Einsteins equations, this is transferred to a statement
about Tµν . There are three different conditions that are stipulated and various results use
one or the other of these in the proofs. These are:

Tµνv
µvν ≥ 0 ∀ time-like vµ Weak energy condition

Tµνv
µvν ≥ T α

α

2
∀ normalized time-like vµ Strong energy condition

Tµνv
ν be a future directed time-like or null

vector ∀ future directed time-like vµ Dominant energy condition

For a given Tµν in terms of density, pressure etc these conditions are expressed as conditions
on density/pressure etc.

Problem: For the perfect fluid stress-energy tensor used in the cosmological solution, express
the weak and the strong conditions as conditions on the densities and pressures. What about
the dominant condition?
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Chapter 7

Exercises

The Following set of problems are chosen to help you develop a feel for basic practical
computations used in GTR. Some will give you further factual information.

Covariant Derivatives and Killing Vectors

Notation: (Tensor);µ↔ ∇µ(Tensor)

These have following basic properties:

∇µΦ = ∂µΦ where Φ is a scalar

∇µ(T1T2) = (∇µT1)T2 + T1(∇µT2)

∇µA
ν ≡ ∂µA

ν + Γν
µλA

λ

∇µBν ≡ ∂µBν − Γλ
µνBλ

We choose the affine connection Γ by requiring that,

Γλ
µν = Γλ

νµ, ∇µgνλ = 0.

This gives us the Riemann-Christoffel connection.

Problem 1 By considering a coordinate transformation of the form,

x′µ = xµ + Cµ
αβx

αxβ + ...

Show that Γ′λ
µν can be made zero at any given point xµ. Conclude that the metric can always

be expressed in the form:
gµν = ηµν + ◦(x2)

for sufficiently small xµ.

Vector fields ξµ which satisfy the Killing equation:

∇µξν + ∇νξµ = 0

62



are called Killing vector fields.

Problem 2 Consider the usual 2-sphere with metric,

ds2 = R2(dθ2 + sin2θdφ2).

Find all possible Killing vectors on the sphere by solving the Killing equations.

Geodesics

Let xµ(λ) denote a geodesic and uµ ≡ dxµ

dλ
denote the geodesic tangent vector. The geodesic

equation can then be written as, uν∇νu
µ = 0

Problem 3 Let ξµ be a Killing vector and let K(ξ) ≡ uµξµ. Show that K is constant
along the geodesic.

Problem 4 Consider Schwarzschild space-time (r > 2m, t, r, θ, φ coordinates). We have
4 Killing vectors:

ξµ
(0) = (1, 0, 0, 0), ξµ

(i) = (0, 0, ξθ
(i), ξ

φ
(i)), i = 1, 2, 3.

The ξµ
(i) are the Killing vectors obtained in the problem 2 above. Let Ji ≡ uµξµ where uµ is

a geodesic tangent. Show that Ji = 0 for all i implies uµ is a radial geodesic while J3 6= 0
implies equatorial geodesic. (ξµ

(3) = (0, 0, 0, 1)).

Curvatures and Identities

Problem 5 Show that

∇µ∇νA
λ −∇ν∇µA

λ = Rλ
αµνA

α ,

∇µ∇νBλ −∇ν∇µBλ = −Rα
λµνBα

(Warning: Depending on how you have defined the Riemann tensor, the index positions
as well signs on the right hand sides may be different. The relative sign is correct though.
These expressions are sometimes used to define the Riemann tensor in terms of the Christoffel
connections. Note also that the Riemann tensor is antisymmetric in the last two indices. The
above expressions are known as the Ricci identities. One could generalize these for higher
rank tensors.)

Problem 6 For any 1-form ωµ show by direct computation,

∇[µ∇νωλ] ≡ 1

3!
{∇µ∇νωλ + ∇ν∇λωµ + ∇λ∇µων −∇ν∇µωλ −∇µ∇λων −∇λ∇νωµ}

= 0

Problem 7 Using the above and the Ricci identity deduce that,

Rα
λµν +Rα

µνλ +Rα
νλµ = 0
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This is the cyclic identity. Alternative proof will also be OK.

Problem 8 Applying the Ricci identity to gµν show that,

Rµναβ = −Rνµαβ

and deduce further that,
Rµναβ = Rαβµν

Problem 9 Prove the Bianchi identity:

Rα
βµν;λ +Rα

βνλ;µ +Rα
βλµ;ν = 0

The Ricci tensor and the Ricci scalar are defined as:

Rµν ≡ Rα
µαν , R ≡ gµνRµν

Problem 10 Contracting the Bianchi identity show that the Einstein tensor Gµν satis-
fies,

∇µGµν = 0

Geodesic Deviation etc.

Consider a family of time-like geodesics i.e. xµ(τ, σ) where for each σ, xµ(τ) is a time like
geodesic. Define,

uµ(τ, σ) ≡ ∂xµ(τ, σ)

∂τ
(geodesic tangent vector which is time like,)

Xµ(τ, σ) ≡ ∂xµ(τ, σ)

∂σ
(geodesic “displacement” or deviation vector).

Such a family can always be chosen to satisfy further,

uµuµ = constant ( = 1, say ) and uµXµ = 0

Terminology:

vµ ≡ u · ∇Xµ relative velocity (of nearby geodesics)

aµ ≡ u · ∇vµ relative acceleration (of nearby geodesics)

Problem 11 Noting that ∂
∂τ

= uµ∇µ and ∂
∂σ

= Xµ∇µ, show that:

u · ∇Xµ = X · ∇uµ.

Problem 12 Show that,
aµ = −Rµ

ναβu
νXαuβ.

This is the geodesic deviation equation. Clearly, the relative acceleration is zero iff the
Riemann tensor vanishes.
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Problem 13 In the Schwarzschild space-time consider a family of radial time-like
geodesics with, say, φ = 0 and θ playing the role of σ. Consider two geodesics in this family,
with Xµ = (0, 0, Xθ, 0). Compute the relative acceleration.

NOTE: You will need to compute some of the components (which ones?) of the Riemann
tensor. Also notice that in the conventional units (CGS say), g00 = 1 − 2GM

c2r
. Taking, in

CGS units,
G ∼ 6 · 10−8,M ∼ 1024, c ∼ 3 · 1010 and r ∼ 6 · 108

estimate aµ. This corresponds to the relative acceleration of two test bodies dropped from
the same height, same longitude but different latitude near the surface of Earth.

Red shifts

Problem 14 Using the definition of the electromagnetic field tensor,

Fµν ≡ ∂µAν − ∂νAµ = ∇µAν −∇νAµ ,

∇µFµν = 0 Maxwell equations,

∇µAµ = 0 the gauge condition,

obtain the curved space wave equation for the potential Aµ.

Problem 15 For the ansatz Aµ = Eµe
iΦ where the phase Φ is a scalar, rewrite the

wave equation in terms of Eµ and Φ.

Problem 16 Neglect the Ricci tensor term and covariant derivatives of Eµ and show
that,

(∇µΦ)(∇µΦ) = 0 and ∇2Φ = 0

This approximation is called the “geometrical optics approximation”.

Thus if kµ ≡ ∇µΦ then k2 = 0 and ∇ · k = 0. Since ∇µΦ is normal to the hypersurface
(3 dimensional) Φ = constant, kµ is indeed the wave propagation vector.

Problem 17 Considering the gradient of k2, show that

kν∇νk
µ = 0 i.e. kµ is a null geodesic tangent

Thus in the geometrical optics approximation, light propagates along null geodesics.

Let uµ (u2 = 1) denote an observer using his/her proper time as the time coordinate. The
frequency of a light wave as determined by this observer is given by,

ω(u) ≡ k · u ( = uµ∇µΦ = uµ∂µΦ =
dΦ

dτproper

)

Problem 18 In the Schwarzschild geometry, consider two stationary observers i.e. ob-
servers whose four velocities are proportional to the Killing vector. Observer O1 at r = r1
send a light wave of frequency ω1 which is then received by observer O2 at r = r2 as a light
wave of frequency ω2. The respective frequencies are of course defined as ωi = k · ui where
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kµ is the propagation vector for the light wave and ui are the four velocities of the observers
satisfying u2

i = 1. Using the result of problem 3 show that,

ω2

ω1

=

√
g00|1√
g00|2

For Schwarzschild solution corresponding to Sun (solar mass ∼ 1033gms, solar radius ∼
6 · 1010cms and Earth-Sun distance about 8 light minutes estimate the red shift.

All red shift calculations essentially proceed similarly.

Problems contributed by Dr. Sushan Konar.

Schwarzschild metric in isotropic coordinates

Problem 19 The Schwarzschild metric (taught in the class) can also be written as

ds2 = (
1 −M/2R

1 +M/2R
)2dT 2 − (1 +

M

2R
)4(dR2 +R2dΘ2 +R2 sin2 ΘdΦ2)

in terms of the isotropic co-ordinates T,R,Θ,Φ. Find the relation between the isotropic
co-ordinates and the Schwarzschild co-ordinates t, r, θ, φ (c = G = 1 has been assumed).
Discuss the geometry written in these new set of co-ordinates.

The Chandrasekhar Mass Limit

Problem 20 Consider the electrons to be non-relativistic and Fermi-degenerate. Show
that the equation of state can be given by P ∝ ρ5/3. Solve the hydrostatic equations given
by:

dP

dr
= −GM(r)ρ(r)

r2
,

dM(r)

dr
= 4πr2ρ(r),

for the structure of a white dwarf supported by the electron degeneracy pressure. Show that
for a white dwarf M ∝ R−3, where M and R denote the total mass and the radius of the
white dwarf.

Now consider the electrons to be ultra-relativistic and Fermi-degenerate. Show that the
equation of state changes to P ∝ ρ4/3. Show that for this equation of state there is only one
mass possible for the star to have a stable configuration. This is known as Chandrasekhar
Mass and is given by:

MCH =
5.82

µ2
e

M⊙ .

Instead of taking the approximate form of the equation of state (obtained by taking either
E = p2/2m or E = cp) take the exact form of the equation of state (obtained by taking
E =

√

c2p2 +m2c4. Varying your starting point (that is the value of the central density)
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obtain the mass and radius for equilibrium white dwarf configurations. The M − R curve
should cross the M axis at M = 1.4M⊙ giving the value of the Chandrasekhar limit.

Notice that to arrive at the above equations we have used the non-relativistic form of the
hydrostatic equation. The accurate result is obtained by considering the TOV equation,
given by:

dP

dr
= −

(

ρ(r) +
P (ρ(r))

c2

)(

G(M(r) + 4π P (ρ(r))r3

c2
)

r2

)(

1 − 2GM(r)

c2r

)−1

.

Check out the number for the Chandrasekhar mass for a neutron star solving the TOV
equation numerically and assuming the equation of state to be given by Fermi-degenerate
neutrons.

The Induction Equation

Problem 21 The induction equation in a flat space-time is given by (Jackson 1975):

∂ ~B
∂t

= ~∇× (~V × ~B) − c2

4π
~∇× (

1

σ
× ~∇× ~B) ,

where ~V is the velocity of material movement and σ is the electrical conductivity of the
medium. To obtain the covariant form of the induction equation make use of the covariant
form of the Maxwell’s equations (Weinberg 1972):

1√−g∂µ(
√−gF µν) = −4π

c
Jν ,

∂µF
νλ + ∂νF

λµ + ∂λF
µν = 0 ;

with, Fµν = ∂µAν − ∂νAµ and Jµ = (cρ,J), where Aµ is the vector potential, ρ is the charge
density and J is the spatial part of the current density.

(a) Show that the generalized Ohm’s law is given by (Weinberg 1972):

Jµ = σgµνFνλu
λ ,

where uλ is the covariant velocity (assume isotropy of the electrical conductivity).

(b) With the covariant velocity given by uµ = (dx0

ds
, 1

c
u0V), where V is the velocity in the

locally inertial frame, show that :

∂tFij = ∂i(Fjkv
k) − ∂j(Fikv

k)

+
c2

4π
∂i

(
1

σ

1√−g
giν

u0
∂l(

√−gF lν)

)

− c2

4π
∂j

(
1

σ

1√−g
gjν

u0
∂l(

√−gF lν)

)

,

where xµ = (ct, r, θ, φ). It should be noted that the displacement current has been neglected
here and i, j, k, l = 1, 2, 3 since we are only interested in the time evolution of the magnetic
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field. For a given Fµν an observer with four velocity uµ measures the electric and the magnetic
fields (E,B) as given by:

Eµ = Fµνu
ν and Bµ = −1

2
ǫµν

γδFγδu
ν ,

where ǫµνγδ is the four-dimensional Levi-Civita tensor (Wald 1984). Therefore the equation
in part (b) above gives the covariant form of the induction equation and reduces to equation
in problem 21 in the limit of a flat metric.

This form of the equation is particularly relevant for astrophysical objects like white dwarfs
and neutron stars which have non-negligible surface gravity.
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