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FOREWORD

It gives me great pleasure to write these few words�

When Prof� Naresh Dadhich suggested the idea that the XVIII th conference of the IAGRG
may be hosted by the Institute of Mathematical Sciences I felt it was a welcome opportunity�
There was a perception that while classical general relativity gravitation astrophysics cosmology
are active areas in their own right and as such have been discussed at the IAGRG meetings in
the past it is perhaps time now to expand the scope of these meetings to include the quantum
gravity and particle physics aspects as well� Traditionally the general relativity community and
the particle physics community have followed some what non overlapping developments� It would
be mutually bene�cial and healthier if both communities can interact more closely and share their
experiences and perceptions� It is here that IMSc had a signi�cant opportunity to play a role� Some
of my colleagues concurred with this perception and we decided to host the XVIII the Conference
of the IAGRG�

Just around the time we took the decision Prof� S� Chandrasekhar passed away� In view of the
phenomenal contributions of Chandra to General Relativity and Gravitation it was but natural to
dedicate this meeting to his memory� IMSc owes a special debt to Chandra as he played a crucial
role in the foundation and the early stages of development of this Institute� Indeed the birth of the
Institute of Mathematical Sciences was marked by the inaugural lecture by Prof� Chandrasekhar
on January � ���� in the lecture halls of Presidency College�

This IMSc report re�ects the envisaged expanded scope of the IAGRG meeting and I hope that
this trend will continue in the future IAGRG meetings as well� I also hope that these proceedings
will make the frontline developments accessible to a larger body of researchers in the country
particularly to those from the universities and colleges�

I may also take this opportunity to thank Drs G� Date and Bala Iyer for their e�orts as
Secretaries in the smooth conduct of the Conference and in putting together these proceedings�

R� Ramachandran
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PREFACE

This Institute of Mathematical Sciences Report contains the proceedings of the XVIII Con

ference of the Indian Association for General Relativity and Gravitation �IAGRG� held during
February ��
�� ����� The conference was attended by over �� participants from all over the
country about half of them being from universities and colleges� The topics range over classical
general relativity astrophysics gravity waves cosmology and quantum aspects of gravity� The
invited talks were intended to give an overview and current status of research in the respective
areas� In addition there were presentation of abstracts and theses which were collated in the form
of a booklet available to the participants at the time of conference�

The conference was dedicated to the late Prof� S� Chandrasekhar� Prof� N� Panchpakesan
kindly agreed to the di�cult task of summarising some of Chandra�s contributions to General
Relativity� Prof� H� Dalitz who was visiting the Institute of Mathematical Sciences at the time
of conference also kindly consented to speak on his personal encounters with Chandra� We are
thankful to both of them�

Prof� C�V� Vishveswara delivered the traditional Vaidya
Raychaudhuri endowment lecture�
We thank him for the very delightful talk� Prof� P�C� Vaidya as is usual made his presense felt
throughout the conference�

Since publication of the proceedings is usually a long drawn process we felt that we could bring
out the proceedings much faster as an Institute of Mathematical Sciences Report� In this computer
age with authors doing most of the document preparation e�ort it is relatively easy to put together
the proceedings� Thanks to the various e
print archives available these proceedings will also be
made available to a much wider set of researchers� We would like to thank the speakers for giving
their manuscripts in tex�latex formats which helped reduce the editorial work considerably�

It is a pleasure to acknowledge the encouragement and help we received at various stages�
We thank Prof� R� Ramachandran Director Institute of Mathematical Sciences and Prof� N�
Dadhich President of the IAGRG for their active encouragement and participation at all stages
of organisation� We thank Dr� Parthasarthi Majumdar who was a member of the Local organising
Committee in the beginning stages of the conference and who had pointed out that the conference
may be dedicated to Prof� S� Chandrasekhar� Thanks are due to the members of the Local
Organizing Committee and the members of the Scienti�c Organizing Committee� The editors
thought it would be of some interest to include some quotes on Chandra and by Chandra� Many
of the quotes by Chandra are from the wonderful biography �CHANDRA� by Kamesh Wali�

We acknowledge the e�cient assistance of Mr� Jayaraman Mr� Sankaran and their colleagues
from the administrative sta�� Mr� Sampath and his colleagues from the guest house sta�� the
library sta�� the computer network of IMSc and the volunteers from IMSc�

We thank G� Manjunath of Raman Research Institute for his patient help in the preparation
of these procedings for �nal publication� We also thank Dr� Dipankar Bhattacharya of RRI for
advise and assistance in resolving vexatious LaTEX�nical and Post
Script problems�

We thank the speakers and participants for their active participation� Last but not the least we
thank the Department of Science and Technology Govt� of India  the U�G�C and the Inter Uni

versity Center for Astronomy and Astrophysics Pune and the Institute of Mathematical Sciences
Madras for the �nancial support�

G� Date
B� R� Iyer



I practice style in a very deliberate way� I acquired my style from not only just reading�
for instance� the essays of T�S�Eliot� Virginia Woolf� and Henry James� but also by paying
attention to how they write�how they construct sentences and divide them into paragraphs�
Do they make them short or long� For example� the idea of just using one sentence for a
paragraph� or of a concluding sentence without subject or object� just a few words � � � �so it
is� � � � or some small phrase like that� I deliberately follow such devices� In fact there is one
technique I started following when I was writing my book �Radiative Transfer�� and I have
followed it since� that is� as you know� in music you repeat periodically the same phrase
in exactly the same form� Very often in my books� when I have a key idea� and I have to
restate it at a later stage� I don�t leave it to chance� I go back and copy exactly what I had
written before�

� S� CHANDRASEKHAR



SEEING BEAUTY

IN THE SIMPLE AND THE COMPLEX �

CHANDRASEKHAR AND GENERAL RELATIVITY

N�Panchapakesan�

Department of Physics and Astrophysics
University of Delhi
Delhi ��� ���

Abstract

Some aspects of S�Chandrasekhar�s contribution to General Relativity are reviewed� These
cover the areas of post�Newtonian approximation and its application to radiation reaction�
black hole theory� colliding gravitational waves and non�radial oscillations of a star� Some
examples of his perception of beauty in these areas are given� as also the way symmetries seem
to speak to him like to no one else� His attempt to �nd counterparts to space components of
the metric in Newtonian theory in the context of non�radial oscillations is also presented�

�e�mail� panchu�ducos�ernet�in



Sometimes in the course of human interests things happen that truly lift the spirit� For
me your winning the Nobel Prize is such an occasion�

I have always regarded my relationship with you as one of special inspiration for me�
Your kindness� graciousness� absolutely uncompromising dedication to science� culture and
integrity have really had a profound impact on me�

Every now and then the Nobel Committee does something truly great� This is one of
those times� I cannot adequately express how happy I am for you and this is a feeling shared
by all those who have been privileged to know you�

� MURPH GOLDBERGER�

His development is motivated by deep insight into the forms and symmetries of the
di�erential equations with which he struggles� The equations speak to him in a tongue
they speak to no one else leading him inexorably forward to new results� This is particularly
so when the mathematics becomes horrendously complex as in the development of the 	PN
approximation to general relativity and the analysis of pulsations of Kerr black holes�
In Mathematical Theory of Black Holes 
MTBH� he concentrates on the last idea and the
last word� He cleans up and completes in a thorough manner the body of incomplete theory
that his younger colleagues left behind� And he does it without entering into controversy
with them at least not on the surface� However� if one knows something of the literature
and reads beneath the surface one sees Chandrasekhar riding smoothshod over the works
of his younger colleagues smoothshod on an elegant steed with velvet covered hooves�
�Other insights tied up in incomplete nonChandrasekhar versions of black hole mathemat
ics may be lost to researchers��Chandrasekhar�s method has been canonised and in ten or
twenty years Chandra may truely have the last word��In return for losing other viewpoints we
get from Chandrasekhar�s book a monumental and almost complete body of mathematical
theory presented in a totally coherent and aesthetically pleasing way� We are struck by
the splendour of the theory� by the intricacies of its interconnections� by the mysterious
amenability of black holes to totally analytical analysis�
One of those exceedingly rare books that will have a useful lifetime of �fty years� A book
�lled with new approaches to old subjects� old approaches to new subjects� completes un�n
ished researches of other physicists and maddeningly for the �rst time in Chandra�a career
leaves un�nished his researches� It is �lled with nuggets of mathematical insight�

� KIP THORNE



� Introduction

Subrahmanyan Chandrasekhar started his work in General Relativity in the early ����s� He
was then past �� years of age� In retrospect it seems historically inevitable that he should have
moved over into the study of general relativity especially relativistic astrophysics� Discussing the
maximum mass of white dwarfs that he had discovered in ���� Chandrasekhar had said in ����
�A star of large mass can not pass into the white dwarf stage and one is left speculating on other
possibilities�� These other possibilities it turned out later were collapse to a neutron star or to
a black hole� These were discussed by Oppenheimer and Volkov and Oppenheimer and Snyder
in ����� Chandrasekhar�s studies of these possibilities neutron stars and black holes thus seem a
natural culmination of the ideas that led to the Chandrasekhar limit� But the way he entered the
subject was unique and bears his own distinctive stamp�

In ���� came his �rst major discovery in this area� He showed that general relativistic gravity
creates a radial instability to gravitational collapse in stars with adiabatic index a little larger than
���� For the next twenty years he was one of the leaders in the �eld of relativistic astrophysics
research� Research in this area according to Kip Thorne ��� focussed on the structure pulsa

tions and stability of stars star clusters and black holes the gravitational collapse to form black
holes and the generation of gravitational waves and the back reaction of waves on their sources�
Chandrasekhar contributed to all these �elds except star clusters and gravitational collapse�

The methods of research used for these studies are� Global Methods �Di�erential Topology�
Discovery and Study of Exact Solutions �like Kerr metric� Perturbations of Exact Solutions and
Post 
 Newtonian approximation� Chandrasekhar was a major �gure in the study of perturbations
and created the post
 Newtonian approximation and was its master�

The major areas of his interest during the last �� years of his life can be roughly chronologically
listed�

�� ���� 
����� Post Newtonian Approximation and its applications to general relativistic insta

bility radiation reaction and radiation reaction induced instability�

�a� ����
��	�� Black Hole theory perturbation and stability separation of variables trans

formation theory re�ection and transmission of waves�

�b� ��	�
����� Colliding gravitational waves relation to Kerr metric�

�� ���� 
 ����� Non 
 radial oscillations of neutron stars�

�� ����
����� Newton�s Principia �outside the scope of the present lecture�

� Post Newtonian Approximation

We �rst present the general relativistic instability discovered by Chandrasekhar using post 
 Newto

nian approximation and then go on to present the general formalism of the approximation scheme�

In Newtonian theory the total energy of a star �sum of kinetic and potential energy� as a
function of central density is given by

E � aKM�c
��� � bGM�������c

where M is the mass of the star �c is the central density and � is the adiabatic index� a and b are
constants� Setting

dE

d�c
� ��

keeping M constant we �nd

M � �
��� �

�
� �
�

c

dM

d�c
� ��� �����

�



So � � ��� implies stabiliy�
In the case of general relativity we �nd the extra energy is given by �using post
Newtonian

approximation�
�EGTR � ����M�������c �

This leads to

� � ��� � k
GM

Rc�

�c � ��� ��
���

�c
�
�
�
g�cc

where R is the radius of the star�
In many cases before this density is reached the constituents become neutrons� If the critical

density �c given above is smaller than the density at which neutronisation takes place then general
relativity decides the density limit for stability�

Chandrasekhar was led to this discovery after his mathematical analysis based on post
Newtonian
approximation� A physical insight following a mathematical analysis � Let us compare this with
the way Feynman and Fowler came to the same conclusion at Caltech around the same time�

Fowler was giving a seminar at Caltech and Feynman was in the audience� When supermassive
stars were mentioned Feynman seems to have remarked that there may be an instability as gravity
is stronger �in general relativity� and so collapse must be easier� Fowler calculated the e�ect and
discovered the instability� Physical insight followed by mathematical con�rmation� Did Chandra
have no physical insight before calculating� I think there is some oversimpli�cation here� Without
insight one can not have the will or patience to do such complicated calculations� It was probably
the desire for veri�cation before announcement that played a role in Chandra�s case�

��� Formalism� Conservation laws in Newtonian hydrodynamics ���

The Energy
Momentum tensor is de�ned as

T �� � �c�� T �� � �cv�

T�� � �v�v� � p���

where �� � � �� �� �� and i� j � �� �� �� ��

T ij �j � d

dxj
T ij � ��

The momentum

pi �

Z
V

T �i dx � constant

So is the angular momentum

L� � 	���

Z
V

�x�v�dx � constant

If we assume preservation of entropy by every �uid element we get another Energy integral�
Change in thermodynamic energy � � per unit mass is equal to work done by the pressure in
changing volume

d 

dt
� �p d

dt
�����

Then

E �

Z
V

��
�

�
v� � � dx � constant�

�



So far no external forces not even its own gravitation is included�
When we include gravitation if U is the gravitational potential given by distribution of � then

r�U � ��
G�
and

T�j �j �� �U
�x�

� ��

Using the symmetric tensor de�ned by

t�� � �� t�� � �� t�� �
�

��
G
��
�U

�x�

�U

�x�
� ����� �U

�x�
�
�

�

and letting !ij � T ij � tij we can write

!ij �j � �

which again leads to conservation laws� We also have

E �

Z
V

��
�

�
v� � � �

�
U�dx � constant

��� General Relativity

In General Relativity the physical character of the system is completely speci�ed by choice of T ij �
For a perfect �uid

T ij � ��c� � �
p

�
�uiuj � pgij

where ui � dxi

ds � Note that the metric is yet unspeci�ed�
When T ij is inserted in the �eld equation viz�

Gij � Rij � �

�
Rgij � �	
G

c	
T ij

we do not have the choices we had in Newtonian Theory� T ij

j � � necessarily includes the e�ect

of gravitational �eld on �uid motions� The covariant derivative has in addition to the ordinary
derivative the e�ect of gravitational �elds included in it� In Newtonian limit the additional term
is the same as that encountered earlier that is �� �U

�x�
�

As T ij has no dissipative mechanism the �ow must preserve its entropy� We have

��uj�
j�c
� � �

p

�
� � �uj � �j �p�

�

�
��j � � ��

So conservation of mass ��uj�
j � � is compatible with the equation of motion only if

uj � �j �p�
�

�
��j � � �

which is the requirement that motion is isentropic� Thus in general relativity conservation of mass
and conservation of entropy are not independent�

To get a conservation law we need !ik�k � �� where we have an ordinary derivative� For this
we have to add a �pseudo
tensor� tik to the energy
 momentum tensor T ik and tik is symmetric but
not a tensor� De�ning the �Energy
Momentum� complex !ik � ��g��T ik � tik� we have !ik�k� ��
This leads to the conservation law

E �

Z
V

�!�� � c��u�
p�g�dx � constant

�



��� Basic Problem

In Newtonian framework given a well de�ned physical system � such as n 
 mass points under their
mutual gravitational attraction or a mass of perfect �uid subject to internal stresses and its own
gravitation� we can write down a set of equations of motion which govern all possible motions that
can occur in the system�

The question arises � Can we write a similar set of equations in the framework of general
relativity � Chandrasekhar�s response is � It appears that in general we can not do so� We are
then led to a more modest inquiry � Can we write down an explicit set of equations of motion
which govern departures from Newtonian motion due to e�ects of general relativity in a well de�ned
scheme of successive post
 Newtonian approximations� Further can we specify conserved quantities
which are generalisations of the corresponding Newtonian quantities and which are constants of
the post
Newtonian equations of motion �

Around ���	 Einstein Infeld and Ho�man �EIH� did pioneering investigations on the n
body
problem� They wrote down the Lagrangian which di�ers from the Newtonian Lagrangian by

terms of the � v�

c� �
U
c� and comparable ones� The formalism gives the Keplarian orbit of two

�nite mass points about one another� However extensions to higher orders has not been possible�
Chandrasekhar preferred the use of perfect �uid instead of mass points� He writes "mass points are
not concepts that are strictly consistent with the spirit of general relativity� Hermann Bondi says
�General Relativity is a peculiarly complete theory and may not give sensible solutions for situations
too far removed from what is physically reasonable�#� Thus is Einstein suitably admonished �
According to Chandrasekhar �the concept of perfect �uid does not su�er from such limitations�
In any event we con�ne ourselves to relativistic hydrodynamics of a perfect �uid��

One starts with

T ij � ��c� � �
p

�
�uiuj � pgij

and the equation for conservation of rest mass c���ui
p�g��i� �� The �eld equation

Gij � �	
G
c	

T ij

completes the set of equations�
The basic question is how is the �eld equation to be solved for gij so that the equation T ij


j � �
when written out explicitly will provide the equation of motion as a power series in a suitable
parameter�

��� Scheme of Approximation

First we identify the small parameters� The physical quantities of interest are the kinetic energy
K�E� � �

��v
�� the potential energy P�E� � � �

��U� internal energy � � and energy of molecular

motion � p
� � The rest mass � �c� dominates over all these quantities� So v�

c� �
U
c� �

�
c� and

p
�c� are the

small parameters in what is usually called �slow motion approximation��
Secondly Equivalence principle in its weak form implies the following relation between rate of

clock and gravitational potential�

g�� � �� �U

c�
�O�c	�

So for Newtonian theory g�� � �� �U
c� � g�� � �� g�� � ����� These two considerations su�ce

to develop an entirely consistent scheme of successive post Newtonian approximation�
The �rst post
Newtonian is of order O�c���� the second is of order O�c�	�� These are orders of

the equation of motion� For a given order of the equation of motion the di�erent gijs have to be
known to di�erent orders� If T�� � �c� �O��� then ��� �� component of Rij � � ��G

c� �Tij � �
�Tgij�

combined with g�� � �� �U
c� �O�c�	� reduces to Poisson�s equation

r�U � ��
G�

�



con�rming that Newtonian equations are indeed �zero order� solutions to Einstein�s �eld equations�
To get to the �rst post
Newtonian approximation we proceed farther to the ��� �� component of

the �eld equation �with a suitable coordinate condition� and �nd g�� � ������ � �U
c� �� Curvature

of space implied by this is what is at the base of de�ection of light by a gravitational �eld in general
relativity� We next modify T ij � We take

T �� � �c��� �
�

c�
�v� � �U � �� �O�c���

T �� � ���������������� �O�c���

T�� � ���������������O�c�	��

Used in the �eld equation they give

g�� � �� �U

c�
�
�

c	
�U� � ���

g�� �
P�
c�

We can then write T ij

j � � to order O�c

��� giving �rst order post Newtonian approximation�
The post
 Newtonian series is even� The non trivial odd step is required in the imposition of

the outgoing wave boundary condition� As �
�r and

�
c�t are in di�erent orders this is not possible�

We are restricted to the near zone �r� ct�� The way to match in the far zone was given by Trautman
in ���	 who unfortunately used wrongly T ij instead of !ij for the Newtonian expression� When
Chandra corrected this it gives the right result� Chandrasekhar and Esposito ��� found that T�j


j

gives �in ��� post
Newtonian�


d

dt

Z
E���dx �� � G

��c�
 �

d�D��

dt�
�� �

in exact agreement with rate of emission of gravitational radiation predicted by linear theory� Here
D�� � �I�� � ���I		 is the quadrupole moment of the system�

It took �� years �till mid ��	�� for this result to be accepted by the scienti�c community ����
There was controversy over handling of some divergent integrals and over the method of imposing
the out going wave boundary condition�One should not be too far ahead of one�s time perhaps�
Infeld who was a collaborator of Einstein and Ho�man in the pioneering work mentioned earlier has
written a book called �Quest�� He discusses in that book the excitement and disappointment felt by
them when they were trying to decide whether gravitational radiation is theoretically predicted in
general relativity� Chandra�s result �nally showed the consistency of the formalism of gravitational
radiation and provided for its theoretical acceptance� However it should be mentioned that work
by Bondi and his collaborators in the ����s had also convinced the community of the consistency
of gravitational radiation though not in such a transparent manner�

The discussion of the radiation reaction led to the discovery of �Radiation Reaction Induced
Instability� in ����� In the years from ���� to ���	 Chandra was working on an area which seemed
archaic to many of us then at Chicago� These were presented in a prestigious lecture series at
Yale in ���	 and was published in a book form under the title �Ellipsoidal �gures of equilibrium�����
Chandra talks about the Maclaurin spheroid the Jacobi ellipsoid and the Dedekind ellipsoid and
how a rotating star can pass through these phases and meet bifurcation points when one form
separates from the other� All these archaic concepts suddenly became very important in the context
of the stability of rotating stars especially in the case of neutron stars which were discovered as
pulsars in the year ���	� When dissipation is included Chandrasekhar�s study in ���� revealed
the existence of an instability caused by radiation reaction due to emission of large amount of
radiation� This has been con�rmed in later studies�

�



� Black Holes

Beginning in ���� the study of black holes occupied Chandrasekhar for the next ten to �fteen years�
Mathematical Theory of Black Holes ��� was published in ��	�� The analysis of stability was one
of the main considerations in the study� One perturbed a system and then studied whether the
perturbation was damped returning the system to its original con�guration or the perturbation
tended to grow� To do this separation of variables was one of the important considerations�

The black hole metric has the well known form

ds� � ��� �M

r
�dt� � ��� �M

r
�
��
dr� � r��d�� � sin��d����

When perturbed the general form is

ds� � exp�
dt� � exp���d� � �dt� q�dx
� � q�dx

��
� � exp����dx��� � exp���dx���

For the black hole � � q� � q� � �� When perturbed we have the parameters �� q�� q�� ��� ����
��� and ��� These are metric perturbations�

We can also use Newman
 Penrose formalism and have perturbations of the scalars of Weyl
tensors $��$��$��$��$	�

Chandra exploited both methods� He introduced transformation theory� This involves putting
the equation for perturbation in the form

d�Z

dr��
� ��Z � V Z

This equation like Schrodinger equation in a barrier potential can be solved easily numerically�
Chandra studied scattering matrix and its unitarity to discuss why di�erent potentials give the
same results� He also discussed how complex potentials give conservative scattering�

Chandrasekhar considered in detail the stability of the black hole a problem �rst studied by
Vishveshwara in ���� �twenty�ve years ago�� Chandra considered various types of black holes�
Schwarzchild charactrised by the parameter M �mass�
Reissner
Nordstrom by parameters M�mass� and Q�charge�
Kerr by M �mass� and J �angular momentum�
Kerr 
 Newman by M �mass� Q �charge� and J �angular momentum�

Separability of the variables like r� � and � is crucial in all these discussions� Chandra�s facility
in these methods is well known� Over one weekend at Princeton he separated the variables of the
spin �

� particle equation in Kerr metric�
The extensive and powerful mathematical analysis applied to this problem in the usual Chan


drasekhar way brings us again to Kip Thorne�s remarks ���� �Insight into physical origin comes
after the mathematical analysis was complete�� He also goes on to remark �It may be tempting to
deprecate Chandra�s more mathematical ways were he not so spectacularly successful�� Thorne
continues �The symmetries of the equation speak to him in a manner that they speak to nobody
else I know leading him inexorably forward toward interesting results��
We would like to present an example of his sensitiveness to such symmetries� While discussing

Schwarzschild black holes Chandra had to work in a gauge which he called phantom gauge��Chap�
� sec �� of ����� We have the following equations in which the operators Ln� Ln

� D�� D�
 operate

on %��%�� k� s �equation numbers are those in the book��

L�%� � �D� �
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A choice of gauge can be made which brings to equations above a symmetry which they lack�
In these equations the symmetry of these equations in %�� k and s is only partially present in
%�� k and s� Equation ����� is for example the right equation which allows us to obtain a
decoupled equation for %� after the elimination of %� between equations ����� and ���	�� But
a similar elimination of %� does not lead to a decoupled equation for %� since we do not have a
�right� fourth equation� However exercising the freedom we have to subject the tetrad frame to
an in�nitesimal rotation we can rectify the situation by supplying �ad hoc�� the needed fourth
equation� Thus with the additional equation

��D�
 � �

r
�k � L�s �

�

r
%�

we can eliminate %��
Chandra adds �we shall �nd �chapter � sec ��� that the function %� de�ned in this way

describe Maxwell�s �eld in Schwarzschild geometry�� Thus we have derived Maxwell�s equations
�appropriate for photons with spin ��� by �nding a gauge which recti�es the truncated symmetry
of equations ����� 
 ����� in the quantities which occur in them�

To give an example where the absence of such symmetry leads to di�culties we consider the
equations in Kerr
 Newman metric which de�ed even Chandra in his attempts at separating the
variables�The equations there are
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Chandrasekhar remarks �In contrast to the simplicity of terms in the earlier case on the right

hand side we now have the ugly combination of �M � Q�
�

� � and
Q�

���

��
� A separation of variables

will be possible if at all only by contemplating equations of order � or higher�� That is symmetry
speaking to Chandra� No wonder Kip Thorne said while reviewing Chandra�s book on Mathemat

ical Theory of Black holes that no student at Caltech wanted to take up the problem of separating
the variables of Kerr
 Newman metric after Chandra�s failure to separate them�

Chandrasekhar�s presentation of beauty in these complicated expressions and equations was
the reason behind the title of this talk �Seeing beauty in the simple and the complex� The following
quotation may amplify this point�

�The treatment of perturbations of Kerr spacetime has been prolixious in its complexity�
Perhaps� at a later time� the complexity will be unravelled by deeper insights� But meantime
the analysis has led into a realm of the rococo� splendorous� joyful and immensely ornate��

I looked up the meaning of rococo in the dictionary� it says ornamental� a bit perhaps like
the doors and the dieties at the entrances and walls in South Indian temples �like say the one at
Kancheepuram�� The simple may probably be compared to the lotus shaped Bahai temple at
New Delhi� If one is attuned there is beauty to be seen in both cases�

In his treatment of colliding gravitational waves whose metric is closely related to the stationary
Kerr metric Chandra pushed these ideas even further �went really overboard ��� He compares the
beauty seen in these formulations to the beauty in the series of paintings of Claude Monet� Monet
has painted the same subject or scene as seen at di�erent times of the day or in di�erent seasons�
Chandra compares this to the di�erent viewpoints of the same metric which manifests itself as
Kerr metric or colliding gravitational waves�

� Non Radial Oscillations

The work on this subject done by Chandrasekhar in ���� �he was more than 	� years old then�
with Valeria Ferrari applies the various techniques perfected by Chandra to neutron stars� The
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surprising results they obtained according to Chandra should have counterparts in the Newtonian
theory too� Quotations from his paper may be of interest�

First about the work� � We develop ab initio a complete uni�ed version of the theory of non

radial oscillations of a spherical distribution of matter � a star�� that provides not only a di�erent
physical base for the origin and nature of these oscillations but also simpler algorithms���� for
numerical evaluations of quasi normal modes �l � � � and the real frequencies of dipole oscillations
�l � � ���

The mode is found by calculating the scattering cross section of a gravitational wave as a
function of energy and locating the peak �resonance�� A process which is familiar to particle
physicists� However Chandra �nds a source of puzzlement and possibly a new insight at a deeper
level� We again quote�

�On the relativistic theory� the frequencies of oscillations of the non radial modes 
as we
have shown� depend only on the distribution of the energydensity and the pressure in the
static con�guration and the equation of state only to the extent of its adiabatic exponent� If
this is a true representation of the physical situation� then it must be valid in the Newtonian
theory as well� the true nature of an object can not change with the mode and manner of
one�s perception� In the relativistic picture� the independence of the frequencies of the non
radial oscillations of a star� on anything except its characterization in terms of its equilibrium
structure� is to be understood in terms of the scattering of incident gravitational waves by
the curvature of the static space time and its matter content acting as a potential� But
what are the counterparts of these same concepts in the Newtonian framework � Perhaps
they lie concealed in the meanings that are to be attached� in the Newtonian theory� to
the four metric functions 
 and their perturbations� that describe a spherically symmetric
spacetime 
 and their polar perturbations�� It is known that the Newtonian gravitational
potential� in some sense� replaces the metric function gtt� Are there similar meanings to
be attached to grr� g�� and g � That is the predominant question to which the present
investigation seems to lead��

To sum up to use Chandra�s own words� �One is left speculating��
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� Beginning of the trail

It is a joy to give this talk as a tribute to Professors Vaidya and Raichaudhuri the two father
�gures
of general relativity in India� If my talk is rather autobiographical in nature the responsibility
rests with Naresh Dadhich and Bala Iyer respectively the President and the Secretary of the Indian
Association for General Relativity and Gravitation who persuaded me to make it so�

My personal journey along the black hole trail started in the sixties when I was a graduate
student of Charles Misner at the University of Maryland� Also that was when I �rst came to know
about Vaidya and Raichaudhuri� Leepo Cheng was doing her master�s thesis with Misner on the
Vaidya metric� She was appalled by my ignorance when I told her that I did not know who Vaidya
was� Later on we were told that Raichaudhuri was coming as a Visiting Professor� Again my
colleagues were suitably impressed by my ignorance when I confessed that I did not know who this
Raichaudhuri was either� I went on not only to take a course on cosmology from him but also to
pass it with a little bit of honest cheating� Never did I dream that some day I would be delivering
a lecture in honour of these two gentlemen�

Let me come back to black holes� That is not what they were called at that time� Schwarzschild
singularity which is a misnomer� Schwarzschild surface which is better� The term �Black Hole�
was to be coined later on by John Wheeler� Perhaps it was because of its intriguing name that
so many people were enticed into working on the physics of the black hole� This is known as the
Schicklgruber E�ect� Scholars have speculated on how human history might have been di�erent
if Mr� Schicklgruber had not changed his name� But he did change his name to Hitler� Misner
proposed the following problem for my Ph�D� thesis� Take two of these entities that are now
called black holes� Revolving around each other they come closer as energy is radiated away
in the form of gravitational waves� They coalesce into an ellipsoidal �Schwarzschild surface� still
rotating and radiating� Study the whole process computing all the characteristics of the emitted
gravitational radiation� Fine I said thy will be done� At the time I did not realize the magnitude
of this problem� Had I pursued it I might have entered the Guinness book of records as the oldest
graduate student alive that too without �nancial support� Anyway this proposed problem required
the understanding of two aspects of black holes� the geometrical structure of a black hole and the
perturbations of its spacetime�

� Geometry of black holes

Those were the early days when very little was known about black holes� Wheeler was going
around giving his talk "Gravitational Collapse� To what�# with missionary zeal� There was some
vague notion of the metric component g�� of static spacetimes tending to zero on some surface�
I distinctly remember the cold morning when on the way to grab a sandwich at the little store
run by the school of dairy research Misner suggested that I look into this shady business� Fine
I said thy will be done� There were false starts� I had this excruciating experience of translating
to myself a lengthy paper in German by Ehlers and Sachs 
 or was it Ehlers Kundt and Sachs
I forget 
 on ray optics and optical scalars in the hope that it would throw some light on the
matter� It did not� Nevertheless it was the article by Ehlers and Kundt in "Gravitation � An
Introduction to Current Research# edited by Louis Witten��� that gave the clue to the secret of
the black hole structure� The covariant approach to the unravelling of the black hole geometry was
via the spacetime symmetries or Killing vector �elds� This way the fundamental properties of both
Schwarzschild and Kerr black holes could be analysed compared and contrasted� For instance
given a Killing vector �eld � one could derive the equation���

nana �
�

�

�
�a�a��b
c�

b
c� � �r�r
�

���

where �a is the vorticity of the Killing congruence and na is the normal to surfaces of constant
Killing norm ie�

��



& � �a�a � constant� ���

This shows that the surface on which �a becomes null ��a�a � �� is itself a null surface
equivalently a one
way membrane or an event horizon �nana � �� provided the vorticity also
became null on the surface� This happens to be true for the global timelike Killing vector �a in the
Schwarzschild metric which is rotation free� In the case of Kerr spacetime this is achieved for a
suitable combination of the global timelike Killing vector �a and the rotational Killing vector �a�
Consequently the Schwarzschild black hole is both a one
way membrane and a static limit whereas
in the Kerr spacetime these two surfaces are distinct thereby possessing the ergosphere between
them� And this is where interesting phenomena like the Penrose process and the consequent energy
extraction can occur�

Although the global timelike Killing vector �eld �a of the Kerr spacetime possesses non
zero
vorticity or rotation Kerr spacetime admits an irrotational vector �eld

�a � �a � ��b�b�

��c�c�
�a ���

which is timelike down to the black hole� This vector �eld de�nes the Locally Non
Rotating
Frames LNRF ��� or the Zero Angular Momentum Observers ZAMO���� But this vector �eld
exhibits much more interesting properties� These were investigated by Richard Greene Englelbert
Sch'ucking and myself ��� around ����� I had by then joined Sch'ucking at New York University after
a stint at the Institute for Space Studies of NASA in New York and a short period of unemployment�
Perhaps it was too much to expect that black holes would be a source of income since they were
not sources of anything in the �rst place� To continue we were able to generalize the irrotational
vector �eld to arbitrary stationary axisymmetric spacetimes with orthogonal transitivity� It was
shown to be globally hypersurface orthogonal normal to t � constant surfaces� These are maximal
surfaces� The vector �eld could become null on an event horizon� Some features of this study
such as the physical interpretation of the mathematical conditions necessary for these properties
are still open problems� Incidentally B R Iyer and I ��� have recently renamed LNRF or ZAMO
as GHOST 
 Globally Hypersurface Orthogonal Stationary Trajectories�

The geometry of Killing trajectories i�e� the integral curves of Killing vector �elds that plays
such a basic role in elucidating the black hole structure sneaked into our investigations in an
indirect manner� Eli Honig was studying the motion of charged particles in homogeneous electro

magnetic �elds using the Frenet 
 Serret �FS� formalism ���� This formalism o�ers a geometric
description of an arbitrary curve characterizing it by certain scalars and an orthonormal frame of
reference at each point� In three dimensions these scalars are � the curvature and �� the torsion� In
four dimensional general relativity we have an additional torsion ��� Furthermore the derivatives
are with respect to proper time and as a consequence � turns out to be the magnitude of four

acceleration� Similarly the precession rate of a gyroscope carried along the curve has components
�� and �� with respect to two members of the Frenet
 Serret tetrad at each point of the curve� Now
the worldlines of charges moving in a constant electromagnetic �eld Fab bear striking resemblance
to Killing trajectories� In both cases each member of the FS tetrad satis�es the Lorentz equation�
For Killing trajectories

Fab � e���a
b� ���

where the normalization factor e� � ��a�a�
� �

� � In both cases one can show �� �� and �� are
constants along the worldline and

�� � ��� � ��� �
�

�
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ab ���

In the case of Killing trajectories �� and �� turn out be the components of vorticity� Fur

ther acceleration is given by na the gradient of equipotentials �

a�a � constant so that �� is
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proportional to nana� With these substitutions equation ��� reduces to equation ���� So we have
indirectly rederived the original black hole equation�

We shall return later to gyroscopic precession which we have mentioned here in passing�

� Stability of the Schwarzschild black hole

The ultimate problem for my Ph�D� thesis as mentioned earlier was supposed to be the coales

cence of two black holes� In order atleast to make a beginning on this problem I had to study
perturbations superposed on the Schwarzschild spacetime as the background� The canonical paper
in this area was ofcourse the one by Regge and Wheeler�	�� To me this was a completely unknown
territory� I remembered vaguely a remark in Wheeler�s book "Geometro
 dynamics# ��� to the
e�ect that the stability of the Schwarzschild spacetime was a problem far from having been solved
satisfactorily� In fact it was this book totally incomprehensible to me when I was a �rst year
graduate student in Columbia University and hence highly intriguing that had drawn me towards
general relativity� Another student of Misner Lester Edelstein and I rederived the perturbation
equations and published them ���� since these equations as they appeared in the paper by Regge
and Wheeler as well as at other places contained errors� Lester was the �rst one to work out the
radiation emitted by a particle falling into a black hole� He could not track down a factor of two
that was missing when he compared his formula with the one of Landau and Lifshitz in the weak
�eld limit� Unfortunately as a result he never completed his thesis and eventually switched from
general relativity to actuaries�It was around this time that S� Chandrasekhar visited Maryland� It
was a big event� Wheeler and his group that included Uri Gerlach Bob Geroch and Kip Thorne
drove down from Princeton� Chandra was getting interested in general relativity and in particular
black hole perturbations� We gave him our newly derived yet unpublished equations� I had met
Chandra a couple of years earlier at the Boulder Summer School in Colarado when I was aspiring to
be a particle physicist in Columbia University� Other participating Indian students and I discussed
with him our research as well as a bit of Indian science� In later years I was to have the great
privilege of having many discussions with Chandra on black hole physics which became his chosen
territory and Indian science in which he was keenly interested�

Stability analysis as Ed Salpeter once put it consists in �nding out whether a system breaks
apart if an ant sneezed in its vicinity� In the case of the black hole the ant�s sneeze is represented
by metric perturbation which is a product of Fourier time mode exp �i�t� angular function which
is a suitable tensor spherical harmonic and a radial function� Assuming the radial function to be
well behaved one had to show that imaginary frequencies that would make the perturbations grow
exponentially in time were not admitted� Good behaviour had to be tested in reference to Kruskal
coordinates that are singularity free at the black hole� Moreover the radial functions corresponding
to real frequencies had to be shown to form a complete set so that wave packets could be built
that did not blow up in time� All this could be done for odd parity perturbations for which the
radial function was governed by a Schr'odinger type equation with an equivalent potential� Frank
Zerilli���� would later derive a similar equation in the case of even parity perturbations� But at the
time the even parity equation was a mess with frequency appearing all over the place� Stability
analysis did not seem to go through� I was stuck hopelessly stuck� Misner who was going away
to Cambridge for a year suggested that I �nd a few simple solvable problems and string them
together into a thesis� My heart jumped into my mouth and my other organs rearranged themselves
accordingly� I decided to devote another two weeks to the problem 
 body mind and soul 
 and
then quit if I did not make any progress� Those were the days when Joe Weber was setting up his
gravitational wave detector� Weber and his group were observing a rather peculiar phenomenon�
Regularly around midnight the detector would record a sharp beautiful peak� And then again
another peak after an interval of a few minutes� Joe Sinsky a graduate student stayed on in the
laboratory one night to investigate this puzzling phenomenon� Around midnight the door opened
a security guard came in and banged the door shut 
 the �rst peak� After making sure everything
was secure in the laboratory he went out banging the door shut again 
 the second peak� Probably
it was the same security guard who used to visit me around one in the morning� My working
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hours used to be from nine in the night to two in the morning� He would remove his shoes and his
belt heavy with holstered gun put up his feet on the desk and rest for a while� He would tell me
what was going on in the world including the parking lot appreciate my working hard all alone
through the night sympathise with my non
existent wife waiting for me and then move on� On the
eighth day from my decision to give stability a last try my friend found me in a state of absolute
euphoria� I had solved the problem� It had taken quite a bit of complicated analysis of the messy
equation� Misner did not believe at �rst that the stability problem had been solved� But after
being convinced he pronounced that my thesis was in the bag���� and went away to Cambridge�
And Ion my part goofed o� for one whole year�

Apart from establishing the stability of the Schwarzschild black holes ���� the perturbation
analysis had shown that the spacetime did not admit static perturbations that were regular at
both the black hole and in�nity� This was an indication that distorted static black holes could
not exist in isolation� Nevertheless it was startling to learn that Werner Israel had discovered the
uniqueness of the Schwarzschild black hole ����� There would be no potato shaped black holes for
instance� Nature had been robbed of her in�nite variety� On the other hand this clearly exhibited
nature�s simplicity� A static black hole could have only the shape of a sphere 
 the most perfect
�gure� After all the philosopher Xenophanes as early as in the sixth century B�C� had declared
that even God being perfect had to be spherical in shape�

� Quasinormal modes

Halfway through the defense of my Ph�D� thesis the examiner from the mathematics department
asked the question probably in a rhetorical vein why one should bother to prove the stability
of an object that was impossible to observe and was of doubtful existence in the �rst place� My
thesis advisor did not like the question in the least especially coming from a mathematician� The
rest of the examination ended up as a verbal battle between the two which I watched with great
satisfaction� But the question remained� how do you observe a solitary black hole� To me the
answer seemed obvious� It had to be through scattering of radiation provided the black hole left its
�nger print on the scattered wave� I remembered from my �rst
year graduate course in quantum
mechanics how the re�ection coe�cient displayed maxima and minima in a wave scattered from
a square barrier� In the case of the black hole also the scattering was from a barrier although
of a di�erent shape� So I thought I might discover maxima in re�ection coe�cient characteristic
of the black hole� In order to carry out this calculation you needed a computer since the radial
equation had to be numerically integrated� The days of the PCs were far in the future� I was
working at the Institute for Space Studies in New York where we did enjoy some luxuries�One
of them was chilled beer that was sold at a quarter a can during seminars� So much so the
listeners soaked up more alcohol than astrophysics� The other luxury was computer time which
was quite dear and scarce at other places� In addition we had the help of a numerical analyst
and a computer programmer� The re�ection coe�cient did show maxima albeit extremely faint� I
became highly excited� But when the range of integration was increased the maxima shifted to
some other frequency region� After quite a bit of computer experimentation I decided that these
were spurious maxima produced by the abrupt cut o� of the e�ective potential� My conjecture was
that a completely smooth potential would not give rise to maxima in the scattering cross section�
I consulted Regge and Wheeler when I gave a talk at Princeton in ���� with the alliterative title
�Schwarzschild Surface as a Stable Scattering Centre�� It was just before my seminar that I heard
for the �rst time the term �black hole� newly coined by Wheeler which he illustrated with a picture
of automobile junkyard he drew on the black board� Regge and Wheeler both agreed that there
was no theorem connecting the smoothness of the potential to the non
existence of maxima in the
scattering cross section� I still do not know the answer�

Although the scattering of monochromatic waves did not show obvious characteristics of the
black hole I felt that scattering of wave packets might reveal the imprint of the black hole� So I
started pelting the black hole with Gausian wave packets� If the wave packet was spatially wide
the scattered one was a�ected very little� It was like a big wave washing over a small pebble� But
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when the Gaussian became sharper maxima and minima started emerging �nally levelling o� to
a set pattern when the width of the Gaussian became comparable to or less than the size of the
black hole� The �nal outcome was a very characteristic decaying mode to be christened later as
the quasinormal mode� The whole experiment was extraordinarily exciting�

By the time the above work was published in Nature ���� I had moved to New York Univer

sity� Chandra made a visit and gave a talk on ellipsoidal �gures of rotating �uids� He was very
much interested in my work on scattering and in the phenomenon of decaying modes�Later on he
was to compute the quasinormal mode frequencies with Detweiler����� Many calculations in this
direction would follow �nally culminating in the accurate determination of the frequencies by Nils
Andersson�����

Quasinormal modes are generated in astrophysical scenarios such as gravitational collapse and
coalescence of black holes� Ed Seidel has shown how well the fundamental mode matches the out

coming wave during the coalescence of binary black holes��	�� Recently Aguirregabiria and I have
studied the sensitivity of the quasinormal modes to the scattering potential����� The motivation is
to understand how any perturbing in�uence such as another gravitating source that might alter
the e�ective potential would thereby a�ect the quasinormal modes� Interestingly we �nd that the
fundamental mode is in general insensitive to a small changes in the potential whereas the higher
modes could alter drastically� The fundamental mode would therefore carry the imprint of the
black hole while higher modes might indicate the nature of the perturbing source�

Quasinormal modes are perhaps the rebuttal to the criticism of my thesis examiner regarding
the nonobservability of black holes�

� Ultracompact objects

One of the indirect o�shoots of black hole research was the study of ultracompact objects or UCOs�
While investigating the scattering of gravitational waves from the Schwarzschild black hole I had
noticed a peculiar phenomenon which I did not publish� Although at the time the radial equation
for even parity perturbations was quite complicated and was not in the Schr'odinger form it yielded
exactly the same re�ection coe�cient as the odd parity perturbation for a given angular parameter
l� One day I got a very excited telephone call from Chandra enquiring whether I knew this fact� I
answered yes I did� Did I know why this happened� No I did not� He had found the reason he
said triumphantly� He asked me for the numbers I had computed which I sent him� He went on
to publish his interesting conditions under which two potentials lead to identical scattering cross
sections mentioning my foreknowledge of the fact but not the reason�

It is the same story with neutrinos as well� The two equivalent potentials corresponding to the
two helicities are quite di�erent from each other ���� but lead to identical re�ection coe�cients�
One of them has the peculiar feature in that it has a potential well in the region r  �m attached
to the usual potential barrier� This was terribly intriguing� Could there be a bound state in the
potential well giving rise to some sort of neutrino trapping by the black hole� One can estimate
the maximum number of bound states by integrating the potential over its spatial range� The well
depth increases with the angular momentum quantum number and in the limit of its tending to
in�nity you get the answer one for the maximum number of possible bound states� In otherwords
there are no bound states�

I did not publish any of the above results� But out of it all another interesting question arose�
Suppose you replaced the black hole by a spherical star of radius r  �m� Then the potential well
would not only exist but would also be deepened by the enhanced gravitation of the matter� Could
there then be bound states trapping neutrinos within the star� Ajit Kembhavi and I worked on
this problem found and computed the complex frequencies corresponding to the bound states of
the neutrinos ����� In a way these neutrino bound states with complex frequencies were forerunners
of the quasinormal modes of ultracompact stars worked out by Chandrasekhar and Ferrari ���� as
has been pointed out by Andersson����� It is a very happy feeling that some of the problems I had
worked on interested Chandra also�
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Ultracompact objects with radius r  �m are in fact quite interesting entities� In principle
trapping of massless particles in their potential well is possible� Or the object can oscillate in
its quasinormal modes� Van Paradijs ���� has pointed out the peculiar behaviour of redshift for
r  �m� Recently Abramowicz and Prasanna ���� have discussed the reversal of centrifugal force
at r � �m for which you need a black hole or a UCO�

But do such highly compact objects or stars with radius r  �m exist in nature� This question
was considered by Dhuranhar Iyer and myself ������ and we also coined the name �Ultra
Compact
Objects� or �UCO�s� By studying very carefully the general relativistic stellar models with di�erent
equations of state we established that as a matter of fact stable ultracompact objects can exist
in nature�

� Gyroscopic precession and inertial forces

Right in the beginning of this talk we discussed how the black hole structure can change dra

matically when going from static to stationary spacetimes on account of the rotation inherent to
the latter� The study of Killing trajectories in these spacetimes led to a covariant description of
gyroscopic precession via the Frenet
Serret formalism� Precession is an important phenomenon�
For instance the Earth precesses� Ancient astronomers knew this� Astrologers did not thereby
making predictions that were doubly wrong� Or can two wrongs add upto one right� In atomic
physics Thomas precession a manifestation of special theory of relativity played a crucial role�
Spacetime curvature gives rise to Fokker 
 De Sitter precession in the Schwarzschild spacetime�
The spin of Kerr black hole contributes additional precessional e�ects� All these can be studied
elegantly using the Frenet
Serret description����

Another related area concerns the general relativistic analogues of inertial forces as developed
by Abramowicz and coworkers ��	�� A particle at rest in a static spacetime experiences only the
gravitational force but is acted upon by the centrifugal force as well if it is moving uniformly in a
circular orbit� In a stationary spacetime there is an additional force the Coriolis
Lense
Thirring
force which arises as a consequence of the metric components mixing space and time� In static
spacetimes such as the Schwarzschild spacetime centrifugal force reverses at the circular photon
orbit ����� So does gyroscopic precession� The situation is far more complicated in stationary
spacetimes������� My young colleague Rajesh Nayak and I have studied these e�ects and estab

lished covariant connections between gyroscopic precession on the one hand and inertial forces
on the other ��������� These considerations should be of interest in black hole physics from a
conceptual point of view as well as for astrophysical applications�

� The trail goes on ���

I have tried to o�er a glimpse just a �eeting one at that of my personal journey along the black
hole trail� It has been a long journey spanning some three decades� There have been all sorts of ups
and downs along the way� For instance I have had my share of tussle with journals and referees�
My very �rst paper ���� the one with Edelstein was unceremoniously rejected as nothing more
than a bunch of formulae� Misner had to write a strong letter pointing out that the same journal
that had previously published the wrong equations was now rejecting the correct ones� The paper
on the structure of black holes ��� was also rejected as it was considered to be just mathematics
and had to be published in the Journal of Mathematical Physics� The stability paper ���� too
had to cross some hurdles before seeing the light of the day� As with any important �eld black
hole physics has had its sociological factors sometimes leading to among other things inadequate
recognition of signi�cant contributions� All this becomes trivial in comparison to the exhilarating
experience of exploration� It is a rare good fortune to have been trekking along the track right from
the beginning� To have watched the seed germinate the sapling sprout and the tree grow� It is
also a good fortune to have had the company of congenial co
travellers on the journey 
 marvellous
friends to work with and keen minds to lead the way� If sometimes you stray away from the road
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you keep coming back� Even now my colleagues and I are working on di�erent aspects of black hole
physics such as quasinormal modes rotational e�ects and black holes in cosmological backgrounds�

What is the most important lesson I have learnt having traversed the trail for so long� Let me
answer that question by quoting the Spanish poet Antonio Machado who wrote�

Caminante� no hay camino
Se hace camino al andar�

Traveller there is no path�
Paths are made by walking�

It is gratifying to feel that you have made a path however short however narrow that has
helped build a trail that was planned and paved by so many� It has been a joy to follow that trail�
And I hope the trail will never end���
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GRAVITATIONAL WAVES

FROM INSPIRALLING COMPACT BINARIES

Bala R� Iyer�

Raman Research Institute
Bangalore ��� �	�

Abstract

Inspiralling compact binaries are the most promising sources for gravitational wave detec�
tors like LIGO and VIRGO� For detection one needs to know the gravitational waveform to
accuracies much beyond quadrupole approximation� This requires a solution of the generation
problem and radiation reaction problem in general relativity� This talk presents a broad brush
overview of the techniques used to study these topics and the important nonlinear e�ects that
obtain�
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What impressed me about your picture was the extremely striking manner in which
you visually portray one�s inner feeling towards one�s e�orts at accomplishments� one is
halfway up the ladder� but the few glimmerings of structure which one sees and to which
one aspires are totally inaccessible� even if one were to climb to the top of the ladder� The
realization of the absolute impossibility of achieving one�s goals is only enhanced by the
shadow giving one an even lowlier feeling of one�s position�
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� Introduction

On � July ���� Hulse and Taylor discovered the �rst signals from the binary pulsar �������
a system of two neutron stars that orbit around each other� Since the two neutron stars are
moving fast and relatively close together according to general relativity they should emit moderate
amounts of gravitational radiation� This makes them lose energy� Their orbit should therefore
shrink and their orbital period should shorten� Since its discovery this system has been monitored
continuously and it is observed that the orbiting period has in fact decreased� Quantitatively the
observations have yielded a veri�cation of the quadrupole formula for radiation damping to better
than ��� (���� All this is considered as su�cient evidence albeit indirect that gravitational waves
exist and the Nobel Prize in ���� certi�es the quality of the evidence� It is currently one of our
strongest support for validity of general theory of relativity�

With an orbital period of eight hours the frequency of gravitational waves from the binary
pulsar today is very low� ����	 Hz�� However if we wait patiently for a short time of about
hundred million ����� years the two stars will inspiral and the gravitational waves will sweep
upward in frequency to about �� Hz� In the following �fteen minutes before the neutron stars
collide and coalesce the frequency will rise to about ���� Hz with increasing amplitude producing
a characterstic chirp waveform containing about ����� cycles� This is the way its Life ends��Not
with a whimper but a bang� The amplitude is still too small however the large number of cycles
brings the characterstic signal strength hc � h

p
n to the realm of the measurable� If we can build

detectors that are sensitive to this bandwidth and if there are a su�cient number of such events in
our observable universe we should be able to directly see gravitational waves on the earth� LIGO���
and VIRGO��� are two such experiments that will look for and hopefully see such events by �����
Estimates of the rate of such coalescence events are about a few per year upto ��� Mpc� Advanced
LIGO which would look upto cosmological distances �� 	� would get to numbers of hundreds per
year�� ����

The excitement over these experiments arises not just from the possibility of direct detection
of a new radiation but from the hope of a new astronomy� Gravitational Wave Astronomy� The
possibility of opening a new window to the universe is re�ected in the name itself� A Gravita�
tional Wave Observatory rather than a mere gravitational wave detector� What makes all this
possible is the fact that though the gravitational wave signal is extremely weak and buried deep
in the detector noise it consists of a large number of precisely predictable cycles in the detector
bandwidth� This enables one to use the technique of matched �ltering �rst for detection and later
for estimation of parameters of the coalescing binary� For instance the LIGO and VIRGO obser

vations of inspiralling compact binaries should provide precise measurements of the masses of the
objects possibly of their spins and probably in the case of neutron stars of their radii ��� ����
The absolute luminosity distance of the binary will be measured independently of any assumption
concerning the nature �and masses� of the objects����� But if the intrinsic masses of the objects are
known the cosmological red
shift of the host galaxy where the event took place can be measured�
There is hope to deduce in this way a measurement of the Hubble parameter from an assumption
concerning the statistical distribution of masses of neutron stars ��� ���� The puzzle of the origin of
gamma
ray bursts could be solved by comparison of the times of arrival of the gravitational waves
and of gamma ray bursts��� �� ���� Furthermore new limits on the validity of alternative theories
of gravity notably scalar
tensor theories���� and new tests of general relativity in the strong �eld
regime���� should be possible by monitoring very precisely the inspiralling signal�

The strength of the wave from a gravitational wave source can be estimated using the Newtonian
or quadrupole approximation ��	 ���� One has

h � G

c	

'Q

r

The strongest sources must be highly nonspherical Q �ML�� 'Q � �Mv� � �Ens
kin implying

h � �

c�

�G
�
Enskin
c�

�
r

��



A huge internal kinetic energy by virial theorem is generically accompanied by a high gravitational
potential energy i�e a high compactness� For kinetic energies of the order of a solar mass one has
h � ����� at ��� Mpc� The thumb rule values are thus around ������������ Laser interferometers
are capable of measuring displacements of order ����� cm and recalling that h � �L�L one is led
to the interferometer sizes of � km 
�� kms� The gravitational wave source cannot emit strongly
at periods smaller than the light travel time �
GM�c� and thus the frequencies at which these
sources emit are

f � �

�
GM�c�
� ��	M�

M
Hz�

Gravitational waves from astronomical objects that exist today lie between
���	Hz � ��	Hz� Gravitational waves from the early universe on the other hand could range
from �����Hz � ���Hz� The gravitational wave frequency bands that are actively being explored
experimentally may be broadly divided as��	 ����

�� High Frequency �HF� band that lies between ��	Hz��Hz� These are explored by earth based
gravitational wave detectors like laser interferometers �LIGO VIRGO� and resonant mass
antennas� The sources that radiate in this bandwidth include stellar collapse of neutron stars
or black holes in our galaxy or external galaxies the rotation and vibration of neutron stars
in our galaxy and the coalescence of neutron stars and stellar mass black holes � upto ����
M� � in distant galaxies� The stochastic background of vibrating loops of cosmic strings
phase transitions in the early universe and gravitational waves from the big bang itself could
radiate in this range� The bandwidth limitation comes from the noise sources� The � Hz
cuto� is due to �uctuating gravity gradients and the earth�s vibration �seismic cuto���

�� Low Frequency �LF� band lying between �Hz � ���	Hz� These are the realm of Doppler
tracking of spacecraft by microwaves and in the future optical tracking of spacecraft by
each other �LISA�� This band is due to waves from short period binary stars in our galaxy
�main sequence binaries cataclysmic variables white dwarf and neutron star binaries� white
dwarfs neutron stars and small black holes spiralling into massive black holes ��� ���� ��
���M�� in distant galaxies inspiral and coalescence of supermassive black hole binaries
����� ���M�� and stochastic background from the early universe� The cuto� at the lower
edge is due to di�culty in isolating the spacecraft from forces due to �uctuations in solar
radiation pressure solar wind and cosmic rays�

�� Very Low Frequency �VLF� band between ����Hz� ����Hz� This band is explored by the
timing of millisecond pulsars� At �� per cent con�dence limit the density in these gravitational
waves )g�� � ����Hz�  � � ����H�� where H is the Hubble constant relative to ��� km
sec�� Mpc��� This range is the stochastic background from early universe processes like
cosmic strings phase transitions and the big bang�

�� Extreme Low frequency �ELF� between �����Hz� �����Hz� This radiation should produce
anisotropies in the CMBR � If all the anisotropy in the COBE measurements were due to
this gravitational radiation it would correspond to )g���

���Hz� � �����
To prepare for the analysis of such signals in the LIGO and VIRGO detectors one needs to

compute the gravitational radiation �eld generated by a system of two point
masses moving on a
circular orbit �the relevant case because the orbit will have been circularized by radiation reaction
forces�� Since inspiralling compact binaries are very relativistic this problem is highly nontrivial
and represents a challenge to relativity theorists�� 	� as its resolution involves carrying out the
calculation to a very high order in terms of a post
Newtonian expansion����� The problem can
be decomposed into two di�erent problems which can be referred to respectively as the "wave
generation problem# and the "radiation reaction problem# �����

The wave generation problem deals with the computation of the gravitational waveforms gen

erated by the binary �at the leading order in ��r where r is the distance of the binary� when

��



the orbital phase and frequency of the binary take some given values � and �� This problem in

volves computing the amplitude of each harmonic of the wave corresponding to frequencies which
are multiples of the orbital frequency with the predominant harmonic being at twice the orbital
frequency�

The radiation reaction problem consists of determining the evolution of the orbital phase ��t�
itself as a function of time from which one deduces the orbital frequency ��t� � d��t��dt� The
actual time variation of ��t� is nonlinear because the orbit evolves under the e�ects of gravitational
radiation reaction forces� In principle it should be determined from the knowledge of the radiation
reaction forces acting locally on the orbit� However these forces are at present not known with
su�cient accuracy �only the relative �rst post
Newtonian corrections are known��� ���� so in
practice the phase evolution is determined by equating the high
order post
Newtonian energy �ux
in the waves or energy loss �averaged over one orbit� and the decrease of the correspondingly
accurate binding energy of the binary�

Estimates of the precision needed in the resolution of these two problems can be inferred from
black
hole perturbation techniques in the special case where the mass of one object is very small as
compared with the other mass��� ���� The required precision is reached when the systematic errors
due to the neglect of some higher
order approximation become less than the statistical errors due to
noise in the detector� It turns out that the post
Newtonian corrections in the time evolution of the
phase �radiation reaction problem� will be measurable in advanced detectors probably up to three
post
Newtonian ��PN� orders beyond the �Newtonian� quadrupole radiation� This corresponds to
relativistic corrections in the energy loss as high as order � �v�c�� where v is the orbital velocity�
The possibility of measuring such high
order corrections can be understood crudely from the fact
that in order not to su�er a too severe reduction in signal
to
noise ratio one will have to monitor
the phase evolution with an accuracy of one tenth of a cycle over the tens of thousands of cycles
during the entire passage through the frequency bandwidth of the detector�

None of the above problems can be solved exactly� They are treated by a combination of
approximation methods like Post Minkowskian approximation Post Newtonian approximation
and Perturbations about a Curved Background� We list the main features of these schemes below�

�� Post Minkowskian Approximation� It is an expansion in �i � GM�c�R or �e � GM�c�D
where M L D are the characterstic mass size and separation respectively� Loosely it is an
expansion in G and hence it is also called weak �eld non linear or fast motion approximation�
It makes crucial use of the geometry of Minkowski spacetime and its causality properties� The
equations in this scheme reduce to a hierarchy of wave equations on Minkowski background
which are solved by retarded potentials� The basic complication is in the nonlinear iteration�

�� Post Newtonian Approximation� It is an expansion in � � v�c � L�� � L�c�P where v L
� and P are the characterstic velocity size wavelength and period respectively� Loosely it is
an expansion in ��c and is also called slow motion expansion� It uses newtonian concepts like
absolute space with an Euclidean metric and absolute time� It uses newtonian techniques
and in this viewpoint Einstein theory provides small numerical corrections to Newtonian
theory� The equations in this scheme are a hierarchy of Poisson equations which are solved
by instantaneous potentials�

�� Perturbation about a Curved Background � This is an expansion about an arbitrary curved
background rather than �at Minkowski spacetime� Unlike the PNA scheme which is also
applicable to binary systems of comparable masses this scheme is applicable only if one of
the bodies is much heavier than the other i�e the ratio of the masses is very small� However
it takes into account the full background curvature and is applicable for fully relativistic
situations v � c�

The use of multipole expansion methods in combination with the PMA scheme o�ers one of the
most powerful techniques in gravitational radiation studies� Multipole expansion is most conve

niently implemented by using symmetric trace free tensors rather than tensor spherical harmonics�
The Multipole Post Minkowskian �MPM� method exploits the computational advantage of working
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in De Donder Lorentz or harmonic gauge� In this gauge Einstein�s equations can be conveniently
written in terms of a wave operator of �at space with source terms that include the non linear
gravitational stress energy� This permits a solution in terms of �at space Green functions and
decomposition of the solution in terms of STF tensors which are eigen functions of the �at space
D�Alembertian� For instance��� ��� the multipole analysis of linearised gravity generated by a
compact source T�
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shows that the linearised metric may be represented as

*h��can�
�X� T � � �

�

c�

��X
l��

���l
l�

�L

�
ML�U�

R

��	 ���

*h�ican�
�X� T � � � �

c�

��X
l��

���l
l�



�L��

�
+MiL���U�

R

�
�

�
l

l � �
�iab�aL��

�
SbL���U�

R

��
���

*hijcan� �X� T � � �
�

c	

��X
l��

���l
l�



�L��

�
'MijL���U�

R

�
�

�
�l

l � �
�aL��

�
�ab�i +Sj�bL���U�

R

���
� ���

in terms of two sets of STF time dependent moments� the Mass moments and Current moments
analogous to the representation of the electromagnetic �eld in terms of electric and magnetic
moments�
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� Model of the Source

The model mostly used is that of two point objects without structure moving under their mutual
gravitational interaction� The extension to include e�ects due to intrinsic spin have been accom

plished� There has been work on taking the tidal corrections into considerations� The model also
needs the speci�cation of the equations of motion� This is discussed in the next section� It should
be noted that in this problem there are two time scales� the orbital motion and the radiation
damping with the former being much smaller than the latter�

�	



� PN Two body Equations of Motion

For the analysis of the timing of the binary pulsar the basic equations for two
body systems in
the post
Newtonian approximation to general relativity were investigated in detail� Restricting
attention to two
body systems containing objects that are su�ciently small that �nite
size e�ects
such as spin
orbit spin
spin or tidal interactions can be ignored one can write the two
body
equation of motion explicitly in the form

a � aN � a
���
PN � a

���
�PN � a

�����
RR � a

���
�PN � a

�����
RR �O�		� � ���

where the subscripts denote the nature of the term post
Newtonian �PN� post
post
Newtonian
��PN� radiation reaction �RR� and so on� and the superscripts denote the order in 	� Through
�PN order the individual terms are given by ��� �� ���
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Through �PN order the motion is conservative that is can be characterized by conserved
total energy and angular momentum� At ���PN order the �rst dissipative terms arise resulting
from gravitational radiation reaction� At this order and beyond conserved energy and angular
momentum can no longer be de�ned� The �PN terms in a are formally conservative while the
���PN terms represent the post
Newtonian corrections to radiation reaction� Through �PN order
the conserved energy and angular momentum are given by ��� �� ���
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where LN � �x�v� These together with the equations of motion can be derived from a general

ized Lagrangian that depends on the acceleration and Euler
Lagrange equations� The equations of
motion were obtained by Damour by an Einstein
 Infeld
 Ho�mann type treatment complemented
by analytic continuation techniques of Riesz� Unlike linear electromagnetism the non linear gen

eral relativity has the feature that its �eld equations contain the equations of motion� Damour
deduced the nth approximate equation of motion from integrability conditions on the �n � ��th

approximated vacuum �eld equations����� The EOM have also been discussed by Grischuk and
Kopeijkin ���� by more standard techniques of general relativity yielding equivalent results��� ����

� The Quadrupole Wave Generation Formalism

The far �eld quadrupole equation is the solution of the generation problem at the lowest order� It
asserts that for an isolated system S which is non
relativistic i�e� slowly moving weakly stressed
and weakly self
gravitating the gravitation radiation amplitude generated by the source in some
Asymptotic coordinate system X� far from S is given by
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where Qij�t� �

Z
d�x c�� T �� ,xij ����

,xij � xixj � �
�
�ij�x

� ����

is the usual Newtonian quadrupole moment of mass density c��T �� in S in some Cartesian coor

dinate system x� covering S but distinct from X�� Pijkl is the transverse trace free projection

operator onto plane perpendicular to �N and ,xij the trace free part of xixj � This equation is valid
at leading order in R�� and leading order in the small parameter c�� describing the non
relativistic
character of this system� The above standard quadrupole equation was �rst derived by Einstein����
within the linearized approximation to general relativity and is applicable only to slowly moving
sources with negligible self gravity� Consequently it does not apply to any realistic astrophysical
system since e�g� it cannot be applied to a binary system of two ordinary stars whose motion is
governed by gravitational forces� Hence these equations need to be generalized to at least weakly
self
gravitating systems� This was achieved along two very di�erent lines by Landau
Lifshitz����
and Fock���� respectively� The associated total power or luminosity in the gravitational wave
emission is
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This power can be expressed as the work done locally in the source by a radiation reaction
force
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The above expression is valid only in a particular coordinate system covering the source �the Burke
Thorne coordinate system ��	 �����
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The Landau
Lifshitz quadrupole equation is valid for slow motion sources with Newtonian
internal gravity say a binary star or a star in oscillation� To obtain this extension one goes beyond
linearized gravity by shu.ing to the right hand side of Einstein�s equation all terms non
linear
in *h�
 �

p
g g�
 � f�
 and combining it with the material tensor to make a total �matter plus

gravitation� stress tensor of the type

��
 � T�
 � t�

�
*h
�

��	�

If one formally follows the standard derivation and assumes that lack of spatially compact support
for ��
 is irrelevant one gets the new quadrupole equation where ��� replaces T ��� For weakly
self
gravitating systems t�� is negligible relative to T �� and one recovers the standard quadrupole
equation� The basic problem with this approach is that ��
 does not have a spatially compact
support and falls o� rather slowly�

Fock�s approach is conceptually di�erent and lends itself to useful generalizations� The main
idea is to solve the problem in two parts� First compute the gravitational �eld in the near zone
of the source where retardation is small compared to the characteristic period� Next obtain the
structure of the general radiative gravitational �eld in the wave zone� Finally match the results
of the two steps via an intermediate expression for the gravitational �eld that bridges the gap
between the two zones�

� The Generation Problem

The general approach to solve the generation problem may be broken up into the following steps���
�	��

�� Integrate the Einstein �eld equations in the vacuum exterior region De by means of a Mul

tipolar Post Minkowskian series�

�� Integrate the non
vacuum �eld equations in the near zone Di by means of a Post Newtonian
expansion�

�� Match the two solutions in the exterior near zone Di �De to obtain the expression for the
multipole moments of the source�

�� Expand the exterior solution in the wave zone Dw to obtain the observable moments of the
radiative �eld�

��� The exterior Gravitational 	eld

In harmonic coordinates
�
h

�

ext � � ����

the vacuum Einstein equations read

�h�
ext � /
�
�hext� ����

Expanding the metric in terms of post Minkowskian series

h�
ext � Gh�
� �G�h�
� � 	 	 	�Gnh�
n ����

starting with the seed linearised metric in the form

h��� � � �
c�
V ext ����

h�i� � � �
c�
V ext
i ����

hij� � � �
c	
V ext
ij ����

��



where the external potentials V ext� V ext
i � V ext

ij which are functionals of the Mass and Current mo

ments are of the form X

l��
�L

�
�

r
ML�t� r

c
�

�
� ��L

�
�

r
SL�t� r

c
�

�
����

the �eld equations are solved iteratively by means of the integral of the retarded potentials

����R f���x� t� � � �

� 
 

Z Z Z

d�x�

j�x� �x�jf�
�x�� t� �

c
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For instance to order G� one has

h�
ext � Gh�
� � FPB���
��
R �rB/�
�Vext�� �G�q�
� �O�G�� ����

��� The Inner Gravitational 	eld

In harmonic coordinates the Einstein equations in the source read

�h�
in �
��
G

c	
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�hin� ��	�

�
h
�

in � � ����

To the �rst post
newtonian iteration one �nds
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where the inner potentials are

V � ��
G���R � ����
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��� Matching between the Inner and Outer 	elds

h�
in and h�
ext di�er by a coordinate change in Di �De

�x� � ���x� t�

The inner and outer potentials di�er by
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whereM�� refers to the multipole expansion of the quantity in ��� The matching equation between
h�
in and h�
ext then implies to the relevant PN order

Gh�
� � �
��
R

�
��
G

c	
T �
 �/�
�V �


�FPB�����R frB/�
�M�V ��g� ���
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which can be written equivalently written in the form
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��
R

�
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�
��
G
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�V �� /�
�M�V ��

�
� ���


����

The external linear metric now appears to be the retarded integral of a compact supported source
and our earlier result on the multipole decomposition of linearised gravity can be adapted to read o�
the required Mass and Current moments of this e�ective source ��
 that includes the nonlinearities
of the gravitational �eld�

��
 � T�
 �
c	

��
G
/�
 ����

All reference to the multipole expansionM�V � of the potentials disappears in the �nal result�

��� Expansion in the wave zone

The harmonic coordinates ��x� t� are not the simplest coordinates in the far zone� The good radiative
coordinates are obtained by correcting for the deviations of true light cones from the �at light cones�

T � R

c
� t� r

c
� �GM

c�
ln
� r
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�
�O

�
�

c�

�
����

This coordinate transformation can be implemented to all post minkowskian orders and brings the
metric to Bondi type form� From the multipole decomposition

hTTij �
�G

c�R

X
l��

�

cl
fNL��UijL�� � �ab�iNaL��Vj�bL��g ����

one can then compute the observable moments UL and VL in terms of the Thorne moments ML

and SL and there by in terms of the source�s parameters�

��� �PN Wave generation

This formalism is valid under the same conditions as the quadrupole formalism but � � v�c is not
very small� �For � � ��� the formalism is expected to be accurate to within one percent�� The
power in the waves is given by
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where Iij is the �PN relativistic mass quadrupole moment of the source Iijk and Jij the newtonian
mass octupole and current quadrupole moments�
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In a generalised Burke Thorne gauge the radiation reaction forces can be derived from the
following reaction potential����

V reac �
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The PN radiation reaction for the speci�c case of binary systems has been also obtained in generic
coordinate systems starting from energy and angular balance arguments����� The results of both
these schemes are consistent with each other�

� �PN Generation

The detailed analysis along the lines indicated above leads us to the �PN accurate mass quadrupole
which contains compact support terms quadratically nonlinear terms and a cubic nonlinear term�
For illustration we quote the expression��	 ����
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Once the mass quadrupole is explicitly obtained for the inspiralling binary system the waveform
in the far zone can be computed using�

hTTkm � �hTTkm�inst � �h
TT
km�tail � ����

where the "instantaneous# contribution is de�ned by
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and where the "tail# contribution reads
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The radiation reaction is simply computed by evaluating the �ux of energy in the far zone�
Upto �PN accuracy this is given by��
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The results are best represented in terms of gauge invariant variables like x de�ned by
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In terms of x after a few ��� pages of calculation we obtain�
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If � is the orbital frequency then
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From the energy balance law one deduces
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Table �� Contributions to the accumulated number N of gravitational
wave cycles in a
LIGO�VIRGO
type detector� Frequency entering the bandwidth is �� Hz �seismic limit�� fre

quency leaving the detector is ���� Hz for � neutron stars �photon shot noise� and � ��� Hz
and � ��� Hz for the two cases involving black
holes �innermost stable orbit�� � and � are spin
parameters� Numbers in parentheses indicate contribution of �nite
mass ��� e�ects�
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� A Sampler of Nonlinear e�ects

The �rst interesting and dominant nonlinear e�ect we encounter is the Tail term� It arises at
order ���PN and results from the nonlinear interaction between the varying quadrupole moment
Iij and the static mass monopole M of the source� The e�ect of this interaction is to modify the
quadrupole Iij by the tail induced correction

�Itailij � �
GM
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ln
�

�
�
��

��
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It has important observational consequences in the dynamics of coalescing binaries�
The next sub
dominant nonlinear e�ect is the nonlinear memory term or the Christodoulou

e�ect� It is dominantly ���PN� It corresponds to the re
radiation of gravitational waves by the
stress energy distribution of the linear waves�
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In the limit u� �� the Tail term vanishes but the memory term tends to a �nite limit�
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The memory e�ect does not contribute to the energy loss and hence has poor observable conse

quences�

The next dominant cubically nonlinear e�ect is the tail of tail term� It is the nonlinear inter

action between the tail of waves and the static mass monopole M� The e�ect is of order �PN and
should be detectable in the dynamics of coalescing compact binaries�
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The generalisation of the �PN results for non circular orbits has been obtained by Gopakumar
and Iyer����� They obtain the �ux of energy angular momentum and waveform for the general
case and apply it to study the e�ect of this emission on the orbital period of the binary system�

It has been argued that most of the accessible information allowing accurate measurements
of the binary�s intrinsic parameters �such as the two masses� is in fact contained in the phase
because of the accumulation of cycles and that rather less accurate information is available in the
wave amplitude itself� To determine just what order is required in the waveform would necessitate
a measurement
accuracy analysis not restrained to a model waveform taking only the higher

order phase evolution into account �namely the so
called restricted post
Newtonian waveform��
For instance it is conceivable that conclusions reached regarding the needed accuracy in the
determination of the phase in the reaction problem are modi�ed when the full amplitude evolution
of the wave is taken into account� Some of these are under investigation by Kanti Jotania�����

	 The Perturbation method

As mentioned earlier in this approach the Einstein�s equations
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are expanded around the black hole background
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Linearising this equation with respect to ��M i�e ignoring terms of O�h�� and O���� we have
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The h�
 is written using the curved space Green function
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For the Kerr black hole the story is contained in the �	 a Weyl tensor component describing
outgoing gravitational waves
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Einstein�s equations and the Bianchi identities lead one to the Teukolsky equation�
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where

� � r� � a� � �Mr �	��

Ulm� � �K� � ���r �M�K

�
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Here �a�lm is the eigenvalue of ��Sa�lm���� It follows that
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Expanding Glm��r� r
�� in powers of

	 � �M� �
�GM

c�
� � O�v��

�similar to a post minkowskian expansion � and Tlm��r� in powers of

z � r� � O�v�

�similar to a post newtonian expansion� one can systematically study the gravitational wave lumi

nosity for a particle in circular orbit around the black hole� The numerical discovery of the �
 term
due to tail luminosity by Poisson���� the v� ln v and v� ln v terms by Tagoshi and Nakamura����
indicate the accuracy and e�cacy of the method� The con�rmation of these results analytically
by Sasaki and Tagoshi��� �	� as also the evaluation of the gravitational wave luminosity to �PN
are the impressive achievements of this programme� This provides one of the best guidelines to
the more involved PN calculations� The extension to orbits with eccentricity as also particles with
spin have been achieved� More di�cult issues like radiation reaction as also the question of going
beyond linearised perturbations are under study�

�	




 Chandrasekhar�s contributions

Of his myriad contributions to astrophysics and in particular to general relativity this area is
special in that not only did Chandrasekhar have the �rst word but he did not as was his wont
write a monograph about it� The broad areas may be divided into

 The in�uence of general relativity on pulsation and stability of stars�
 The back reaction of gravitational waves on their sources
 The post newtonian approximations to general relativity and its astrophysical applications

Each topic was pioneered by Chandrasekhar dominated by him and his papers deal simultaneously
with aspects of two or three of the above topics� Chandra�s discovery of the radiation reaction
instability was an outgrowth of the general quest to understand gravitational radiation reaction���
���� It was the �rst direct calculation 0a la Lorentz of a radiation reaction force which obtained
a result in agreement with the quadrupole losses� Though in linearised gravity Einstein had
discovered the existence of propagating wave like solutions people were still not clear about whether
the waves were really physical or gauge� Do they really take away energy from the system� One
of the �rst attempts was by Einstein Infeld and Ho�mann who tried to model the binary system
by a system of two point masses but this failed� In analysing the result Trautman realised that
the missing element was in the outgoing boundary condition but due to an algebraic error got a
dissipation not in agreement with the radiation formula� This was the state of a�airs when Chandra
moved into the act� What should be realised is that partial results which concentrate only on the
reactive terms are not good enough since one has to be sure that indeed to a lower order there are
conserved quantities� extensions of the usual energy linear momentum and angular momentum�
which at the next half higher order are no longer conserved�That is why Chandra developed the
�PN and �PN methods to iterate Einstein�s equations to discover the correct conserved quantities�
He had the fortitude to face the problem of developing a post newtonian approximation scheme
that keeps ALL the terms including the large number that do not reverse sign but are of lower
order� He realised the danger in the approximation scheme of EIH using delta functions in nonlinear
theories� Hence he went back 0a la Fock to perfect �uid sources� However he was not happy with
the choice of harmonic coordinates that Fock made and developed his own sytem where he could
control everything at every order� He completed the �PN work in ���� and paused to apply it
to ellipsoid �gures of equilibrium and the onset of dynamical instability� Then with Nutku he
constructed the �PN equations and �nally with Esposito the ���PN equations that were used to
discuss the radiation reaction instability completely and rigorously for the �rst time� It was a
tour de force and underappreciated now twenty years later���The results were under severe scrutiny
when the now famous binary pulsar was discovered�� There are divergent integrals which make
the results mathematically ill de�ned�� More care is needed to do better� Yet another issue was
the applicability of these to the binary pulsar sytem where internal gravities are much stronger�
This extension by T� Damour depends on subtle e�acement of strong gravity e�ects in general
relativity probably related to the strong principle of equivalence and once again for computational
e�ciency works with the delta functions 0a la EIH and harmonic coordinates 0a la Fock� But �nally
the formulas that emerge are the radiation reaction formulas equivalent to those of Chandrasekhar�
It is curious that in connection with the high order perturbation calculations that are in progress
in connection with LIGO one feels that the delta function approach has reached its end and that
probably one may need to go back to the �uid treatment 0a la Chandrasekhar�

The PN and PPN have become standard working tools of physics and astrophysics� They
are used in the studies of stars star clusters gravitational wave generation motion of planets
and moon development of PPN formalism to compare general relativity with other theories and
experiment� To assess Chandra�s contributions to this area one can do no better than quote Kip
Thorne�

If Chandra had left us no other relativistic legacy beyond the PN and PPN formalisms
he would still deserve a place among the great contributors to our subject�

��
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It is only when we observe the scale of Newton�s achievement that comparisons� which
have sometimes been made with other men of science� appear altogether inappropriate
both with respect to Newton and with respect to others� In fact� only in juxtaposition with
Shakespeare and Beethoven is the consideration of Newton appropriate�����
Now� a few remarks concerning the style of Principia� Quite unlike his early communi
cations on his optical discoveries� the Principia is written in a style of glacial remoteness
which makes no concessions to his readers����
It is however� clear that the rigid and lamellated style of the Principia is deliberate����
Newton seems to have been remarkably insensitive� impervious to the arts� tactless� and
with no real understanding of others����
Newton�s most remarkable gift was probably his powers of concentration���
The central paradox of Newton�s life is that he deliberately and systematically ignored his
supreme mathematical genius and through most of his life neglected the one activity for
which he was gifted beyond any man�

� S� CHANDRASEKHAR



DATA ANALYSIS OF GRAVITATIONAL WAVE

SIGNALS FROM COALESCING BINARIES

R� Balasubramanian�

Inter
University Center for Astronomy 1 Astrophysics
Ganeshkind
Pune

Abstract

In this lecture I shall be dealing with the techniques of Data analysis which will be used to
extract the gravitational wave signal from the noisy output of the gravitational wave detector�
The inspiral of binary systems consisting of compact objects such as black�holes and neutron
stars can be well modelled� The knowledge of the signal waveform enables us to design
detection strategies which are optimised to detect the 
chirp� signal� The basic idea here is to
correlate the incoming data with the waveforms that we expect to observe�
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Chandrasekhar is one of the most unusual examples of a scientist who has been able to
inject his personal style into his work

� A� LIGHTMAN

He has an incomparable style� Good English style is a lost art in physics� but he has it
and this wonderful feeling for the essential� and a feeling for beauty�

� V� WEISSKOPF

It�s a rewarding aesthetic experience to listen to Chandra�s lectures and study the de
velopment of theoretical structures at his hands� The pleasure I get is the same as I get
when I go to an art gallery and admire paintings�

� LYMAN SPITZER



� Introduction

Gravitational waves can be thought of as ripples in the curvature of spacetime which travel outward
from the source carrying energy and momentum to the observer� These waves can be observed
by measuring the proper distances between objects which are held �xed at constant coordinate
positions in the observers reference frame�

The linear approximation to Einstein�s equation yields the wave equation for the metric per

turbation hik and thus gravitational waves are tensorial in nature� The magnitude of the the per

turbation hik at the observer location can be written in terms of the derivatives of the quadrupole
moment tensor

hik�t� �
�G

rc	
'Iik�t� r�c�� ���

This result is valid in the so called quadrupole or the �Newtonian� approximation� An order of
magnitude formula for hik can be given as

h � GEkin
non�sph�
c	r

���

Gravitational waves carry a huge amount of energy� For a burst source in our galaxy such
as a supernova for which the magnitude of hik � ����� the �ux on Earth would be around ��
Watts�m��� But the weak interaction of these waves with matter due to the smallness of G makes
them hard to detect�

��� Sources and their strengths

A variety of sources are expected to be observed by the Earth based detectors which are currently
being constructed� These are�

Binary Coalescences
These are the most promising of all sources� Coalescences can be observed at cosmological
distances� The typical magnitude for a NS�NS binary is about h � ����� at a distance of
���� Mpc� With the planned interferrometric detectors �� �� we would be observing the last
few minutes before coalescence�

Supernovae
The strength of these sources depends upon the degree of asymmetry during collapse� These
will typically have a magnitude of h � ������ ����� for supernovae in our galaxy and will
last for a few milliseconds�

Pulsars
These are continuous wave sources with a typical magnitude of h � ����� at a distance of
�� kpc�

Stochastic background
Quantitative estimates of the cosmological stochastic background is highly model dependent�
Pulsar timing observations have already provided tight constraints in �xing an upper bound
on the magnitude� It might be possible to further constrain the strength of this background
using the gravitational wave detectors�

��� The laser interferometer

When two masses are suspended a distance l apart then the change in the proper distance between
them due to a gravitational wave of amplitude h is � hl� Two types of detectors are currently
employed�

 Resonant bar detectors and

��



 Laser interferometers�
The bar detectors are essentially metallic cylinders �other geometries are being investigated� of large
mass� These detectors are sensitive in a narrow frequency region around their natural resonant
frequencies�

The laser interferometer illustrated in �gure � converts path length changes to phase di�erence
between laser light emerging from the two arms�

DIODE

MIRROR

LASER

Figure �� Schematic diagram of the laser interferometer

Such interferometers are being constructed by various groups around the world such as the
American LIGO ��� the French
Italian VIRGO ��� and the German
English GEO� The LIGO will
comprise of two four kilometre armlength detectors and one two kilometre armlength detector� The
VIRGO will consist of a single three kilometre detector� whereas the GEO will have an armlength
of ��� meters� A space based interferometric detector is also being planed and the launch is
scheduled to take place in the year ����� The interferometer as opposed to the resonant mass
detector takes advantage of the quadrupolar nature of gravitational waves� The �uctuations in the
proper distances between the mirrors can be estimated by measuring the shift of the fringe pattern
at the photo diode� The laser interferometer is essentially a broadband device which means that
it is sensitive in a wide band of frequencies though it can be made to operate at the narrowband
mode by the use of dual recycling techniques� Ground based detectors will be typically able to
measure gravitational waves at frequencies between � � ����Hz and hence we need to have very
long light paths� This can partly be achieved by storing the laser power within a Fabry Perot
cavity for a longer period of time� The laser interferometers have the advantage of being scalable
which means that the armlengths can be increased as and when it is feasible�

The performance of the detector will be limited by the various sources of noise� The four main
sources of noise are

�� Seismic

�� Thermal

�� Photon shot

�� Quantum noise

The lower cuto� of the detector is �xed by the seismic noise� This cuto� is between �� ��Hz�
There is a very steep fallo� of this noise beyond the lower cuto�� Observation of gravitational
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waves at frequencies lower than the seismic cut o� will have to be done by space based detectors�
The thermal noise is important at intermediate frequencies� As the apparatus will be maintained
at room temperature the natural vibrations of the various normal modes of the mirrors and the
suspension wires will be substantial� The thermal noise can be reduced by a careful selection of
the material used for the construction of the mirrors� Also the e�ect of the thermal noise can
be minimised by increasing the mass of the mirrors� Photon shot noise is important at large
frequencies and is caused by the uncertainty in the number of photons at the photodiode� By
increasing the power of the laser the e�ect of this noise can be reduced� The ultimate sensitivity of
the detector will be decided by the quantum noise which is relatively less important as compared
to the other kinds of noise�

To a large extent the noise in the detector will be Gaussian and hence the power spectrum of
the noise describes it completely� The power spectrum Sh�f� is de�ned by the relation

-n�f�-n��f �� � Sh�f���f � f ��� ���

where n�f� is the Fourier transform of the noise process n�t�� The power spectrum is a measure of
the noise power per unit frequency and hence its square root measures the equivalent gravitational
wave amplitude he��f� which has been plotted in �gure ��

10 100 1000

Figure �� Noise spectrum of the LIGO interferometer

Figure � compares the sensitivity of the detector with the strength of the sources� For a signal
of amplitude h and a average frequency fc there is an enhancement of the signal by a factor

p
n

where n is the number of cycles in the neighbourhood of the frequency fc� This has to be compared
with the quantity hrms which is the average strength of the noise over a single cycle of frequency
f � For the case of burst sources lasting for a very short period the strength of the burst is to be
compared with the quantity hSB � ��hrms�

� Coalescing binaries

Coalescing binaries are promising sources of gravitational waves� The earth based interferometric
detectors are ideally suited for measuring such gravitational waves� The key points are summarised

��



10 100 1000

Figure �� Comparison of the source strengths with the noise

below�

 Systems are well understood and modelled� This means that the waveform can be written
down as a function of time and the parameters of the binary system such as the masses of
the stars their spins etc�

 The signal lasts for about �� minutes in the bandwidth of the detector and we can integrate
over this interval to enhance the signal to noise ratios�

 The event rates for such coalescences based on binary pulsar statistics have been carried out
to a fair degree of reliability� The likely event rates are�

� � � NS�NS events per year upto ���Mpc
� � ��� NS�NS events per year upto �Gpc�

These rates have also been extrapolated to BH�BH and BH�NS binaries� With the advanced
detector we may be able to observe binaries at cosmological distances �Gpc�

 The gravitational wave signal carries information of the masses the spin angular momenta
of the two components the orientation of the binary its direction the eccentricity and its
distance�

 The parameter information from a collection of such binaries can help determine the cosmo

logically relevant quantities�

� the Hubble constant

� the deceleration parameter

� the cosmological constant

 Actual coalescence waveforms of BS�BS binaries will yield information about spacetime ge

ometry in the extreme non
linear regime�

 Coalescence of NS�NS binaries will produce waveforms which are sensitive to the equation
of state of nuclear matter�

 In the case of BH�NS binaries the tidal disruption of the neutron star can be studied�
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��� Modelling the chirp waveform

The typical �chirp� waveform is illustrated in �gure �� Both the amplitude and the frequency
increase with time� As the two body problem has not been solved in general relativity post

Newtonian and post
Minkowskian schemes are followed to evaluate the waveform� It turns out
that the phase evolution of the waveform is sensitive to the order to which the expansion has been
carried out and this plays a major role in the detection strategy� For the purpose of my talk I
shall restrict myself to a simpli�ed model of the chirp waveform which is called the restricted post

Newtonian waveform� Here the higher harmonics of the waveform are neglected� Consequently
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Figure �� A typical chirp waveform

the restricted post
Newtonian waveforms only contain the dominant frequency equal to twice the
orbital frequency of the binary computed up to the relevant order� In the restricted post
Newtonian
approximation the gravitational waves from a binary system of stars modeled as point masses
orbiting about each other in a circular orbit induce a strain h�t� at the detector given by

h�t� � A�
f�t����� cos ���t�� � ���

where f�t� is the instantaneous gravitational wave frequency the constant A involves the distance
to the binary its reduced and total mass and the antenna pattern of the detector and the phase of
the waveform ��t� contains several pieces corresponding to di�erent post
Newtonian contributions
which can be schematically written as

��t� � ���t� � ���t� � �����t� � � � � � ���

Here ���t� is the dominant Newtonian part of the phase and �n represents the nth order post

Newtonian correction to it� To further simplify matters we give the formulae only upto the �rst
post
Newtonian order�
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The quantities �� and �� have the physical signi�cance of representing the Newtonian and post

Newtonian contribution to the time
of
coalescence starting from some �ducial time ta� Thus in
this approximation the time for coalescence is �� � ��� Such a parameterization turns out to be
very useful for signal analysis�

� Detection of the chirp signal

The output of the detector is in general a superposition of a signal and noise� We now discuss how
the signal can be extracted from the noisy output of the detector� We �rst discuss the concept of
matched �ltering and then develop a geometrical theory of signal analysis� Subsequently we will
compare the results of the simulations of the detection process carried out with the theoretically
expected results�

��� Matched 	ltering

In order to process the data from the detector the output g�t� of the detector is passed through a
linear time
invariant �lter� The output of such a detector can be written as

c��� �

Z �

��
g�t�q�t� ��dt �

Z �

��
-g�f�-q�f�e��if�df

where q�t� is the impulse response of the detector�
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Figure �� The graph at the top is a typical detector output data train� The noise being large it is
di�cult to infer the presence of the signal even though it is present� The graph in the bottom is
the output of the �lter which is matched to the signal present in the data train�

The graph in the top in �gure � depicts a typical detector output data train which contains a
gravitational wave signal from the coalescing binary� It is obvious that the presence of the signal
cannot be inferred by inspection� It is necessary to employ special processing to extract the signal
from the noise� Such a process is termed as a �lter in signal analysis and we shall restrict ourselves
to linear transformations of the detector output� The theory of optimal �ltering enables us to
select an optimal �lter suited to the task�

In �gure � the bottom graph shows the output of the �lter through which the detector output
has passed� The key idea here has been to concentrate the signal energy spread over a �nite time
duration to a small amount of time� The presence of the signal is easily seen above the noise�
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��� A Geometric approach to Signal analysis

The output of a gravitational wave detector will comprise of data segments each of duration T
seconds uniformly sampled with a sampling interval of � giving the number of samples in a single
data train to be N � T��� Each data train can be considered as a N 
tuple �x�� x�� � � � � xN��� xk

being the value of the output of the detector at time k�� The set of all such N 
tuples constitutes
an N 
dimensional vector space V where the addition of two vectors is accomplished by the addition
of corresponding time samples� For later convenience we allow each sample to take complex values�
A natural basis for this vector space is the time basis ekm � �km where m and k are the vector and
component indices respectively� Another basis which we shall use extensively is the Fourier basis
which is related to the time basis by a unitary transformation ,U �

�em � ,Umnen �
�p
N

N��X
n��

en exp

�
�
imn

N

�
� ���

em � ,U ymn�en �
�p
N

N��X
n��

�en exp

�
��
imn

N

�
� ���

All vectors in V are shown in boldface and the Fourier basis vectors and components of vectors in
the Fourier basis are highlighted with a �tilde��

A gravitational wave signal from a coalescing binary system can be characterised by a set of
parameters � � ���� ��� � � � � �p��� belonging to some open set of the p
dimensional real space Rp�
The set of such signals s�t��� constitutes a p
dimensional manifold S which is embedded in the
vector space V � The parameters of the binary act as coordinates on the manifold� The basic
problem of signal analysis is thus to determine whether the detector output vector x is the sum
of a signal vector and a noise vector x � s� n or just the noise vector x � n and furthermore
to identify which particular signal vector among all possible� One would also like to estimate the
errors in such a measurement� These statements are pictorially represented in �gure ��

s

n

g = s + n

Figure �� A pictorial representation of the signal manifold�

Essentially the detection process associates the detector output vector with a point on the
manifold which is closest to it�

In the absence of the signal the output will contain only noise drawn from a stochastic process
which can be described by a probability distribution on the vector space V � The covariance matrix
of the noise Cjk is de�ned as

Cjk � njn�k� �	�

where an 2 denotes complex conjugation and an overbar denotes an average over an ensemble� If
the noise is assumed to be stationary and ergodic then there exists a noise correlation function
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K�t� such that Cjk � K�jj � kj��� In the Fourier basis it can be shown that the components of
the noise vector are statistically independent ��� and the covariance matrix in the Fourier basis will

contain only diagonal terms whose values will be strictly positive� -Cjj � -nj-n�j � This implies that
the covariance matrix has strictly positive eigenvalues� The diagonal elements of this matrix -Cjj
constitute the discrete representation of the power spectrum of the noise Sn�f��

We now discuss how the concept of matched �ltering can be used to induce a metric on the
signal manifold� The technique of matched �ltering involves correlating the detector output with
a bank of �lters each of which is tuned to detect the gravitational wave from a binary system with
a particular set of parameters� The output of the �lter with an impulse response q is given in
the discrete case as

c�m� �
�p
N

N��X
n��

-xn-q�n exp ���
imn�N � � ���

The SNR ��� at the output is de�ned to be the mean of c�m� divided by the square root of its
variance�

� � c�m���
c�m� � c�m�

������ � ����

By maximising � we can obtain the expression for the optimal �lter q�m� matched to a particular
signal s�t���� as

-qn�m���
�� �

-sn���� exp ��
imn�N �
-Cnn

� ����

where � has been maximised at the mth data point at the output and where � � �� �� � � � � p where
p is the number of parameters of the signal� We now introduce a scalar product in V � For any two
vectors x and y

hx�yi �
N��X
i�j��

C��ij xiyj �
N��X
n��

-xn-y�n����
-Cnn

� ����

In terms of this scalar product the output of the optimal �lter q matched to a signal s���� can
be written as

c�m���
�� �

�p
N
hx� si � ����

As -Ckk is strictly positive the scalar product de�ned is positive de�nite� The scalar product de�ned
above on the vector space V can be used to de�ne a norm on V which in turn can be used to induce
a metric on the manifold� The norm of a vector x is de�ned as kxk � hx�xi���� The norm for

the optimal �lter can be calculated to give � � hs� si���� The norm of the noise vector will be a

random variable hn�ni��� with a mean value of pN as can be seen by writing the expression for
the norm of the noise vector and subsequently taking an ensemble average�

The distance between two points in�nitesimally separated on S can be expressed as a quadratic
form in the di�erences in the values of the parameters at the two points�

g�
d�
�d�
 � ks��� � d���� s����k� �

���� �s

���
d��

����� ����

�

�
�s

���
�
�s

��


�
d��d�
 � ����

The components of the metric in the coordinate basis are seen to be the scalar products of the
coordinate basis vectors of the manifold�

Since the number of correlations we can perform on
line is �nite we cannot have a �lter
corresponding to every signal� A single �lter though matched to a particular signal will also
�detect� signals in a small neighbourhood of that signal but with a slight loss in the SNR� The
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drop in the correlation can be related to the metric distance on the manifold between the two
in�nitesimally separated signal vectors� In statistical theory the matrix g�
 is called the Fisher
information matrix�

In section ��� we have already introduced the waveform and the four parameters �� � fta�%� ���
��g� We now introduce an additional parameter for the amplitude and call it �� � A� The signal can
now be written as -s�f ��� � Ah�f � ta�%� ��� ��� where � � fA� ta�%� ��� ��g� Numerically the value
of the parameter A will be the same as that of the SNR obtained for the matched �lter provided h
has unit norm� We can decompose the signal manifold into a manifold containing normalised chirp
waveforms and a one
dimensional manifold corresponding to the parameter A� The normalised
chirp manifold can therefore be parameterized by fta�%� ��� ��g� This parameterization is useful
as the coordinate basis vector �

�A will be orthogonal to all the other basis vectors as will be seen
below�

In order to compute the metric and equivalently the Fisher information matrix we use the
continuum version of the scalar product as given in ���� except that we use the two sided power
spectral density� This has the advantage of showing clearly the range of integration in the frequency
space though we get the same result using the discrete version of the scalar product� Using the
de�nition of the scalar product we get
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It turns out that the signal manifold associated with the chirp signal is �at and moreover the
particular set of parameters that we have chosen turn out to constitute a cartesian coordinate
system on the chirp manifold�

��� Choice of 	lters

It is obvious that as the number of signals is in�nite one cannot correlate the output with every
possible signal and we must choose a discrete set of templates which will do the job� The most
obvious strategy would be to take a �nite number of points on the signal manifold evenly placed
on the signal manifold� However it might be much more e�cient not to restrict the set of templates
to lie on the manifold� Such a strategy has been implemented in ���� and the results obtained are
encouraging�

��� Estimation of parameters

We have seen that the detection process involves correlating the detector output with a host of
templates� The most likely parameters of the binary are same as those of the template which
obtains the maximum correlation with the detector output� We would like to compute the errors
inherent in such a measurement� We de�ne the error matrix
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It can be shown ��� that there in a lower bound to the errors in such a measurement� This bound is
called the Cramer
Rao bound and in the limit of high SNRs the errors converge to the Cramer
Rao
bound� The Cramer
Rao bound is valid for unbiased maximum likelihood estimates conditions
which the matched �ltering statistic satis�es� It turns out that the lower bound turns out to be
nothing but the inverse of the Fisher information matrix or equivalently the inverse of the metric
on the signal manifold� Thus

	�
 � g���
 � C�
 � ��	�

In order to test the validity of these bounds we carried out extensive numerical simulations� The
simulations were carried out by adding numerous realizations of noise to a given signal and then
�ltering it through a bank of �lters� The simulations were carried out were representative of the
actual detection process� The assumptions made are listed below�
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�� The initial LIGO power spectrum was used mainly because of computational reasons�

�� We considered BH
NS and BH
BH binaries as their coalescence time is less as compared to
low mass binaries� This leads to lesser computational requirements�

�� Only the restricted �rst post
Newtonian waveform was used� We ignored the spins in the
waveform�

�� The inspiral of the binary is abruptly cut of by the plunge phase which occurs when the
two stars are approximately at a distance of �m from each other� As the exact onset of the
plunge is uncertain we carried out the simulations with the plunge e�ect both included and
excluded�

�� The range of SNRs which we worked with were between �� and ���

��� Results of simulations

Figure �� Dependence of the errors in the estimation of parameters of the post
Newtonian waveform
i�e� f��� � ��� � �ta � �tCg as a function of SNR� The solid line represents the analytically computed
errors whereas the dotted line represents the errors obtained through Monte Carlo simulations�

The results of the simulations are shown in �gure �� We compare the actual errors obtained with
the covariance matrix� The results are shown for the parameters �� �� ta and tC � �� � �� � ta�
The parameter tC is termed as the instant of coalescence and is very accurately determined�

There is a huge discrepancy in the errors obtained via simulations and the errors obtained by
the covariance matrix at SNRs of about ��� Due to the intrinsic weakness of gravitational wave
sources we should not expect to see sources with SNRs higher that �� very frequently� There
is approximately a factor of three di�erence between the two� This implies that more careful
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estimation of the errors would have to be carried out� At a SNR of about �� the errors are in good
agreement with the covariance matrix� It is to be noted that the experimental errors are less than
the lower bound at high SNRs� This is partly due to numerical noise in the simulations and partly
due to the fact that the covariance matrix itself is evaluated using a numerical integration routine�
Moreover the accuracy can also be improved by increasing the sampling rate and hence improving
the resolution in time�

� Conclusion

We have discussed here issues in the data analysis of the gravitational wave signals from coalescing
binary systems� Though a lot of work has been done in this area a lot of scope remains to improve
the detection strategies to be employed� We enumerate below the directions which future work in
this area can take�

�� More accurate waveforms are needed so as to improve the chances of detection�

�� To obtain more realistic bounds on the error matrix� As we have seen the Cramer Rao bound
works only for very high signal to noise ratios�

�� Further use of di�erential geometry in choosing templates optimally�

�� Exploration of other data analysis techniques such as�

 Periodogram
 Resampling algorithms
 non
linear �ltering
 wavelets

�� Optimisation of coincident detections among detectors spread around the globe� This is
termed as the network problem�
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I have been able to think more about stars than I would have� because of the lack of
�paper and pencil�� Paper and pencil necessarily land one in the intricacies of the calcula
tion� I have a number of ideas and I am getting almost impatient to get back to Cambridge
to work them out�

� S� CHANDRASEKHAR
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Abstract

This article gives an elementary overview of the end�state of gravitational collapse according
to classical general relativity� The focus of discussion is the formation of black holes and
naked singularities in various physically reasonable models of gravitational collapse� Possible
implications for the cosmic censorship hypothesis are outlined�
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While an occasion such as this one is personally very gratifying� I must confess to some
misgivings as to the appropriateness of selecting for special honor those who have received
recognition of a particular kind by their contemporaries� I am perhaps oversensitive to this
issue� since I have always remembered what a close friend of earlier years� Professor Edward
Arthur Milne� once said� On an occasion� now more than �fty years ago� Milne reminded
me that posterity� in time� will give us all our true measure and assign to each of us our
due and humble place� and in the end it is the judgement of posterity that really matters�
And he further added� he really succeeds who perseveres according to his lights� una�ected
by fortune� good or bad� And it is well to remember that there is in general no correlation
between the judgment of posterity and the judgment of contemporaries�

I hope you will forgive me if I allow myself a personal re�ection� During the seventies�
I experienced two major heart episodes� Suppose that one of them had proved fatal� as it
well might have� Then there would have been no cause for celebration� But I hope that
the judgment by posterity of my e�orts in science would not have been diminished on that
account� Conversely� I hope that it would not be enhanced on account of a doctor�s skills�

� S� CHANDRASEKHAR



� Introduction

It is expected that a very massive star will not end up either as a white dwarf or as a neutron
star and that it will undergo an intense gravitational collapse towards the end of its life history�
The very late stages in the evolution of such a star will necessarily be determined by quantum
gravitational e�ects� Since we do not yet have a quantum theory of gravity we cannot give a
de�nite description of these very late stages� However we can at least ask what classical general
relativity predicts for the �nal stages of the evolution� It is possible that the answer given by the
classical theory will have some connection with the answer coming from quantum gravity 
 perhaps
the latter will provide a sort of quantum correction to the former�

It is remarkable that seventy years after Einstein proposed the general theory of relativity we
do not have a complete understanding of the theory�s prediction for the end
state of gravitational
collapse� This situation is intimately related with our lack of understanding of the general global
properties of the solutions of Einstein�s equations� The most signi�cant developments to date in
the study of gravitational collapse have been the singularity theorems of Hawking and Penrose
���� In the context of gravitational collapse the theorems show that if a trapped surface forms
during the collapse of a compact object made out of physically reasonable matter the spacetime
geometry will develop a gravitational singularity� By a gravitational singularity one means that
the evolution of geodesics in the spacetime will be incomplete� It is plausible that the formation
of a gravitational singularity in a collapsing star will be accompanied by a curvature singularity 

one or more curvature scalars will diverge�

The general conditions which will ensure the formation of a trapped surface are not well under

stood� This is one of the aspects in which our understanding of gravitational collapse is incomplete�
In this article however we will not be concerned with this particular issue� We will assume that a
gravitational singularity does form either because the conditions of the singularity theorems have
been met or otherwise� All the same it should be mentioned that the astrophysical parameters
for very massive collapsing stars are usually such that a trapped surface can be expected to form
during gravitational collapse�

It maybe the case that the singularity is not visible to a far
away observer because light is not
able to escape the collapsing star� This is essentially what we mean when we say that a black
hole
has formed� The singularity is hidden from view by the event horizon which is the boundary of
that spacetime region surrounding the singularity which cannot communicate with the far
away
observer �Figure ���
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The singularity theorems of Hawking and Penrose do not imply that the collapsing star which
develops a singularity will necessarily become a black
hole� That is even if a trapped surface and
hence a singularity does form during collapse the trapped surface need not hide the singularity
from a far
away observer� This alternate possibility is called a naked singularity �Figure ���

In this case the event
horizon fails to cover the singularity and light from the singularity
could escape to in�nity� One could form a rough picture of this situation by imagining that a
singularity has formed at the center of a collapsing spherical star before its boundary has entered
the Schwarzschild radius� Such a singularity could be visible to an observer watching the collapse�
Also if a singularity forms without the conditions of the singularity theorems having been met it
could be naked as the event horizon may not form at all�
Does gravitational collapse end in a black
hole or a naked singularity� Einstein�s equations

must give a de�nite answer to this question but at present we do not know what that answer is�
One could well ask what di�erence does it make� The di�erence is very signi�cant� If a singularity
is naked one could prescribe arbitrary data on the singular surface 
 this would result in total loss
of predictability in the future of the singularity� If a singularity is hidden behind an event horizon
predictability would be preserved at least in the spacetime region outside the horizon�

Furthermore the issue has great importance for black
hole astrophysics and for the theory of
black
holes� In terms of their astrophysical properties naked singularities could be very di�erent
from black
holes� While �classical� black
holes are one
way membranes and in�owing matter simply
gets sucked into the singularity quite the opposite may hold for a naked singularity� matter might
be thrown out with great intensity from near a naked singularity� The validity of many theorems
on black
hole dynamics depends on the assumption of absence of naked singularities� The extensive
and successful applications of black
holes in astrophysics and the detailed studies of their profound
and elegant properties does lend strong support to the belief in their existence� Nonetheless it is
an open question as to whether gravitational collapse necessarily ends in a black
hole or could in
some cases lead to a naked singularity� If the latter is the case then one needs to know what kind
of stars end as naked singularities�

In the absence of an answer to the above question the basis for black
hole physics and its
applications is the Cosmic Censorship Hypothesis� In somewhat non
rigorous terms the hypothesis
could be stated as

 Gravitational collapse of physically reasonable matter starting from generic
initial data leads to the formation of a black
hole not a naked singularity�
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We will elaborate in a moment on the italics� Such a hypothesis was �rst considered by
Penrose in ��� where he asked as to whether there exists a Cosmic Censor who would always cloth
a singularity with an event horizon� �It is interesting though probably not well
known that on
occasion Penrose has also written in support of naked singularities ����� The censorship hypothesis
has remained unproved despite many serious e�orts �for a review of some of the attempts see �����
Part of the di�culty lies in not having a unique rigorous statement one could try to prove� Studying
gravitational collapse using Einstein equations is a formidable task and evidence for formation of
a black
hole is as limited as for a naked singularity� This is simply because very few examples of
dynamical collapse have been worked out and not many exact solutions are known� Until recently
the widely held belief has been that the hypothesis must be right� however studies over the last few
years have caused at least some relativists to reconsider their earlier view� It is obvious though
not often emphasized that falsi�cation of the hypothesis does not necessarily rule out black
holes
altogether but might allow only a subset of the initial data to result in naked singularities� The
former alternative �i�e� no black
holes� is extremely unlikely given the great richness of black
hole
physics and astrophysics�

By �physically reasonable matter� one usually means that the �classical� matter obeys one or
more of the energy conditions �for a discussion see ����� The weak energy condition for instance
requires that the pressures in the collapsing matter not be too negative and the energy density be
positive� By �generic initial data� one means that the solution of Einstein equations being used to
study collapse has as many free functions as are required for the initial data to be arbitrary�

Many people consider naked singularities to be a disaster for general relativity and for physics
as such� We have mentioned that naked singularities could result in a total loss of predictability to
their future� However if we make the natural assumption that the ultimate theory of gravity will
preserve predictability �in some suitable sense of the concept� the occurrence of naked singularities
in general relativity will signal a real need for modi�cation of the theory� Such a de�nite �and rare�
signal could only help improve our understanding of gravitation instead of being a disaster� To
many other people naked singularities are a positive asset for astrophysics 
 the possibility of
emission of light from high curvature regions close to the singularity might make such singularities
extraordinary energy sources� Sometimes a view is expressed that in any case a quantum theory
of gravity will avoid singularities altogether 
 in that case how does it matter whether the classical
theory �general relativity� predicts the singularities to be naked or covered� Our discussion above
suggests that even if quantum gravity were to avoid singularities the spacetime regions that are
naked according to the classical theory will behave very di�erently from black
holes in the quantized
theory as well� Besides the relevance of the hypothesis to black
hole astrophysics cannot be
overlooked�

Perhaps it is important to mention that the validity of the hypothesis could be discussed at
two distinct levels� Firstly we need to �nd out if it holds in general relativity� However even if
relativity theory allows naked singularities it could be that actual stars may not end up as naked
singularities� This could happen if the initial conditions necessary for a naked singularity to form
are simply not observed in the real world� Thus violation of the hypothesis at a theoretical level
might compel us to consider replacing general relativity by a better theory but may not have
observational consequences�

The failure to prove the hypothesis has led over the last ten years or so to a change in the
approach towards the problem� Attention has shifted to studies of speci�c examples of gravitational
collapse� For instance people have been studying spherical gravitational collapse with a particular
choice of the matter stress tensor 
 like dust perfect �uids and massless scalar �elds� These and
other examples often show that collapse of physically reasonable matter can end either in a black

hole or a naked singularity depending on the choice of initial data� To a degree such examples
go against expectations that the censorship hypothesis is correct� It however does remain to be
seen as to whether or not generic initial data will lead to naked singularities� These examples can
be regarded as good learning exercises 
 at the very least we learn about the properties of naked
singularities which form� Perhaps these very properties might suggest that the singularity though
naked does not violate the spirit of the hypothesis�
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In this article we will attempt an overview of the end state of gravitational collapse according to
general relativity the focus of discussion being the censorship hypothesis� Rather than reviewing
the attempts to prove the hypothesis we will concern ourselves with recent studies of models of
collapse� It is relevant to note that these models typically examine the properties of curvature
singularities that form during collapse� If a naked curvature singularity does form the issue of its
geodesic incompleteness is to be handled separately 
 an aspect we will consider brie�y towards
the end of the review� Also we will not discuss examples of static naked singularities in general
relativity although many such are known�

In Section II spherical gravitational collapse for various forms of matter is reviewed� We also
discuss some properties of the naked singularities found in these models� Section III is a brief
discussion of the limited results on non
spherical collapse� In the last section a critical comparison
of the various existing results and their interpretation is attempted�

� Spherical Gravitational Collapse

It is only natural that most of the examples studied are for the idealized case of spherical col

lapse in asymptotically �at backgrounds� Even here one does not yet know the conditions for
formation of black
holes and naked singularities� Some results are known for speci�c forms of
energy
momentum tensors� Often there are striking similarities amongst results for di�erent kinds
of matter suggesting an underlying pattern� We review results for collapse of dust perfect �uids
with pressure a radiating star described by the Vaidya metric massless scalar �elds and spherical
collapse for matter with no restriction on the energy
momentum tensor except the weak energy
condition�

��� Dust collapse

By dust one means a perfect �uid for which the pressure is negligible and is set to zero� This highly
idealized description has the advantage that an exact solution of Einstein equations is known which
describes the collapse of a spherical dust cloud in an asymptotically �at spacetime� This is the
Tolman
Bondi solution given independently by the two authors ���� The evolution of the cloud is
determined once the initial density and velocity distribution of the �uid has been given� Because
of spherical symmetry these distributions will be functions only of the radial coordinate r so that
the initial data consists of two arbitrary functions of r� The cloud is assumed to extend upto a
�nite radius and the interior dust solution is matched to a Schwarzschild exterior� Since we are
interested in collapse the velocity of each �uid element is taken to be towards the center of the
cloud� It can be shown that starting from regular initial data the collapse leads to the formation
of a curvature singularity�

A very special case of the Tolman
Bondi solution is a dust cloud whose initial density distribu

tion is homogeneous and the velocity increases linearly with the physical distance from the center�
This of course is the Friedmann solution matched to a Schwarzschild exterior and was used by Op

penheimer and Snyder ��� to provide the �rst example of dynamical collapse in general relativity�
Starting from regular initial data the cloud develops a curvature singularity at its center which is
not visible� This was the �rst theoretical example of black
hole formation �Figure ��i���

For many years the work of Oppenheimer and Snyder has remained a model for how a black

hole might form in gravitational collapse� The collapsing star will enter its Schwarzschild radius
become trapped and proceed to become singular and the singularity will be hidden behind the
event horizon� The censorship hypothesis was also originally inspired essentially by this work
because not much more was known anyway about properties of gravitational collapse� In hindsight
one might be surprised with the degree of generality attributed to results arising from the study
of a model star that is spherically symmetric homogeneous and made of dust 
 none of the three
properties are obviously true for a real star�

Since the exact solution of Tolman and Bondi was known it would have been quite natural to
extend the work of Oppenheimer and Snyder to inhomogeneous dust collapse described by this
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exact solution� However for nearly three decades after the paper of Oppenheimer and Snyder
was published very little work appears to have been done on gravitational collapse� Presumably
there were not enough reasons for interest in the subject until the discovery of quasars in the
sixties and the development of singularity theorems� It is also true though that analysis of light
propagation in the collapsing inhomogeneous dust star is a di�cult task and tractable methods
have been developed only in recent years� The �rst work to deal with the inhomogeneous Tolman

Bondi model appeared in the seventies �	�� Since then many investigations of inhomogeneous dust
collapse have taken place ��� from the point of view of the censorship hypothesis and the last
word on this particular model has not yet been said�

Yodzis et al� �	� were investigating what are called shell
crossing singularities �or caustics�
which form due to the intersection of two collapsing dust
shells at a point other than the center�
These are curvature singularities and they are also naked 
 but are not regarded as violation of
censorship since there is evidence ���� that such singularities are gravitationally weak �as discussed
later in the article�� They are similar to the shell
crossing singularities that occur in Newtonian
gravity also and it is believed that spacetime can be extended through such singularities�

Of a more serious nature are the shell
focussing singularities which form at the center of the
cloud 
 they result from the shrinking of collapsing shells to zero radius� It was found by various
people that for some of the initial density and velocity distributions the collapse ends in a naked
singularity whereas for other distributions it ends in a black
hole� Also both the black
hole and
naked singularity solutions result from a non
zero measure set of initial data� In particular there
was found a one
parameter family of solutions �described say by the parameter �� such that for
�  �c the collapse leads to a black
hole whereas for � � �c it leads to a naked singularity�

The space
time diagram for inhomogeneous dust collapse leading to a naked shell
focussing
singularity is shown in Figure ��ii� and should be contrasted with Figure ��i� for Oppenheimer

Snyder collapse� Of particular importance is the di�erence in the evolution of trapped surfaces
in the two cases and the fact that for inhomogeneous collapse di�erent shells become singular
at di�erent times unlike in the homogeneous case� For a discussion of trapped surfaces in dust
collapse see Jhingan et al� in ����
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At this stage we need to distinguish between a locally naked singularity and a globally naked
singularity� We say the singularity is locally naked if light
rays do emerge from the singularity but
fall back to the center without escaping the event
horizon� Such a singularity will be visible to an
infalling observer who has entered the Schwarzschild radius but cannot be seen by an asymptotic
observer �Figure ��� A singularity is called globally naked if light
rays emerging from the singularity
escape the event
horizon and reach an asymptotic observer� We say the singularity is visible if there
are light
rays emerging from the singularity 
 a visible singularity may be locally or globally naked�
We say that a piece of the singularity is covered if it is not even locally naked� In our terminology
a locally naked singularity is also a black
hole� In this article when we call a singularity naked
we mean it is globally naked� The weak censorship hypothesis allows for the occurrence of locally
naked singularities but not globally naked ones whereas strong censorship does not allow either�

As an illustration we describe in some detail the gravitational collapse of an inhomogeneous
dust cloud starting from rest� It can be shown that the singularity resulting from the collapse of
shells with r � � is covered� At most the singularity forming at r � � �the central singularity�
can be naked� The conditions for the central singularity to be naked are given as follows� Let
the initial density ��R� as a function of the physical radius R be given as a power
series near the
center�

��R� � �� �
�

�
��R

� �
�

�
��R

� � ���

where �� is the initial central density and �� and �� are respectively the second and third derivatives
at the center� We assume that the density decreases with increasingR hence the �rst non
vanishing
derivative is negative� It turns out that if ��  � the singularity is visible� If �� � � and ��  �

then one de�nes a parameter � � j��j������ � The singularity is visible for � � ����� and covered
for �  ������ If �� � �� � � the singularity is covered and we have the formation of a black
hole�
The Oppenheimer
Snyder example is a subset of this case� In the case of a visible singularity
entire families of light
rays emerge from the singularity� Note that ��  � is generic and �� � �
non
generic hence generic dust collapse leads to a visible singularity�
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We �nd that there is a transition from naked singularity type behaviour to black
hole type
behaviour as the density pro�le is made less inhomogeneous by setting more and more density
derivatives to zero� In the cases where the singularity is visible the initial density distribution
through the star then determines whether the singularity is locally or globally naked 
 examples
of both kind occur� When the collapsing dust cloud has an initial velocity the overall picture
regarding the nature of the singularity is essentially the same as described here for the case of a
cloud collapsing from rest� A Penrose diagram for the naked singularity is shown in Figure �� In
summary when one allows for inhomogeneity in the density distribution the nature of gravitational
collapse is quite di�erent from what Oppenheimer and Snyder found for the homogeneous case�
Some open issues relating to dust collapse are pointed out later in the discussion�

��� Including Pressure

The description of collapsing matter as dust is an idealization and a realistic study of collapse
must take pressure gradients into account� However useful exact solutions of Einstein equations
describing spherical collapse of matter with pressure are hard to come by and as a result a clear
picture of the kind presented above for dust does not yet exist� It is in fact remarkable that we
do not even know how the Tolman
Bondi solution would change under the introduction of "small#
pressures� For instance if we are considering an equation of state p � k� for a perfect �uid with
k very close to zero it is not clear whether the solution is a perturbation to the dust solution�
In this section we summarize the few known results on collapse of relativistic �uids vis a vis the
censorship hypothesis�

When pressure is included the energy momentum tensor Tik for matter undergoing spherical
collapse is conveniently described in a comoving coordinate system� In these coordinates Tik is
diagonal and its components are the energy density the radial pressure and the tangential pressure�
�The only exception to this general description of the matter is the case of null dust described by
the Vaidya spacetime and reviewed below�� For a perfect �uid the two pressures are identical�
Since perfect �uids are easier to study compared to imperfect ones they have inevitably received
greater attention�

An important early paper on the collapse of perfect �uids is that of Misner and Sharp �����
They set up the Einstein equations for this system in a useful physical form bringing out the
departures from the Oppenheimer
Volko� equations of hydrostatic equilibrium� However they did
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not consider solutions of these equations� Lifshitz and Khalatnikov and Podurets ���� worked
out the form of the solution near the singularity for the equation of state of radiation p � ����
Their approach has not received much attention but appears to o�er a promising starting point
for investigating censorship�

A signi�cant development was the work of Ori and Piran ���� who investigated the self
similar
gravitational collapse of a perfect �uid with an equation of state p � k�� It is readily shown that
the collapse leads to the formation of a curvature singularity� The assumption of self
similarity
reduces Einstein equations to ordinary di�erential equations which are solved numerically along
with the equations for radial and non
radial null geodesics� It is then shown that for every value
of k �in the range investigated� � � k � ���� there are solutions with a naked singularity as well
as black
hole solutions� Each kind of solution has a non
zero measure in the space of spherical
self
similar solutions for this equation of state� The issue as to which initial data �density pro�le
velocity pro�le and value of k� leads to naked singularities has not been fully worked out though
and is an interesting open problem� �We have in mind a comparison with the results for dust
quoted above��

An analytical treatment for this problem was developed by Joshi and Dwivedi ����� After
deriving the Einstein equations for the collapsing self
similar perfect �uid they reduce the geodesic
equation in the neighborhood of the singularity to an algebraic equation� The free parameters
in this algebraic equation are in principle determined by the initial data� The singularity will be
naked for those values of the parameters for which this equation admits positive real roots� Since
this is an algebraic equation it will necessarily have positive roots for some of the values of the
parameters and for the initial data corresponding to such values of the parameters the singularity
is naked� It is shown that families of non
spacelike geodesics will emerge from the naked singularity�
As in the case of Ori and Piran�s work the explicit relation between the initial data and the naked
singularity has not yet been worked out� Also it is not clear as to what is the measure of the
subset of solutions leading to a naked singularity or a black
hole� This analysis was extended to a
self
similar spacetime with a general form for Tik �����

On physical grounds imperfect �uids are more realistic than perfect ones� very little is known
about their collapse properties though� An interesting paper is the one by Szekeres and Iyer ����
who do not start by assuming an equation of state� Instead they assume the metric components
to have a certain power
law form and also assume that collapse of physically reasonable �uids
can be described by such metrics� The singularities resulting in the evolution are analysed with
attention being concentrated on shell
focussing singularities at r � �� They �nd that although
naked singularities can occur this requires that the radial or tangential pressure must either be
negative or equal in magnitude to the density�
Lastly we mention the collapse of null dust �directed radiation� described by the Vaidya space


time ����� Since the exact solution is known the collapse has been thoroughly investigated ��	� for
the occurrence of naked singularities� One considers an infalling spherical shell of radiation and
imagines it as being made of layers of thin shells� A thin shell becomes singular when its radius
shrinks to zero� Let the shells be labelled by the advanced time coordinate v with v � � for the
innermost shell and let m�v� be the Vaidya mass function� It can be shown that the singularity
at v � � is covered� For v � � the singularity is naked if � � � dm�v��dvjv�� is less than or equal
to ��	 and covered otherwise� These results bear an interesting similarity with those for dust
described in the previous section�

It will be evident from the previous few paragraphs that our understanding of spherical collapse
when pressure gradients are included is rather incomplete� Ultimately one would like to develop
the kind of clear picture that is available for dust collapse� It is interesting however that the
collapse of a self
similar perfect �uid and of the �uids considered by Szekeres and Iyer admits
both black
hole and naked singularity solutions� This also brings forth an astrophysical issue 

what is the relevant equation of state in the �nal stages of collapse of a star� Could it be that the
initial data leading to a naked singularity is not being realised astrophysically�
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��� Collapse of a scalar 	eld

One could take the viewpoint that the description of matter as a relativistic �uid is phenomenolog

ical and that the censorship hypothesis should be addressed by considering matter as fundamental
�elds� As a �rst step one could study the spherical collapse of a self
gravitating massless scalar
�eld� A good deal of work has been done on this problem over the last few years and exciting
results have been found� Here we can provide only a very brief overview�

In a series of papers Christodoulou has pioneered analytical studies of scalar collapse ����� He
established the global existence and uniqueness of solutions for the collapsing �eld and also gave
su�cient conditions for the formation of a trapped surface� For a self
similar scalar collapse he
showed that there are initial conditions which result in the formation of naked singularities� He has
claimed that such initial conditions are a subset of measure zero and hence that naked singularity
formation is an unstable phenomenon�

Christodoulou was also interested in the question of the mass of the black
hole which might
form during the collapse of the scalar wave
packet� Given a one parameter family S�p� of solutions
labelled by the parameter p which controls the strength of interaction it was expected that as p
is varied there would be solutions with p � pweak in which the collapsing wave
packet disperses
again and solutions with p � pstrong which have black
hole formation� For a given family there
was expected to be a critical value p � p� for which the �rst black
hole appears as p varies from
the weak to the strong range� Do the smallest mass black holes have �nite or in�nitesimal mass
����� This issue would be of interest for censorship since an in�nitesimal mass would mean one
could probe arbitrarily close to the singularity� Of course when one is considering real stars a
�nite lower limit on the mass of the collapsing object arises because non
gravitational forces are
also involved�

This problem was studied by Choptuik ���� numerically and some remarkable results were
found� He con�rmed that the family S�p� has dispersive solutions as well as those forming black

holes and a transition takes place from one class to the other at a critical p � p�� The smallest
black
holes have in�nitesimal mass� Near the critical region the massMbh of the black
hole scales
as Mbh � �p � p���  where � is a universal constant �i�e� same for all families� having a value
of about ����� The near critical evolution can be described by a universal solution of the �eld
equations which also has a periodicity property called echoing or discrete self
similarity� That is
it remains unchanged under a rescaling �r� t� � �e�n�r� e�n�t� of spacetime coordinates� n is an
integer and � is about ���� Subsequently these results have been con�rmed by others ����� The
occurrence of black
holes with in�nitesimal mass goes against the spirit of censorship� The critical
solution �p � p�� is a naked singularity� However since the naked singularity is being realised for
one speci�c solution in the one parameter family it is a measure zero subset�

Attempts have been made to construct analytical models which will reproduce Choptuik�s
numerical results ����� Since it is di�cult to make a model with discrete self
similarity continuous
self
similarity is assumed instead� Brady showed that there are solutions which have dispersal
as well as solutions which contain a black
hole or a naked singularity� It would be of interest to
relate his results to the naked singularity solutions found by Christodoulou for self
similar collapse�
Recently Gundlach has constructed a solution with discrete self
similarity which agrees with the
critical universal solution found numerically by Choptuik �����

Similar critical behaviour has also been found in numerical studies of collapse with other forms
of matter� Axisymmetric collapse of gravitational waves was shown to have a � of about ���� and
� � ��� ����� For spherical collapse of radiation �perfect �uid with equation of state p � ���� the
critical solution has continuous self
similarity and � of about ���� ����� However it has become
clear now that the critical exponent � is not independent of the choice of matter� A study of
collapse for a perfect �uid with an equation of state p � k� shows that � depends on k ����� For a
given form of matter there appears to be a unique � but the value changes as the form of Tik is
changed� Further studies of critical behaviour are reported in ��	��

The models described in this section exhibit a naked
singularity like behaviour for near
critical
solutions 
 such solutions are presumably of measure zero on the space of all solutions� In the
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supercritical region the collapse is said to lead to the formation of a black
hole� This raises a
question as to how these results say the supercritical solutions for radiation �uid collapse are
consistent with those of Ori and Piran who do �nd naked singularities� �The Ori
Piran naked
singularity lies in the supercritical region�� It maybe that when one numerically �nds a singularity
at the center r � � one is not easily able to tell whether this is a black
hole or a naked singularity
and this may have to be investigated further�

It is perhaps also relevant to note that collapse of real stars which proceed to become singular is
expected to be described by supercritical solutions� Thus the naked singularity observed near the
critical region while of major theoretical interest may not have astrophysical implications� This
further emphasizes the need for investigating whether the singularity being observed numerically
in the supercritical region is necessarily covered by the horizon or could be naked�

It is undoubtedly true that these studies of critical behaviour have opened up an entirely
new aspect of gravitational collapse and the related issue of censorship� Obtaining a theoretical
understanding of these numerically observed phenomena is an important open problem�

��� Spherical collapse with general form of matter

One �nds a certain degree of similarity in the collapse behaviour of dust perfect �uids and scalar
�elds 
 in all cases some of the initial distributions lead to black holes and other distributions lead
to naked singularities� This would suggest an underlying pattern which is probably characterized
not by the form of matter but by some invariants of the gravitational �eld� The role of matter
may simply be that of determining which part of the parameter space these invariants lie in� Hence
studies of collapse which put no restriction on Tik apart from an energy condition should prove
useful �still maintaining spherical symmetry��

An interesting attempt in this direction has been made by Dwivedi and Joshi in ���� where
they generalized their earlier work on dust collapse and self
similar �uids� They assumed a general
Tik obeying the weak energy condition and also that the collapsing matter forms a curvature sin

gularity at r � � �the central singularity�� As we noted earlier in the comoving coordinate system
matter is described by its energy density and the radial and tangential pressures� Along with these
three functions three functions describing the metric enter a set of �ve Einstein equations which
are augmented with an equation of state in order to close the system� The geodesic equation for
radial null geodesics is written in the limit of approach to the singularity and it is shown that the
occurrence of a visible singularity is equivalent to the occurrence of a positive real root for the
geodesic equation suitably written� Since this equation depends on free initial data it follows that
for a subset of the initial data there will be positive real roots and the singularity will be visible�

This approach needs to be pursued further in order to �nd out whether or not the naked
singularities are generic� Also it is of interest to work out as to exactly which kind of initial
data lead to naked singularities� These are di�cult problems in the absence of known exact
solutions� Another interesting attempt at treating spherical collapse without restricting Tik is due
to Lake ����� He concluded that a visible central singularity could form if the mass function in the
neighborhood of the singularity satis�es certain conditions� The relation of these conditions with
the initial data is not yet apparent�

��� Properties of naked singularities

It is evident that energy conditions by themselves do not restrict the occurrence of naked singular

ities� One would then like to examine in some detail properties of these naked singularities so as
to see if these properties might contain clues for a censorship hypothesis� We review below some
of the important features of the naked singularities found in various models�
Curvature strength�
When a collapsing star develops a curvature singularity the energy density also becomes singular�
However �nite physical volumes may or may not be crushed to zero volume as the singularity is
approached� This could be used as a criterion for judging the physical seriousness of the singularity

�	



and also for the possible extendibility of spacetime through the singularity ����� We call a singularity
a strong curvature singularity if collapsing volume elements do get crushed to zero at the singularity
and a weak curvature singularity if they do not� �The terms weak and strong singularity are
sometimes used in the literature with a di�erent meaning� We use them here in Tipler�s sense�� It is
believed that spacetime cannot be extended through a strong singularity but is possibly extendible
through a weak one� A rigorous proof for this is not yet available but is being attempted by some
relativists �for detailed studies see ������ Clarke and Krolak ���� gave necessary and su�cient
quantitative criteria for the singularity to be strong in terms of the rate of growth of curvature
along outgoing geodesics as the singularity is approached�

A strong naked singularity is regarded as a more serious violation of censorship as compared
to a weak one� For instance the shell
crossing type singularities are gravitationally weak �����
Newman ���� studied the naked central singularity in Tolman
Bondi dust collapse for a wide class
of initial data and showed it to be weak� On this basis it was conjectured in ���� that strong naked
singularities do not occur in collapse� It was however shown by various people ���� that inclusion
of initial data not considered by Newman gives rise also to strong central naked singularities in
dust� Interestingly it has recently become clear that the initial data leading to these strong naked
singularities is non
generic whereas the data leading to a weak naked singularity is generic �����
In this sense Newman�s conjecture does hold for dust collapse� But strong naked singularities have
been found in other models 
 for instance in the naked singularities in the Vaidya spacetime where
they arise from generic initial data� They were also found by Ori and Piran in their study of the
self
similar perfect �uid� No results on strength seem to be known for scalar collapse� The general
Tik studied by Dwivedi and Joshi would lead to a strong naked singularity for some initial data 

however the genericity of such initial data is an open issue� Thus the generality of strong naked
singularities remains unclear and it still might be possible to formulate a censorship hypothesis
along the lines of Newman�s conjecture�
Are naked singularities massless��
In all known examples of naked singularities the mass of the collapsing object �well
de�ned in
spherical symmetry with a vacuum exterior� is found to be zero at the point where the singularity
forms� There is evidence that this is a general property of naked singularities in spherical collapse
����� On the other hand the black hole singularity is always found to be massive� Since a massless
singularity might be thought of as having no associated gravitational �eld this has led to the
suggestion that such singularities do not violate censorship� Note however that even from this
massless naked singularity entire families of geodesics emerge and it is not clear whether it is the
mass or the outgoing geodesics which are a more important property of the naked singularity�
Redshift�
In known examples of naked singularities for dust and perfect �uids the redshift along outgoing
geodesics emerging from the singularity is found to be in�nite �when calculated for observers in
the vacuum region�� This could be interpreted to mean that no "information# is being transmitted
from the naked singularity and could be yet another approach to preserving censorship�
Stability and Genericity�
This of course is the most important issue relating to the naked singularity examples and a notion
of stability is hard to de�ne� The most direct de�nition of stability �equivalently genericity�
of naked singularities would be simply as follows� If a solution of Einstein equations describing
collapse leading to a naked singularity has as many free functions as required for arbitrary initial
data the solution is stable� �One is reminded here of the methods adopted by Belinskii Lifshitz
and Khalatnikov to show that general solutions of Einstein equations contain singularities�� Of
course progress in such a broad sense is hopelessly di�cult and one talks of stability of a given
solution under speci�c kinds of perturbations� For instance one would consider stability of the
solution against change of initial data against change of equation of state and against non
spherical
metric perturbations� From these viewpoints very little is known about the stability of the naked
singularity models mentioned in this article� �It is important to note that equally little is known
about the stability of the black
holes which form in these models during collapse� Various studies
show that the event horizon is stable to small perturbations ���� and hence the singularity is stable
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but it could be either naked or covered��
One very useful way to address stability of naked singularities is to study the blue
shift in


stability of the Cauchy horizon� One considers ingoing waves starting from null in�nity as they
approach the Cauchy horizon� If they develop an in�nite blue
shift along the Cauchy horizon this
in some sense is like saying this horizon would be �destroyed� and the spacetime region beyond
which is exposed to the naked singularity would no longer be accessible� Hence predictability will
be preserved in the observable spacetime region� Interestingly enough it has been found that the
Cauchy horizon in the dust and perfect �uid examples does not have a blue
shift instability�
Quantum e�ects�
The censorship hypothesis as such is concerned with the nature of singularities in classical general
relativity� However even if naked singularities do occur in the classical theory one could ask if
their formation would be avoided when quantum e�ects in their vicinity are taken into account�
This would be a quantum cosmic censorship� Some investigations have taken place in this direction
��	 ��� and this very interesting question deserves to be pursued further� Essentially the idea is to
repeat for a naked singularity the kind of calculation Hawking carried out to show that quantum
e�ects cause black
holes to radiate� Since regions of very high curvature are exposed near the naked
singularity intense particle production can be expected� It is typically found in these calculations
that as a result of the produced particles the energy
momentum �ux at in�nity diverges 
 in
spite of the fact that the naked singularity is massless and the classical outgoing geodesics have
in�nite redshift� Although back
reaction calculations are hard to carry out the in�nite �ux would
suggest that the naked singularity formation will be avoided� From the quantum viewpoint naked
singularities appear to be explosive events and the outgoing �ux might be their only possible
observational signature� It is worth studying the properties of this �ux in detail to understand
what observations if any can detect naked singularities if they do occur in nature�

Thus we �nd that properties like curvature strength masslessness redshift blue
shift insta

bility and quantum e�ects give a mixed sort of picture regarding the signi�cance of these naked
singularity examples� An optimistic assessment of this situation is that there is a good deal of
richness in the problem and much to think about before we can decide one way or the other�

� Non�spherical gravitational collapse

As we have seen there are examples of naked singularities in spherical collapse� By assuming that
the evolution can be continued beyond the Cauchy horizon one can conclude that the collapsing
star will eventually shrink below its Schwarzschild radius and the event horizon will form �according
to the infalling observer�� There is also evidence that the horizon is stable to small perturbations�
However if there are large departures from spherical symmetry the picture could be di�erent and
the horizon may not form at all� The naked singularity so forming would qualitatively be of a
di�erent kind compared to the ones seen in spherically symmetric spacetimes�

Our knowledge of exact solutions in the non
spherical case is inevitably even more limited than
for spherical systems and one must again resort to introducing some symmetry� An important
early study was due to Thorne ���� and was motivated by the work of Lin Mestel and Shu ����
on the collapse of Newtonian spheroids� Thorne examined the collapse of an in�nite cylinder and
showed that it develops a curvature singularity without an event horizon forming� Considerations
such as these led him to propose what came to be known as the hoop conjecture which he stated
as follows �����

 Horizons form when and only when a mass M gets compacted into a region whose circum

ference in EVERY direction is C �� �
M�

According to the conjecture collapsing objects which become so asymmetric as to attain a
circumference which is greater than the bound will not develop horizons� hence if a singularity
forms it will be naked� We note that even if the conjecture holds a naked singularity can form
�as it does sometimes in spherical collapse� but an event horizon will also form� One could say
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that the naked singularities which form when the hoop conjecture holds are of a less serious nature
than those which form when the conjecture does not hold� In the former case an infalling observer
cannot communicate with asymptotic observers after crossing the horizon while in the latter case
no such restriction arises�

Important numerical simulations were carried out by Shapiro and Teukolsky ���� to test the hoop
conjecture� They studied the gravitational collapse of homogeneous non
rotating oblate and prolate
spheroids of collisionless gas starting from rest� Maximal slicing is used and the evolution of the
matter particles is followed with the help of the Vlasov equation in the self
consistent gravitational
�eld� The development of a singularity is detected by measuring the Riemann invariant at every
point on the spatial grid� Since an event horizon can be observed only by tracking null rays
inde�nitely they instead search for the formation of an apparent horizon �the boundary of trapped
surfaces� 
 the existence of the apparent horizon can be determined locally� If a spacetime region
has an apparent horizon it will also have an event horizon to its outside�

They found that oblate spheroids �rst collapse to thin pancakes but then the particles overshoot
and ultimately the distribution becomes prolate and collapses to a thin spindle� An apparent
horizon develops to enclose the spindle which eventually becomes singular and a black hole is
formed� The minimum exterior circumference in the polar and equatorial directions is consistent
with the requirements of the hoop conjecture� The collapse of prolate spheroids leads however
to the formation of a spindle singularity with no evidence for an apparent horizon covering the
singularity� The initial dimensions of the spheroid are such that the minimum circumference at the
time of formation of the singularity exceeds �
M � The collapse of smaller prolate spheroids leads
to spindle singularities that are covered by a horizon again favouring the conjecture� Shapiro and
Teukolsky suggested noting the absence of an apparent horizon for large prolate con�gurations
that the resulting spindle singularity is naked and hence that the hoop conjecture holds�

They were also careful to point out that the absence of an apparent horizon up until the time
of singularity formation does not necessarily imply the absence of an event horizon� Hence strictly
one could not conclude that the singularity is necessarily naked� Wald and Iyer ���� showed this
mathematically with an example 
 they demonstrated that Schwarzschild spacetime can be sliced
with nonspherical slices which approach arbitrarily close to the singularity but do not have any
trapped surfaces� Another analytical example showing that absence of apparent horizon does not
imply the singularity is naked can be found in ���� where inhomogeneous spherical dust collapse
was studied� However in support of their conclusion Shapiro and Teukolsky pointed out that null
rays continue to propagate away from the region of the singularity until when the simulations are
terminated and that the formation of an event horizon is unlikely� It is perhaps fair to conclude
that while their numerical simulations are of major importance and their results suggestive further
investigations are necessary to settle the issue� An analytical demonstration analogous to these
simulations was worked out in �����

Another interesting analytical example is the quasi
spherical dust solution due to Szekeres
which also admits naked singularities ���� including those having strong curvature �����

� Discussion

We now attempt a critical comparison of the results reviewed here and discuss their implications
for the censorship hypothesis� �For other recent reviews of cosmic censorship see Clarke ��� and
Joshi ������ Let us begin with a quick summary even though it amounts to repetition�

Very massive stars are expected to end their gravitational collapse in a singularity� There has
been around an unproven conjecture that the singularity will be hidden behind an event horizon
and hence such stars will become black
holes� If the conjecture is false some stars can end up
as naked singularities 
 this will have major implications for black
hole physics and astrophysics
and for classical general relativity� Since a proof for the conjecture has not been forthcoming
relatively modest attempts have been made to study speci�c examples of gravitational collapse�
These studies which so far have been mostly for spherical collapse have thrown up some surprises�
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The collapse does not always end in a black
hole� for some initial data it ends in a naked singularity
and this is true for various forms of matter�
The spherical gravitational collapse of inhomogeneous dust leads to weak naked singularities

for generic initial data� the strong naked singularities which do form for some data are non
generic�
The naked singularity irrespective of whether it is weak or strong is massless� The outgoing
geodesics have an in�nite redshift and the Cauchy horizon does not have a blue
sheet instability�
The collapse of a self
similar perfect �uid also exhibits strong curvature naked singularities for
some initial data 
 these are again massless have in�nitely redshifted outgoing geodesics and
the Cauchy horizon is stable� Numerical studies of scalar �eld collapse suggest that the critical
solution is a naked singularity� elsewhere in the data space the collapse ends either in dispersal
or a singularity� It seems unclear as to whether this singularity is de�nitely covered or could
be naked� For collapse of a general form of matter there is an existence proof that for some of
the data the singularity will be naked and strong 
 its genericity is an open issue� There appear
to be no conclusive studies on non
spherical perturbations of these solutions or on non
spherical
collapse as such 
 the simulations of Shapiro and Teukolsky are however an important progress in
this direction�

A broad conclusion is that at this early stage in collapse studies one does not have enough
evidence to take a grand decision about the validity of the censorship hypothesis one way or the
other� Further it does not appear very useful right now to try and prove a speci�c version of the
hypothesis� Consider just as an example the following proposal�

 Gravitational collapse of physically reasonable matter starting from generic initial data leads
to the formation of a black
hole or a naked singularity� The naked singularity is massless
and gravitationally weak the Cauchy horizon does not have a blue
shift instability and the
redshift along outgoing geodesics is in�nite�

This does not appear to be a very interesting proposal to prove given the number of properties
attached to the naked singularity nor is it certain that it will survive further studies of collapse
models� It is not even clear whether this proposal proves or disproves cosmic censorship�

What is noteworthy however is that naked singularities do occur in dynamical collapse side by
side with black
hole solutions so to say� In order to address the censorship hypothesis one has to
assess the signi�cance of their properties and also generalise the models studied so far� There are
perhaps three important questions� �i� what is the role of the form of matter� �ii� are the naked
singularities genuine features of the spacetime geometry� �iii� do they have observational e�ects�
We respond to these questions brie�y�

The form of matter in these models is dust a perfect �uid a scalar �eld or where an existence
proof has been given a general Tik obeying the weak energy condition� There are quite a few
views on using dust as a form of matter in these studies which we try to enumerate� Firstly since
dust collapse can give rise to singularities even in Newtonian gravity or in special relativity it is
said that the �naked� singularities being observed in general relativity have nothing to do with
gravitational collapse� This view appears acceptable for shell
crossing and the weak shell
focussing
naked singularities� But it is di�cult to accept it for the strong naked singularities which crush
physical volumes to zero and hence ought to be a genuine general relativistic feature� Secondly the
evolution of collisionless matter is described by the Einstein
Vlasov equations� at any given point in
space the particles have a distribution of momenta� Dust is a very special case of these equations
de�ned by the assumption that all particles have exactly the same momentum� It has been shown
��	� that the spherically symmetric Einstein
Vlasov system has global solutions which do not
contain singularities naked or otherwise and hence censorship is preserved� However we recall
that dust collapse itself has a rich structure admitting both black
holes and naked singularities a
variety in trapped surface dynamics and of course includes the classic Oppenheimer
Snyder model
of black
hole formation� It would be a little surprising if these dust features turn out to have
no connection at all with more realistic collapse models which do have singularities� Thirdly it
has been suggested though certainly not universally accepted that during late stages of collapse
matter will e�ectively behave like dust� In my view a useful attitude towards the dust collapse
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results is to treat them as a learning exercise and see if they will survive when more general forms
of matter are considered�

Quite naturally perfect �uids with pressure get more serious consideration than dust� Yet the
naked singularities found in their collapse can be objected to by saying that a �uid description is
phenomenological and not fundamental� This objection has been weakened by the results showing
naked singularities in scalar �eld collapse and also by the existence proofs for naked singularities
with a general form of Tik� Also the assumption of self
similarity made in the explicit examples
given by Ori and Piran ���� could be considered as restrictive� The existence proofs by Dwivedi
and Joshi relax this assumption� It appears safe to conclude at this stage that the form of matter
is not crucial in the examples of naked singularities that have been found so far�

The second question deserves a more serious consideration and holds the key to the validity of
the censorship hypothesis� Are these naked singularities genuine features of the spacetime geome

try� What is the relative importance of the properties like masslessness of the naked singularity
curvature strength redshift along outgoing geodesics and instability of the Cauchy horizon� Do
one or more of these features establish that the naked singularity is not genuine� There is a need
to develop what one might call the theory of naked singularities in order to answer a di�cult and
important question of this sort� Stability against non
spherical perturbations will also help decide
the signi�cance of these examples� The singularity theorems showed that gravitational singular

ities are not restricted to spherical symmetry� if this is any guide then one would expect both
the black
hole as well as naked singularity solutions to persist when sphericity is relaxed� It is
indeed di�cult to visualize how naked singularities will convert themselves to black
holes when
asymmetry is introduced�

The third question as to whether naked singularities might have observational e�ects also
deserves attention in view of the examples now available� In spite of limited theoretical evidence
for their formation black
holes have been successfully used to model many observed astrophysical
processes� One did not have to wait for the censorship hypothesis to be proved before applications
of black
holes could begin� In a similar vein one ought to give naked singularities a chance so
as to examine if they will or will not have a signi�cant �ux emission due to quantum e�ects or
otherwise�

While there is no clearly de�ned line of attack for further investigations of the censorship hy

pothesis two speci�c approaches appear to hold promise� Firstly the methods used by Belinskii
Lifshitz and Khalatnikov to prove the generality of singularities ���� involve construction of so

lutions of Einstein equations near spacetime singularities� Perhaps one could study propagation
of light rays using these solutions to investigate if the singularities could be naked� Secondly
major advances in numerical relativity have made the subject ripe for studies on the censorship
hypothesis� For instance it should be possible to check numerically if the naked singularities of
spherical inhomogeneous dust collapse persist if the collapse is non
spherical� Or to check for naked
singularities in spherical perfect �uid collapse when the self
similarity assumption is relaxed�

How does a very massive star evolve during the �nal stages of its collapse� Does it choose
to hide behind the event horizon to die a silent death or does it explode dramatically exposing
the singularity as if the Big Bang was being reenacted for our bene�t� Recent developments in
our understanding of classical general relativity leave room for both possibilities� Further studies
on gravitational collapse should prove to be exciting and it remains to be seen whether naked
singularities will come to play a role in physics and astrophysics�
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In my entire scienti�c life� extending over forty�ve years� the most shattering experience
has been the realization that an exact solution of Einstein�s equations of general relativity�
discovered by the New Zealand mathematician� Roy Kerr� provides the absolutely exact
representation of untold numbers of massive black holes that populate the universe� This
�shuddering before the beautiful�� this incredible fact that a discovery motivated by a search
after the beautiful in mathematics should �nd an exact replica in Nature� persuades me
to say that beauty is that to which the human mind responds at its deepest and most
profound� Indeed� everything I have tried to say in this connection has been stated more
succintly in the Latin mottos�

The Simple is the seal of the true
Beauty is the splendour of truth

� S� CHANDRASEKHAR



ASPECTS OF ACCRETION PROCESSES
ON A ROTATING BLACK HOLE

Sandip K� Chakrabarti�

Tata Institute of Fundamental Research
Homi Bhabha Road
Mumbai ��� ���

Abstract

We describe the most general nature of accretion and wind �ows around a compact object
and emphasize on the properties which are special to black hole accretion� The angular mo�
mentum distribution in the most general solution is far from Keplerian� and the non�Keplerian
disks can include standing shock waves� We also present fully time dependent numerical simu�
lation results to show that they agree with these analytical solutions� We describe the spectral
properties of these accretion disks and show that the soft and hard states of the black hole
candidates could be explained by the change of the accretion rate of the disk� We present
�ts of the observational data to demonstrate the presence of sub�Keplerian �ows around black
holes�
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The award of Nobel Prize carries with it so much distinction and the number of compet
ing areas and discoveries are so many� that it must of necessity have a sobering e�ect on an
individual who receives the prize� For who will not sobered by the realization that among
the past laureates there are some who have achieved a measure of insight into nature that is
far beyond the attainment of most� But I am grateful for the award since it is possible that
it may provide a measure of encouragement to those� who like myself� have been motivated
in their scienti�c pursuits� principally� for achieving personal perspectives� while wandering�
mostly� in the lonely byways of science� When I say personal perspectives� I have in mind
the players in Virginia Woolf�s �The Waves��

There is a square� there is an oblong� The players take the square and place it upon
the oblong� They place it very accurately� they make a perfect dwelling place� Very little
is left outside� The structure is now visible� what was inchoate is here stated� we are not
so various or so mean� we have made oblong and stood them upon squares� This is our
triumph� this is our consolation�

� S� CHANDRASEKHAR



� Introduction

Centers of galaxies are believed to be the seats of massive black holes �MBH � �����M�� and
some evolved compact binary systems are believed to be the seats of small mass black holes
�MBH � � � ��M��� In the ����s the standard accretion disk models around black holes were
constructed �Shakura 1 Sunyaev ����� Novikov 1 Thorne ����� assuming Keplerian angular mo

mentum distribution in the orbiting matter� In the early ��	�s these disks became the favorite
candidates for the explanation of the "big blue bump# seen in the UV region of the continuum
spectra of active galaxies �Malkan ��	�� Sun 1 Malkan ��	�� with some success�

However from X
ray and �
ray spectra and line emissions from these objects �see Chakrabarti
����a for a general review� it is becoming clear that the accretion disks cannot be simple Keplerian
type nor are as simple as spherically symmetric Bondi �ows �Bondi ������ To satisfy the inner
boundary condition on the horizon matter must cross the horizon supersonically �Chakrabarti
���� hereafter C��� and therefore must pass through a sonic point where the radial velocity of the
�ow is the same as the sound velocity� This means that the angular momentum must deviate from
a Keplerian �ow� All these considerations require one to solve the most general set of equations
which must include e�ects of rotation �ow pressure viscosity advection heating and cooling
processes� Below we present these equations and discuss the solutions and their implications� For
the purpose of the present review we emphasize those properties which are special to a black hole
accretion�

We consider a perfect �ow around a Kerr black hole with the metric �e�g� Novikov 1 Thorne
����� using t r � 1 z as coordinates and the units which render G �MBH � c � ���

ds� � �r��

A
dt� �

A

r�
�d�� �dt�� �

r�

�
dr� � dz�� ���

where
A � r	 � r�a� � �ra��

� � r� � �r � a��

� �
�ar

A
�

Here a is the Kerr parameter�
The stress
energy tensor of a perfect �uid with pressure p and mass density � � �����
� 
 is

the internal energy is give by

T�
 � �u�u
 � p�g�
 � u�u
�� ���

We shall concentrate on the time independent solution of the governing equations �Chakrabarti
����b hereafter C��b�� The equation for the balance of the radial momentum is obtained from
�u�u
 � g�
�T

�



 � �� Here the advection term due to signi�cant radial velocity is included� The

baryon number conservation equation �continuity equation� is obtained from ���u
��
� � �� The

conservation of angular momentum is obtained from ���T
�
�

 � �� Here the angular momentum

is allowed to be non
Keplerian� Entropy generation equation is obtained from the �rst law of
thermodynamics along with baryon conservation equation� �S��
� �

�
T �����
�

�
 � where T is
the temperature of the �ow and � is the coe�cient of viscosity� ��
 is the shear tensor which is
responsible for the viscous transport of angular momentum�

These set of equations are solved simultaneously along with the possibility that the shock waves
may form in the �ow where the following Rankine
Hugoniot conditions must be ful�lled�

W�n
 � �W� �&���u
�
�n��u



� �Wn


 � �W �&��u
�
n��u



�

Here n� is the four normal vector component across the shock and W and & are vertically
integrated pressure and density on the shock surface�

��



� Solution Topologies

First note that the above mentioned equations are valid for any compact object whose external
spacetime is similar to that of a Kerr black hole� However on a neutron star surface matter has
to stop and corotate with the surface velocity� The inner boundary condition is therefore sub

sonic� On a black hole on the other hand the �ow must enter through the horizon with the
velocity of light and therefore must be supersonic� Stationary shock waves may form when matter
starts piling up behind the centrifugal barrier �which arises due to centrifugal force � ���r���
The supersonic �ow becomes subsonic at the shock and again becomes supersonic before entering
through the horizon� Clearly the �ow has to become supersonic before forming the shock as well
and therefore pass through another sonic point at a large distance away from the black hole� Thus
as a whole the �ow may deviate from a Keplerian disk and �a� enter through the inner sonic
point only or �b� enter through the outer sonic point only or �c� pass through the outer sonic
point then a shock and �nally through an inner sonic point if the shock conditions are satis�ed�
If the angular momentum is too small then the �ow has only one sonic point and shocks cannot
be formed as in a Bondi �ow� For more details see Chakrabarti ���	� hereafter C	�� C�� and
C��a�

Three �ow parameters govern the topology of the �ow� the � parameter �Shakura 1 Sunyaev
����� which determines the viscosity the location of the inner sonic point rin through which matter
must pass through and the speci�c angular momentum �in of the matter at the horizon �or that
at rin�� It so happens that these parameters are su�cient to completely determine the solution
when a cooling process is provided� To illustrate the �ow topologies we �rst choose the viscosity
of the �ow to be negligible �C��b�� In the inviscid case the angular momentum and energy remain
constant hu � l and hut � E � Hereafter we use � � l�E to be the speci�c angular momentum�
Flow entropy remains constant unless it passes through a shock wave where it goes up within a
thin layer�

In Fig� � we show all possible solutions of weakly viscous accretion �ows around a Kerr black
hole of rotation parameter a � ���� �For �ows in Schwarzschild geometry see C	� C���� The
adiabatic index � � ��� has been chosen� Vertical equilibrium �ow model with the vertical height
prescription of NT�� is used� In the central box we divide the parameter space spanned by ��� E�
into nine regions marked by N  O NSA SA SW  NSW  I  O� I�� The horizontal line at
E � � corresponds to the rest mass of the �ow� Surrounding this parameter space we plot various
solution topologies �Mach numberM � vr�as vs� logarithmic radial distance where vr is the radial
velocity and as is the sound speed� marked with the same notations �except N�� Each of these
solution topologies has been drawn using �ow parameters from the respective region of the central
box� Though each contour of each of the boxes represents individual solutions �di�ering only by
speci�c entropy� the relevant solutions are the ones which are self
crossing as they are transonic�
The crossing points are �X� type or saddle type sonic points and the contours of circular topology
surround �O� type sonic points� If there are two �X� type sonic points the inner one is called
the inner sonic point and the outer one is called the outer sonic point� If there is only one �X�
type sonic point in the entire solution then the terminology of inner or outer is used according to
whether the sonic point is close to or away from the black hole� The solutions from the region �O�
has only the outer sonic point� The solutions from the regions NSA and SA have two �X� type
sonic points with the entropy density So at the outer sonic point less than the entropy density
Si at the inner sonic point� However �ows from SA pass through a standing shock �See Fig�
�� as the Rankine
Hugoniot condition is satis�ed� The entropy generated at the shock is exactly
Si�So which is advected towards the hole to enable the �ow to pass through the inner sonic point�
Rankine
Hugoniot condition is not satis�ed for �ows from the region NSA� Numerical simulation
indicates �Ryu Chakrabarti 1 Molteni ����� that the solution is very unstable and show periodic
changes in emission properties as the �ow constantly try to form the shock wave but fail to do
so� The solutions from the region SW and NSW are very similar to those from SA and NSA�
However So � Si in these cases� Shocks can form only in winds from the region SW � The shock
condition is not satis�ed in winds from the region NSW � This may make the NSW �ow unstable
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Fig
 �� Classi�cation of the parameter space �central box� in the energy�angular momentum plane in

terms of various topology of the black hole accretion� Eight surrounding boxes show the solutions from

each of the independent regions of the parameter space� See text for details�

as well� A �ow from region I only has the inner sonic point and thus can form shocks �which
require the presence of two saddle type sonic points� only if the in�ow is already supersonic due
to some other physical processes�

The �ows from regions I� and O� are interesting in the sense that each of them has two sonic
points �one �X� and one �O�� only and neither produces complete and global solution� The region
I� has an inner sonic point but the solution does not extend subsonically to a large distance� The
region O� has an outer sonic point but the solution does not extend supersonically to the horizon�
In both the cases a weakly viscous �ow is expected to be unstable� When a signi�cant viscosity
is added the closed topology of I� is expected to open up �Fig� � below� Chakrabarti ����c�
hereafter C��c� and then the �ow can join with a Keplerian disk�

� Examples of Discontinuous� Solutions

In Fig� � we presented continuous solutions and mentioned the possibility of shock formation� In
Fig� ��a
b� we give examples of solutions which include shock wave discontinuities� Mach number
is plotted along Y
axis and logarithmic radial distance is plotted along X
axis� Fig� �a is drawn
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with parameters from the region SA and Fig� �b is drawn with parameters from the region SW �
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Fig
 ��ab�� Mach number M is plotted against logarithmic radial distance r� Contours are of constant

entropy� a � 	��� � � �� In �a�� E � ��		� and in �b�� E � ��		� O and I denote the outer and inner sonic

points respectively� Single arrow shows the accretion �ow path through O while double arrow traces the

path of more stable shocked �ow which passes through both I and O�

In Fig� �a the single arrowed curve represents a solution coming subsonically from a large
distance and becoming supersonic at O the outer sonic point� Subsequently the �ow jumps onto
the subsonic branch �at the place where Rankine
Hugoniot condition is satis�ed� along the vertical
dashed line and subsequently the �ow enters the black hole through the inner sonic point at I
�double arrowed curve�� The �ow chooses to have a shock since the inner sonic point has a higher
entropy� The parameters of the �ow are a � ��� E � ����� and � � �� In Fig� �b on the other
hand the accretion �ow can straightaway pass through the inner sonic point �single arrowed curve�
and will have no shocks� However outgoing winds which may be originated closer to the black
hole can have a shock discontinuity �double arrowed curves�� Here the �ow �rst passes through
I  the shock �vertical dashed line� and the outer sonic point �O�� The parameters in the case are
a � ��� E � ����� and � � ��
Above mentioned discussions are valid for �ows around a black hole only� For �ows around a

neutron star the inner boundary condition must be subsonic and therefore the shock transition
�in Fig� �a for example� must take the �ow to a branch which will remain subsonic thereafter
instead of a branch which is likely to become supersonic again�

� Properties of Viscous Transonic Flows

The topologies shown above become more complicated once various cooling and viscous heating
e�ects are included �C�� C��c�� We present the case of �isothermal gas� where the �ow adjusts
heating and cooling in such a way that matter remains at a constant temperature� Figs� ��a
d�
show the �phase space� of the accretion �ow�

We assume Schwarzschild black hole a � � for simplicity and consider Shakura
Sunyaev ������
viscosity prescription where the viscous stress at a given location depends on the local thermal
pressure p� tr � ��p� We note the general change in topology of the �ow� First of all the
circular topology of the inviscid �ow ��O� type sonic point� is converted into spiral topology as
in a damped harmonic oscillator �C���� Secondly the closed topology has opened up partially
or completely depending upon �ow parameters� In Fig� �a the �ow parameters are � � ����
�in � ��	 rin � ��	� The spiral is �half closed�� This topology is still good for shock formation as
shown in the vertical curve �C���� In Fig� �b we use � � ��� �in � ��	 rin � ��	� Here the
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Fig
 	� Mach number variation �a�d� and angular momentum distribution �e�h� of an isothermal viscous

transonic �ow� Only the topology �a� allows a shock formation� Transition to open �no�shock� topology

is initiated by higher viscosity or lower angular momentum or inner sonic point location� In �e�h�� �ow

angular momentum �solid� is compared with Keplerian angular momentum �dotted��

spiral is complete with branches from both sonic points� In Fig� �c we use � � ���� �in � ����
rin � ��	 and in Fig� �d we use � � ���� �in � ��	 rin � ����� The topology remains similar to
Fig� �b but whereas Fig� �b is attained by increasing viscosity Fig� �c and Fig� �d are obtained by
decreasing angular momentum and decreasing the inner sonic point respectively� What is common
in Fig� ��b
d� is that both the sonic points allow �ows to become Keplerian �where M � �� but
since the dissipation in the �ow passing through �I� is higher we believe that the disk will choose
this branch� More importantly the �ow cannot have a standing shock wave with this topology�
All these solutions except where M � � are sub
Keplerian as illustrated in Figs� ��e
h� where
the �ow angular momentum �solid curve� is compared with Keplerian angular momentum �dotted
curve�� The location where the �ow joins a Keplerian disk may be somewhat turbulent �description
of which is not within the scope of our solution� so as to adjust pressures of the subsonic Keplerian
disk and the sub
Keplerian transonic viscous �ow� These �gures illustrate the existence of critical
viscosity parameter �c critical angular momentum �c and critical inner sonic point rc at which
the �ow topologies are changed �C����

The above results obtained for isothermal �ow can be generalized easily using the most general
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set of equations with heating and cooling processes �C��c�� If Q and Q� denote the heating and
cooling rates and if for illustration purpose one assumes that f � �Q � Q���Q� � constant
then one can easily solve the general equations to �nd the degree at which the �ow deviates from a
Keplerian disk� In Fig� �a we show the ratio �disk��Kep for various viscosity and cooling parameters
� and f � Clearly as the �ow starts deviating from a Keplerian disk �disk��Kep � � it becomes

Fig
 ��ab�� Ratio of �a� disk angular momentum to Keplerian angular momentum ����Kep� and �b�

radial to azimuthal velocities �vr�v�� are shown for a few solutions� Parameters are marked on the curves�

Note that rKep� where the �ow joins a Keplerian disk� depends inversely on the viscosity parameter�

about ��
��( of Keplerian� As it approaches the black hole it becomes close to Keplerian again
�and sometimes super
Keplerian also� before plunging in to the black hole in a very sub
Keplerian
manner� In Fig� �b we show the ratio vr�v for the same disks� Note that near the outer edge
as the �ow deviates from a Keplerian disk vr  v i�e� the �ow is rotation dominated� Around
r � ��� the radial velocity becomes dominant and subsequently even closer to the black hole
the �ow becomes rotation dominated �due to the centrifugal barrier�� Near the horizon the radial
�advection� velocity dominates once more� The case f � ��� � � ���� showing a sudden jump in
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velocity ratio represents a solution which includes a standing shock� The corresponding angular
momentum distribution in the upper panel does not show discontinuity since shear is chosen to be
continuous across a shock wave� The region where the disk deviates from a Keplerian disk could
be geometrically thick and would produce thick accretion disks� The post
shock region where the
�ow suddenly becomes hot and pu�ed up would also form another thick disk of smaller size�

The solutions presented so far is of most general nature encompassing the entire parameter
space� Any other solutions of black hole accretion or winds are special cases of these solutions�

� Problem of Angular Momentum Transport

A curious property of a black hole accretion �ow is that the shear stress �r is not a monotonic
function of distance and it can be negative close to the black hole� In the Newtonian geometry
it has the form �r d�dr and its magnitude is monotonically increasing inward� For a cold radial
�ow below the marginally bound orbit this was pointed out by Anderson 1 Lemos ���		�� In Fig�
��a
b� we show this for the complete and exact global solutions of the accretion �ow presented
in the earlier Section �C��b�� In Fig� �a we present the variation of shear and angular velocity

Fig
 �� Comparison of rotational viscous stress �r�jrot �short dashed curves� with complete viscous stress

�r�� �solid� along the supersonic branch �passing through outer sonic point� for �a� a prograde �ow �upper

panel� and �b� a retrograde �ow �lower panel�� Also shown is d��dr �dotted curves�� For comparison�

results for the subsonic branch is also shown �long dashed�� Note the change in sign of the shear near the

horizon� �r�� does not vanish on the horizon� but �
r
�jrot and �

r
�� do�

gradient for a typical prograde �ow �a � ���� � � ��� and E � ������ and in Fig� �b we show the
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results of a retrograde �ow �a � ���� � � ���� and E � �������� The solid curves are computed
using the most general de�nition of shear tensor� ��� � ����u�
�P

�
� � u�
�P

�
� � � !P���� where

P�� � g���u�u� is the projection tensor and ! � u�
� is the expansion� The velocity components
have been taken from the exact solution which passes through the outer sonic point� The subscript
� sign under �r refers to the supersonic branch of the solution� We also present the same quantity
�long dashed curve� for the subsonic branch ��r�� which passes through the outer sonic point� For
comparison we present the component of shear tensor �rjrot �short dashed curve� where we ignore
the radial velocity completely vr  v� We also present the variation of d)�dr �dotted curve� to
indicate the relation between the angular velocity gradient and shear�

Some interesting observations emerge from this peculiar shear distribution� First for prograde
�ows the shear reverses its sign and becomes negative just outside the horizon� This shows that
very close to the horizon the angular momentum transport takes place �towards the black hole�
rather than away from it Second �rjrot and �r� which have negligible radial velocities vanish
on the horizon whereas �r does not� Existence of the negative shear component shows the
� viscosity prescription �SS��� is invalid close to a horizon since pressure cannot be negative�
However the error by choosing a positive �e�g� ��p� shear may not be signi�cant since one
requires a �unphysically� large viscosity so as to transport signi�cant angular momentum inwards�
In any case the inward angular momentum transport may change angular momentum distribution
near the horizon �from that of an almost constant to something perhaps increasing inwards similar
to the Keplerian distribution below marginally stable orbit�� Third in retrograde �ows the �r
reverses twice but �r� and �

r
jrot reverse once since they vanish on the horizon as in the prograde

�ows�
The physical mechanism underlying the reversal of the shear component is simple� In general

relativity all the energies couple one another� It is well known that the �pit in the potential� of
a black hole is due to coupling between the rotational energy and and the gravitational energy
�Chakrabarti ������ As matter approaches the black hole the rotational energy and therefore
�mass� due to the energy increases which is also attracted by the black hole� This makes gravity
much stronger than that of a Newtonian star� When the black hole rotates there are more coupling
terms �such as thise arise out of spin of the black hole and the orbital angular momentum of the
matter� which either favour gravity or go against it depending on whether the �ow is retrograde
or prograde �Chakrabarti 1 Khanna ����� respectively� This is the basic reason why retrograde
and prograde �ows display di�erent reversal properties�

� Numerical Simulations of Black Hole Accretion

The steady state solution topologies described in the previous Sections need not be the �nal
solution of a set of time dependent equations� Depending on the stability of the solutions the �ow
may or may not settle on the steady state solution� However it so happens that except for the
solutions in regions NSA and NSW  numerical results actually match with analytical results� The
accuracy of the matching primarily depends on the ability of the numerical code to conserve angular
momentum and energy� In Chakrabarti 1 Molteni ������ one dimensional simulations and in
Molteni Lanzafame 1 Chakrabarti ������ and Molteni Ryu 1 Chakrabarti ������ two dimensional
simulations have been presented using parameters from SA and SW regions� Simulation by diverse
codes produced similar results� These suggest that these analytical solutions could be used for
rigorous tests of the codes in curved spacetime� The parameters from regions NSA and NSW
show unstable behaviours in a multidimensional �ow �Chakrabarti et al ���� in preparation�
though in strictly one dimension they match with the analytical work� Preliminary solutions of
cold �ows �E � �� have already been reported in the literature �Ryu Chakrabarti 1 Molteni
������

Fig� � shows the Mach number and density variations in an one dimensional �ow around a
Schwarzschild black hole �Molteni Ryu and Chakrabarti ������ The solution is chosen from region
SA so that analytically a stable shock is expected in a thin �ow of polytropic index � � ���� The
solid curve shows the analytical solution� at the shock the density goes up as matter virtually
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stops behind the shock and the Mach number goes down from supersonic to subsonic� The long

dashed and the short
dashed curves are the results of simulations using Total Variation Diminishing
�TVD� method �see Harten ��	�� Ryu et al ����� and the Smoothed Particle Hydrodynamics
�SPH� method �see Monaghan ��	�� Molteni 1 Sponholz ������ The results show that the
shocks form in an accretion �ow and they are stable� These simulations also verify the shock free
solutions�

Fig
 �� Comparison of analytical and numerical results in a one�dimensional accretion �ow which allows

a standing shock� The long and short dashed curves are the results of the TVD and SPH simulations

respectively� The solid curve is the analytical result for the same parameters� Upper panel is the mass

density in arbitrary units and the lower panel is the Mach number of the �ow�

� Spectral Properties of Generalized Accretion Disks

How does an accretion disk radiate� What are the observational signatures of a black hole� How to
distinguish a black hole and a neutron star from observations� In order to answer these questions
one clearly needs to solve the hydrodynamic equations in conjunction with radiative transfer� In
the �rst approximation one could construct a realistic accretion disk model based on analytical
solutions mentioned above and then compute the radiations emitted out of this model �ow�

In Fig� � we showed that above a critical viscosity or below a critical angular momentum or
inner sonic point location the �ow does not have a shock wave after deviating from a Keplerian
disk� Since with height the sonic point is expected to be closer to a black hole and a Keplerian disk
above a sub
Keplerian �ow may be Rayleigh
Taylor unstable it may be worthwhile to consider the
important alternative that the �ow viscosity decreases with height� This makes a solution topology
of the kind as in Fig� �b to be on the equatorial plane with a Keplerian disk close to a black hole
while a solution with a shock �Fig� �a� at a higher elevation�
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Fig
 �� Schematic diagram of the accretion processes around a black hole� An optically thick� Keplerian

disk which produces the soft component is surrounded by an optically thin sub�Keplerian halo which

terminates in a standing shock close to the black hole� The postshock �ow Comptonizes soft photons

from the Keplerian disk and radiates them as the hard component� Iron line features may originate in the

rotating winds�

Fig� � shows a typical disk model where Keplerian disk is �anked by sub
Keplerian �halo� which
undergoes a shock wave at around r � ��� �� in Schwarzschild geometry and roughly at half as
distant in extreme Kerr geometry �Chakrabarti 1 Titarchuk ������ Photons from the Keplerian
disks are in the optical
UV range in the case of massive black holes at galactic centers and in the
soft X
ray range in the case of small black holes in X
ray binaries� These photons are intercepted
by the post
shock �ow and are energized through inverse Compton process and are eventually
re
radiated at higher energies �as soft X
rays in massive black holes or in hard X
rays in smaller
black holes�� First consider a galactic black hole candidate of mass � �M�� When accretion rate
of the Keplerian component is very low the soft X
ray from the Keplerian component is weak but
the hard X
ray intensity from the post
shock region is very strong� This is known as the hard state�
As the accretion rate increases electrons in the post
shock region become cooler and the object
eventually goes to the soft state where only the soft
X rays from the Keplerian disk dominates�
Occasionally one �nds a weaker hard component tail of slope �
 � ��� even in the soft state� This
is interpreted �Chakrabarti 1 Titarchuk ����� as due to the �bulk motion Comptonization� where
the converging �ow energizes soft photons not due to thermal Comptonization �i�e� by thermal
motion of the hot electrons� but due to direct transfer of bulk motion momentum of the cool
electrons to cooler photons �Blandford 1 Payne ��	�� Titarchuk Mastichiadis 1 Kyla�s ������

		



Figs� 	�a
b� show the variation of intensity L
 of radiation as a function of frequency �
�Chakrabarti 1 Titarchuk ������

Fig
 ��ab�� Analytical computation of the emitted radiation from a black hole� �a� Contributions of

various components to the net spectral shape �solid�� Dotted� short dashed� long dashed and dash�dotted

curves are the contributions from the Shakura�Sunyaev disk r � rs� the reprocessed hard radiation by

the Shakura�Sunyaev disk� reprocessed soft�radiation by the postshock disk r � rs and the hard radiation

re�ected from the Shakura�Sunyaev disk along the observer ��� cos� �	���� Parameters are �mdisk�	���

�mh � �� and M � � M�� �b� Variation of the spectral shape as the accretion rate of the disk is varied�

�mdisk � 	�		� �solid line�� 	�	� �long�dashed line�� 	�� �short�dashed line�� and � �dotted line�� The

dash�dotted curve represents the hard component from convergent in�ow near the black hole and has the

characteristics of the slope � ��� in soft state�

In Fig� 	a we show contributions from various components of the disk� The dotted curve
represents the black body radiation from the optically thick Keplerian �ow� The long dashed curve
represents the fraction of these photons which were intercepted by the postshock �ow and were
energized by hot electrons of the post
shock �ow through thermal Comptonization processes� The
dash
dotted curve is the re�ection of these hot photons from the Keplerian disk� The solid curve
gives the overall spectra which has a bump in the soft X
ray and a power law in the �
�� keV region�
The above �gure is for MBH � �M� and dimensionless disk accretion rate of +mdisk � ��� +MEdd�
In Fig� 	b we show the computed spectra as the accretion rate of the Keplerian component is
varied� The solid long
dashed short
dashed and the dotted curves are for accretion rates +mdisk �
������ ����� ���� � respectively� We also plot the dash
dotted curve which includes the e�ect of the
bulk
motion Comptonization and shows a weak hard tail� The bulk motion Comptonization is the
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process by which the cool electrons deposit their momentum �while rushing towards the black hole
horizon� onto photons and energize them� The spectral index �
 �L
 � ���� � of the weak hard
tail computed from Chakrabarti 1 Titarchuk ������ model is around ��� and is often observed in
black hole candidates in their soft states� The conclusions regarding general spectral shape remain
unchanged when computations are done for supermassive black hole�

	 ComparisonWith Observations and Concluding Remarks

As an example of the success of our understanding of black hole accretion processes we use
the aforementioned theoretical understanding to �t a spectrum of GRS ����
�� �X
ray Nova in
Vela� obtained by MIR
KVANT module experiments �Titarchuk et al� ����� The source was
discovered by WATCH�GRANAT all
sky monitor �Lapshov et al� ����� IAUC �	��� and veri�ed
by BATSE�GRO �Harmon et al� IAUC �	����

Fig
 �� Spectral �ts of broad band X�rays from GRS�		���� using our composite disk model� Data is

obtained from MIR�KVANT experiments as reported in Sunyaev et al� �������

Fig� � shows the TTM and HEXE data �the photon �ux versus energy� Sunyaev et al� ����� and
the best theoretical �t given by the considerations of the converging in�ow in the post
shock region�
The parameters namely mass of the black hole �M� accretion rate in Keplerian disk � +mdisk�
accretion rate in the sub
Keplerian disk � +mh� the shock location �Rsh� the post
shock temperature
�Tsh� fraction of the soft photons intercepted by the post
shock bulge �H� and the distance
�D� of the object which are derived from the best
�t of the data seem to be� M � ������M�
+Mdisk� +MEdd � +mdisk � ���� +Mh� +MEdd � +mh � ��� Rsh � �����Rg Tsh � �����KeV � H �
����� D � ����Kpc� The �� � ���� for this �t� The general agreement clearly vindicates the
claim that a black hole accretes a signi�cant amount of sub
Keplerian matter� In a neutron star
accretion the weak hard tail is not expected�

Some of the black hole candidates show quasi
periodic oscillations of its spectra in some range
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of hard X
rays �Dotani ������ Moteni Sponholz 1 Chakrabarti ������ and Ryu Chakrabarti
Molteni ������ show that these oscillations could be due to dynamic oscillations of the standing
shock waves or even the sub
Keplerian region itself� The frequency and amplitude modulation of
the radiation as well as the time variation of the frequencies match well with observations�

In this review we showed that understanding accretion processes on a black hole must neces

sarily include the study of sub
Keplerian �ows and how they combine with Keplerian disks farther
away� We showed that the so called viscous transonic �ows are stable and constitute the most
general form of accretion �ows� We showed that the accretion shock could play an important role
in energetics of the radiated photons� Indeed we showed that hard and soft states of black hole
candidates as well as Quasi
Periodic Oscillations could be explained if shock waves were assumed
to be present� Both of these observations along with our model could be used to obtain the mass
and the accretion rates of black holes� Success of these solutions clearly depend on more accurate
observations of steady state and time varying spectra of the black hole candidates�
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During all my discussions with Fermi� I never failed to marvel at the ease and clarity
with which he analyzed novel situations in �elds in which� one might have supposed� he was
not familiar and� indeed� was often not familiar prior to discussion� In the manner in which
he reacted to new problems� he always gave me the impression of a musician who� when
presented with a new piece of music� at once plays it with a perception and a discernment
which one would normally associate only with long practice and study� The fact� of course�
was that Fermi was instantly able to bring to bear� on any physical problem with which he
was confronted� his profound and deep feeling for physical laws� the result invariably was
that the problem was illuminated and clari�ed� Thus� the motions of interstellar clouds
with magnetic lines of force threading through them reminded him of the vibrations of a
crystal lattice� and the gravitational instability of a spiral arm of a galaxy suggested to him
the instability of a plasma and led him to consider its stabilization by an axial magnetic
�eld�
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Abstract

I discuss main observational inputs and analytical methods in formation of large scale
structure in the universe with particular reference to approximate methods for understanding
gravitational clustering and computational techniques used in simulations� Di�erent statistics
which are used to di�erentiate models of structure formation are also discussed in brief�
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It�s a terrible dilemma� I agree� that for the future of India� the problems of population�
poverty� and the misery in which the majority live� have of course to be solved� But does
that need absolute sti�ing of all other things� I do not think so� I have the feeling that�
in every country� pure science has a place that is not very di�erent from the cultivation of
literature� arts� etc� No one claims that the latter should be eliminated or that the priorities
require one to suppress them� Questions arise in the case of science because of the money
involved� But there are reasonable choices one can make� there are branches of science
which are not expensive� One should not just blindly imitate the rich countries�
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� Introduction

Cosmology although one of the oldest subjects of human enquiry until the ��th Century lay in
the domain of metaphysics a subject of pure speculation� With little observational data it�s prac

titioners were philosophers and religious leaders rather than scientists� The science of cosmology
emerged in the ��th Century when it �rst became possible to probe great distances through the
universe� Observations from ground based observatories and satellites in several frequency bands
starting from Gamma rays to radio provided images and data that could begin to discriminate
competing theories�

The universe that we observe and seek to understand is astonishingly smooth on larger scales
�� ��� Mpc� but is increasingly inhomogeneous on smaller scales � �� Mpc�� Although evolution
of a smooth background universe is well understood in the general frame work of FRW models any
reasonable model of the universe has to explain the origin and evolution of such inhomogeneities�
While study of generation of such perturbations is mainly related to study of early universe here
we will be concentrating mainly on observational and theoretical aspects of evolution of these large
scale structures�

Observations related to large scale structure in the universe can be mainly divided into three
categories� ��� Observations related to distribution of galaxies ��� Observations related to peculiar
velocities i�e� deviations from smooth Hubble �ow ��� The initial condition� along with the posi

tions and velocities of galaxies it is extremely important that we have some idea about the initial
condition of the system from which it has evolved this enables us to check that the observed veloci

ties and density inhomogeneities are really consistent with the paradigm of gravitational clustering�
One of the major input to observational cosmology from cosmic microwave background studies is
to provide information about such initial conditions in terms of initial potential �uctuation�

On the theoretical side the major e�ort has been devoted to understanding the generation
of perturbation quantifying the statistical nature of density and velocity inhomogeneity and un

derstanding the evolution of inhomogeneities from the initial condition in terms of dynamics of
gravitational clustering�

� Observational Inputs

��� Density inhomogeneity and redshift surveys

Over two million galaxies have been mapped in �D angular surveys although redshift of small
fraction of them is actually known at present� The clustering of galaxies are very clear in three
dimension surveys such as CfA �Center for Astrophysics� survey and the southern sky redshift
survey �SSRS�� These two surveys taken together contain over ����� galaxies� It is clear from
�gure
� that galaxies are not distributed randomly in the universe and they appear to lie prefer

entially in two dimensional sheets and one dimensional �laments which separate huge voids which
have practically no galaxies� The typical length scale characterising this cellular structure is about
��3�� h��Mpc h being the Hubble parameter measured in units of ��� km�sec�Mpc�

The most commonly used statistics for describing clustering of galaxies are n
point correlation
functions� Lowest order member of this family is �
point correlation function ��r� which estimates
the probability in excess of random of �nding galaxies at a distance r from a given galaxy�

h��x����x � �r�i � *���� � ��r��� ���

Where ��x� is the density at x and averaging is done over di�erent realisation of the density �eld�
On scales r  �� h�� Mpc the two point correlation function can be accurately described by a
power law

��r� �

�
r
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Figure �� A ���o view that shows a relation between the great wall and the Perseus 
 Pisces chain�
The slice covers the declination region from ��o to ��o and contain all the ���� galaxies with
detected redshift cz  ��� ��� km�s� The region that appear devoid of galaxies are obscured by
galactic plane� Adopted from Geller M� J� Huchra J� P� ��	� Science ��� 	��

where r�
�� � h�� Mpc� If we decompose � the density contrast in Fourier modes we can write

��x� t� �
��� *��
*�

�

Z
d�k exp i�k�x��k� t� ���

��k� t� � j�k�t�j exp�i�k� ���

For a Gaussian random �eld the amplitude �k has Rayleigh distribution and phases �k are
distributed uniformly in the interval ��3�
�� As is well known a Gaussian random �eld is completely
speci�ed by its power spectrum�

P �k� � hj��k�j�i ���

so that the two point correlation function ��r� and P �k� are related by the following relations�

��r� �

Z
d�k exp�i�k��x�P �k� ���

P �k� �
�

��
��

Z
d�x exp��i�k�x���x�� ���

We have plotted the power spectrum recovered from di�erent observations in �gure 
 �� More
details about redshift surveys are given in ���

Lots of important information actually can be gathered by studying the dynamical aspects of
groups and rich clusters of galaxies� While groups can typically carry somewhere between ten to
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Figure �� Isodensity contours about the mean value of a Gaussian random �eld� Left panel� region
above the mean density� Right panel� regions below the mean density� Gravitational clustering
can modify such initial topology and the signature can be used to di�erentiate models� Adopted
from Gott J� R� Melott A� L� Dickinson M� ��	� ApJ ��� ���

hundred galaxies depending upon the size galaxy clusters are generally massive objects containing
sometime thousands of galaxies� Dynamical states of these objects and their relative abundance can
be used to di�erentiate between di�erent types of cosmological models� Presence of large density
contrast like cluster in the line of sight of CMB observations produces appreciable distortions in
the CMB sky�

��� Peculiar velocities of galaxies

For a smooth FRW universe relative velocities of two points will be proportional to their separation
�r� Presence of inhomogeneities will distort their smooth Hubble �ow and we can write the deviation
as �vpec � �V �H�r� Any deviation from Hubble �ow characterises e�ect of gravitational potential
due to density inhomogeneities� Estimates of peculiar velocity depend upon the sample depth
most surveys indicate vpec � ��� Km�sec on scales of �� Mpc� From the dipole anisotropy in
CMBR sky one can estimate the peculiar velocity of our own galaxy with respect to CMBR rest
frame which indicate that Milky Way is moving at a velocity vpec � ��� Km�sec� A detail study
of large scale motion of elliptical galaxies made by Lynden
Bell et al� indicate that a sample of
galaxies spanning a volume ��h�� Megaparsec cube could be participating in a bulk �ow directed
towards Centaurus� The large amplitude of the �ow led theorists to suggest that a large density
�uctuation termed as "the Great Attractor# lying in this direction�

Bulk �ows in galaxies are directly related to �uctuation in the gravitational potential� Consid

erable amount of e�ort has been paid to di�erent ways to reconstruct density �elds from velocity
data and compare them with redshift surveys� One of the major advantage in using this method
is that peculiar velocity �eld is sensitive to both luminous and dark mass as compared to galaxy
surveys which map only luminous matter in the universe ����
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Figure �� The cold dark matter power spectrum on a range of scales as inferred from cosmic
microwave background data and large scale data� The solid line is CDM normalised to reproduce
COBE data stars crosses squares and triangles are the APM CfA IRAS
QDOT and IRAS
���Jy
surveys respectively� The boxes are ��� values of matter power spectrum inferred from CMB
experiments COBE FIRAS Tenerife SP��
��pt Saskatoon Python ARGO MSAM� MAX

GUM 1 MAX
MuP MSAM�� Adopted from ���

��� Cosmic Microwave Background Anisotropy

Most important discovery in recent years has been the detection of large angle anisotropy ��
�o� in the cosmic microwave background made by COBE satellite in ����� �These �uctuations
are generally believed to have primordial origin unlike the dipole anisotropy discussed earlier�
These �uctuations are related to the primordial �uctuation present in matter
energy density at
the time when universe started becoming transparent due recombination of protons and electrons
and photons started streaming freely� These photons which are reaching the detector now are
carrying extremely valuable information about cosmological parameters like )� h�/ ratio between
scalar and gravity wave perturbations and composition of dark matter particles i�e whether they
are made of highly relativistic low mass neutrino �also known as hot dark matter particle or HDM�
or more massive and relatively cooler particles which are moving with non
relativistic speed �also
known as cold dark matter or CDM�� In addition to these they carry information about relative
amplitude of perturbation� Other important information like ionization history of the universe is
also encoded in the CMB spectra ����

It is conventional to expand the temperature �uctuation in spherical harmonics
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Figure �� Density contrast � and peculiar velocity v are plotted for � ���� galaxies� The velocity
vectors are projection of the �
D velocity �eld in CMB frame� Distances are plotted in unit of
���� km�s� Contour spacing is ��� in � with heavy contours marking � � � and dashed contours
�  �� The local group is at the center and great attractor is on the left� Adopted from ���

�T ��� ��
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�
X
lm

almYlm��� �� �	�

and work in terms of the multiple moments alm� One can de�ne the sky correlation function as

Csky����� �

��T �,n��

T

�T �,n��

T

�
��

� ���

Here n�� n� are unit vectors and the average is taken over the entire sky with separation angle ���
held �xed� Using the properties of Ylm the correlation function can be written as

C��� �
�

�


X
l

a�l Pl�cos�� ����

Typically the conversion from multipole space l to angular scale � is accomplished by the following
approximate formula�

�

�o
�� ��

l
� ����
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A common way of comparing theory and experiments is through alm� Of course an actual mea

surement of a temperature di�erence on the sky involves �nite resolution and speci�c measurements
strategies modifying equation �����

As mentioned earlier COBE observations are made at large angles �� �o scales� but after
successful measurement of anisotropy lots of other experiments has been set up to study �uctuations
at small angular scales� South Pole Big Plate PYTHON MSAM ARGO MAX White Dish
Tenerife and Southpole are experiments which are currently in progress�

While larger angles are free from astro
physical processes because they were outside the horizon
during recombination smaller scale carry informations regarding astro
physical processes operating
during recombination�

Finally gravitational lensing is another interesting observational input to large scale structure
formation� This method can be used to map both luminous and dark matter components�

� Analytical Methods

��� Statistical tools

As mentioned earlier n
point correlation functions are most commonly used statistics for quan

tifying clustering of galaxies� Lowest order correlation function �
point correlation function and
its Fourier transform power spectrum are most commonly used statistical tools in cosmology� In
the standard model of structure formation based on gravitational instability the power spectrum
is related to �i� the spectrum of primordial �uctuation generated during in�ation and it is also
related to �ii� the nature of dark matter in the universe� The power spectrum in model with hot
dark matter shows a sharp cuto� on scales greater smaller than ��h�� Mpc which means that
super
cluster size objects are the �rst one to form in this scenario� Galaxies form later due to the
fragmentation of these primordial super clusters� This scenario is commonly known as "top
down#
scenario for galaxy formation and was proposed by Ya� B� Zeldovich during �����s and ��	��s�
The cold dark matter model on the other hand has power on all scales which is mainly related to
the fact that the dark matter particles in this case are moving with relativistic speed� As a result
the �rst objects to collapse in this scenario have low mass and larger objects are formed due to
merger of these small scale objects ��� ����

Determination of higher order correlations are much more di�cult than �
point correlation
although they carry additional informations about deviation from Gaussianity� Count in cell
statistics and void probability function are commonly used to extract information about higher
orders from galaxy catalogues� Other important statistical methods based on fractal analysis has
also been studied in this connection which are closely related to count in cell statistics�

Although n
point correlation functions contain valuable informations about statistics of cosmo

logical �elds geometrical aspects like shapes of collapsed objects and topological connectivity of
overdense or underdense regions can not be studied using them� One of the �rst method suggested
in this direction was based on percolation theory� Other important statistical indicators based on
geometry are shape statistics and minimal spanning tree� Besides geometry of collapsed objects
topological properties of overdense and underdense regions have also been studied extensively and
they can be used to distinguish di�erent models of structure formation�

All the statistical methods we have described so far are based on description of density �eld but
similar analysis regarding probability distribution function two point correlation function can also
be extended to velocity �elds� It has been shown that moments of velocity divergence are more
sensitive to cosmological parameters like )�/ etc which can be used to determine these parameters�
Statistical properties of velocity �eld and density �eld are related to each other if we believe that
gravitational clustering is responsible for formation of structure in the universe�
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��� Dynamical approximations

Analytical treatment of gravitational clustering of collisionless particles is extremely di�cult due
to complicated non
linear nature of the problem� However tremendous progress have been made
in recent years by using approximate methods to model this di�cult problem� Most of these
approximations rely on simpli�ed dynamics or special initial conditions ����

Gravitational dynamics in an expanding background is described by the following set of equa

tions�

��

�t
�
�

a
rx��� � ���v� � �� ����

��a�v�

�t
� ��v�rx��v � �rx� ����

�� � �
G�ba
�� ����

Equation �	� is continuity equation which describe conservation of mass Equation ��� is related
to conservation of momentum also known as Euler equation� The last equation in the series is
Poisson equation� All the partial derivatives has been taken with respect to co
moving co
ordinates
and the background dynamics of expanding universe enters into the picture through the presence
of scale factor a�t�� �These set of equation is only valid before trajectory crossing beyond which
one can not extend this hydrodynamical description

Roughly speaking one can divide the gravitational clustering in three di�erent regimes� In the
quasi
linear regime the density contrast is small and one can linearise these equations by neglecting
all higher order non
linear terms� Linear evolution of density growth preserve the Gaussianity very
soon higher order corrections start dominating and one has to take into account corrections to linear
calculations� Although cumbersome these perturbative methods of analysis can give considerable
insight into the dynamics of quasi
linear regime� Perturbation theory can be done in Lagrangian
co
ordinates where one measures physical quantities in a moving reference frame which is attached
to the �uid element� In general Lagrangian perturbation theory perform better than Eulerian
Perturbation theory�

In the highly non
linear regime one assumes that structures have already collapsed and they are
in a state of statistical equilibrium which have stopped evolving with rest of the universe which
means that Hubble �ow is balanced by opposite peculiar velocity �eld� This assumption also known
as stable clustering ansatz helps in simplifying the dynamics in highly non
linear regime� Other
e�orts in this regime include di�erent methods of closing the system of equation known as BBGKY
hierarchy which govern the evolution of n
point correlation functions�

Intermediate regime is most di�cult to understand and several dynamical approximations like
Zeldovich Adhesion Frozen Flow Frozen Potential smooth potential and conserving momentum
approximations help us a lot to understand one or other aspect of gravitational clustering in this
regime�

Other aspects of gravitational clustering like number density of collapsed objects �also known
as mass function� has been studied in great detail which also provide us with extremely valuable
informations like merger history� Several scaling ansatzs have also been suggested to relate non

linear power spectra with linear spectra which is extremely useful in reconstructing primordial
power spectra�

There has also been e�ort to understand gravitational clustering based on principles of ther

modynamics which seems to work well at least for Poisson shot noise initial condition�

It may be clear from the above discussion that some of the aspects of gravitational clustering
can be understood by using analytical methods� Nevertheless many situations remain outside the
reach of analytical techniques and one is compelled to adopt a numerical approach to solve the
equation of motion of particles� In general numerical solutions are also used widely to test the
analytical predictions� The simplest way to compute the non
linear evolution of cosmological �uid
is to represent it as a discrete set of particles and then sum the pairwise interaction between
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particles directly to calculate the Newtonian force on each particle� One then uses this force to
update the velocity and position of these particles� Depending upon how force is calculated from
distribution of particles numerical codes can mainly be divided into two categories ��� Particle 

Particle or PP code where pairwise force is calculated directly for all the particles� ��� Particle 

Mesh PM code where a rectangular grid is used for calculating the density of the particles from
their positions which in turn is used to get the gravitational potential �and hence gravitational
force� by using Fast Fourier algorithms which increases the speed of the code by order of magnitude�
However PP codes are more accurate in calculating the force� Most of the codes that are commonly
used are a hybrid of this two methods i�e� they calculate the forces due to neighbouring particles
by direct summation and for other particles they rely on fast Poisson solver� This method is
known as Particle 
 Particle� Particle 
 Mesh or P �M code� With increasing computational power
numerical methods can now handle more and more number of particles and also at the same time
they are becoming more accurate in force calculations�

Our discussion so far has been limited to gravitational clustering of dark matter particles which
being collisionless are easier to model� For comparing simulation data with galaxy catalogues
however one has to take baryonic components into account� Including baryonic components means
one has to calculate pressure and cooling which makes hydrodynamical codes more complicated in
nature�

Figure �� The evolved particle positions from n
body simulations are plotted for initially scale free
n � � power spectra �Poisson Shot noise� in �D for two di�erent epochs in the upper two panels�
In lower panels we superpose n
body data with predictions from adhesion approximation� Adopted
from ���
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For perturbations which are of size comparable to horizon or constituent particles are moving
with relativistic speed one has to do actual relativistic calculation and it is not appropriate to use
Newtonian picture described above� Calculations regarding cosmic microwave background where
one has to calculate path of photons in a perturbed background are important class of problem
which fall in this category�

� Conclusion

The pace of discovery has accelerated markedly in last few decades� In next decade or so major
projects will measure the distribution and velocities of galaxies dark matter and radiation at
cosmological distances� These results will tightly constrain all present theories of the Universe
and may point to fundamentally new paradigm� By its very nature cosmology entails explaining
a single series of irreproducible events� Our ability to explore the physical Universe is limited to
those regions which are in casual contact� Given these consideration one might wonder whether the
basic features of the universe are explainable as a consequence of symmetry and fundamental laws
of physics or some key features are largely determined by special initial conditions extraordinary
coincidence and�or physical laws that are untestable locally� One hopes to get some answer in this
direction from next generation experiments�
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The pursuit of science has often been compared to the scaling of mountains� high and
not so high� But who amongst us can hope� even in imagination� to scale the Everest and
reach its summit when the sky is blue and the air is still� and in the stillness of the air
survey the entire Himalayan range in the dazzling white of the snow stretching to in�nity�
None of us can hope for a comparable vision of nature and of the universe around us� But
there is nothing mean or lowly in standing in the valley below and awaiting the sun to rise
over Kinchinjunga�

� S� CHANDRASEKHAR
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I don�t see how we can demand of somebody else anything� I mean� when we are not
experiencing the same thing� We should be glad if more people show courage� but that is
not to say that we must require of them such qualities� Besides� you ask yourself� how many
scientists� colleagues� and friends of yourself here stand up for what is right���� Well� really�
does respect for someone�s scienti�c achievements allow one to smother one�s conscience
to that extent�
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In the �rst part of the talk we consider two analytic models which can be used to follow
the evolution of cosmological structures namely the Zel�dovich Approximation and the Spherical
Collapse Model� These methods can be used well beyond the epoch when the linear perturbation
theory breaks down and the deviation from the background universe are quite large� Details
of this part are not presented here and the reader is referred to any of the following reference
�Padmanabhan ������

In the second part of this talk we shall present some results from our study of the perturbative
evolution of cosmological correlation� This approach is limited in that it can be used to study
the evolution only a little beyond the linear epoch i�e� when the deviation from the background
universe are mildly nonlinear� The main points are presented below�

�� The universe is modeled as a system of particles interacting only through the Newtonian
gravitational force� This is appropriate on scales much smaller than the horizon scale but
large enough that gravity is the dominant force� We consider an ensemble of such systems
and we set up the equations of the BBGKY hierarchy in the �uid limit to study the evolution
of some of the statistical properties of such an ensemble� A convenient parameter is used for
the evolution instead of the cosmic time�

�� The initial conditions are chosen such that the deviation of any of the systems from the
uniform state can be characterized by a small parameter 	� The initial conditions are also such
that all the members of the ensemble have a single streamed �ow� These initial conditions
allow us to associate powers of 	 with various statistical quantities for the ensemble� We
consider the second and the third equations of the BBGKY hierarchy� By taking velocity
moments of these equations we obtain equations for perturbatively evolving the two point
and the three point correlation functions� At the lowest order of perturbation these equations
give us the linear evolution of the initial two point and three point correlation functions�

�� We consider a situation where the initial disturbances are such that the density �uctuation
is a random Gaussian �eld in a universe with the critical density� For these initial conditions
the initial three point correlation function is zero� We calculate the nonlinearity
induced
three point correlation function at the lowest order of perturbation for which it is non
zero�
We obtain a general expression for this in terms of the linear two point correlation function
and its average over a sphere� This investigation brings out the limitations of the commonly
used hierarchical form�

�� In general the evolution of the two point correlation is in�uenced by the three point correlation
function� The BBGKY hierarchy equations are used to calculate perturbatively the lowest
order nonlinear correction to the two point correlation and the pair velocity for Gaussian
initial conditions� Our formalism is valid even if the �ow becomes multi
streamed as the
evolution proceeds� We compare our results with the results obtained using the hydrodynamic
equations which neglect pressure and other e�ects of multi
streaming� We �nd that the
two match indicating that there are no e�ects of multi
streaming at the lowest order of
nonlinearity�

�� We study the two point correlation induced at large scales for the case when it is initially
zero there� Based on an analytic study con�rmed by numerical results we conclude that this
has a universal x�� behaviour�

�� We numerically study a class of initial conditions where the power spectrum at small k has
the form kn with �  n � � and we calculate the nonlinear correction to the two point
correlation its average over a sphere and the pair velocity over a large dynamical range� We
�nd that at small separations the e�ect of the nonlinear term is to enhance the clustering
whereas at intermediate scales it can act to either increase or decrease the clustering� We also
�nd that the small scales signi�cantly in�uence the evolution at large scales and this may lead
to a possible early breakdown of linear theory at large scales due to spatial nonlocality� We

���



obtain a simple �tting formula for the nonlinear corrections at large scales and we interpret
this in terms of a di�usion process� We also investigate the case with n � � and we �nd that
it di�ers from the other cases�

�� We use the perturbative calculations described above to numerically investigate a widely
discussed universal relation between the pair velocity and the average of the two point cor

relation� We �nd that in the weakly nonlinear regime there is no universal relation between
these two quantities�

	� The Zel�dovich approximation �ZA� is used to study some of the issues that have been studied
perturbatively for the full gravitational dynamics �GD� in the previous chapters� We inves

tigate whether it is possible to study perturbatively the transition between a single streamed
�ow and a multi
streamed �ow� We do this by calculating the evolution of the two point
correlation function using two methods� a�� Distribution functions b�� Hydrodynamic equa

tions without pressure and vorticity� The latter method breaks down once multi
streaming
occurs whereas the former does not� We �nd that the two methods give the same results to
all orders in a perturbative expansion� We thus conclude that we cannot study the transition
from a single stream �ow to a multi
stream �ow in a perturbative expansion� We expect this
conclusion to hold even if we use the full GD instead of ZA as already checked at the lowest
order of nonlinearity�

�� We calculate nonperturbative expressions for the evolution of the two point correlation func

tion the pair velocity and its dispersion in the Zel�dovich approximation� We numerically
investigate these formulae at various scales�

��� We use ZA to look analytically at the evolution of the two point correlation function at large
spatial separations and we �nd that until the onset of multi
streaming the evolution can be
described by a di�usion process where the linear evolution at large scales gets modi�ed by
the rearrangement of matter on small scales� We compare these results with the lowest order
nonlinear results from GD� We �nd that the di�erence is only in the numerical value of the
di�usion coe�cient and we interpret this physically�

��� We also use ZA to study the induced three point correlation function� At the lowest order of
nonlinearity we �nd that as in the case of GD the three point correlation does not necessarily
have the hierarchical form� We also �nd that at large separations the e�ect of the higher
order terms for the three point correlation function is very similar to that for the two point
correlation and it can be described in terms of a di�usion process�
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AND NEUTRINO OSCILLATIONS
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Abstract

It is well known that if the gravitational coupling of neutrino�s is �avour dependent then
this can give rise to neutrino oscillations which can explain the solar and atmospheric neutrino
anomalies� Once the universality of the gravitational coupling ��� i�e�� the gravitational gauge
invariance is violated at the tree level then there is no way of protecting � from radiative
corrections� We calculate the corrections to � arising from leading order weak interaction

diagrams and �nd that for a given neutrino �avour �i
�

� ����GF m�
li
� �where li � e	 �	 
 is the

corresponding charged fermion�� For the neutrino oscillations in the sun with non�degenerate
neutrino masses and these gravitational couplings we �nd that a resonant conversion takes
place for neutrinos with masses in the eV scale for both solar and atmospheric neutrinos�
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A journal is what the authors write� The editor doesn�t solicit articles� the articles come
to him� If the editor has in some way encouraged publication of good papers� promptly�
e�ciently� and fairly� he has done a little service� but the credit for the quality is not the
editor�s� It belongs to the astronomical community�
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� Introduction

We consider applications in the regime of linearised gravity in the Minkowski background� The
metric g�
 is written as

g�
 � ��
 � � h�
 ���

where ��
 is the Minkowski space metric and h�
 is regarded as the graviton �eld with coupling
� �

p
	
G� The coupling of matter to gravitons is determined by expanding the general covariant

Lagrangian L of matter in curved background in the Minkowski background and retaining the
linear terms in �� The universal matter
graviton interaction term thus obtained is given by

�L � � �L
�g�


�jg���h�� ��h�
� � �T�
 h
�
 ���

where T�
 is the matter �eld stress tensor in the Minkowski background� The general covariance
of Einstein�s gravity reduces in the linearised case to the transformations

x� � x�� � x� � 	�

h�
 � h��
 � h�
 � ���	
�
���

The graviton matter coupling are of the universal form �� and are invariant under the "gauge
transformation# � and Lorentz transformations� If one starts with a general theory of spin �
massless prticles interacting with matter then in general one could have di�erent couplings �i for
di�erent matter species� This theory would then violate the equivalence principle� It was shown
by Weinberg ��� that if one imposes the invariance under gauge transformation � of a general
n
point scattering amplitude with some gravitons in the external legs then the universality of �
for all matter �including self coupling with gravitons� follows� In other words gravitational gauge
invariance implies the equivalence principle�
We would like to explore the phenomenological consequences of dropping the gravitational gauge
invariance or the equivalence principle� In a gauge theory gauge invariance in the form of the
Ward identity q� �
�q

�� � � on the vacuum polarisation amplitude of the gauge bosons ensures
that  �
�q

�� is transverse i�e�  �
�q
�� � �g�
q

� � q�q
� and the gauge boson does not acquire a
mass due to radiative corrections to the propagator� The Ward identity for the gravitational two
point function is given by ����

q� �
�	 � ����q	 � ��	q� � ��	� 
�
�
�

� � ���

Due to the presence of the second term in � gravitational gauge invariance does not ensure that the
vacuum polarisation of the graviton be transverse and the graviton is not protected from acquiring
a mass by radiative corrections� Since gauge invariance in gravity does not play the same role as
in QED one can in principle explore the consequences of dropping it without running into any
fundamental problem�

� Graviton�neutrino vertex corrections by weak interac�
tions

We compute diagrams of the form shown in Fig �� which give rise to weak corrections to the tree
level graviton
photon interaction

�h�
�
�

�
�*��p������p� � p��
���p�� ���

The graviton charged lepton vertex in Fig �� is of the same form as �� The graviton
vector boson
vertex is given by

�h�
�F�
� F�
 �

�

�
��
F

��F��� ���
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We chose the harmonic gauge where the coupling of h�
 is to -T�
 � �T
�
 � �

�g
�
T�

� � and therefore

the mass dependent terms are traced out from -T�
 in �� The diagram Fig��a has the amplitude
given by

iL �
�

�
�
igp
�
��
Z

d	p

��
�	
*�i�k�� ��� PL i�� k�� � p�mi� ����k� � k��
�i�� k�� � p�mi�

�� PL ��ig���� I�k�� k�� p� �i�k��
where

I�k�� k�� p� �

Z
dxdy

�x

��p� �M�
w�xy � ��k� � p�� �m�

i �x��� y� � ��k� � p�� �m�
i ���� x�y��

���

Here �i with �i � e� �� �� are the �avour eigenstates of the neutrino and mi are the corresponding
charged lepton masses� In the limit of zero momentum transfer �k� � k�� � � the leading order
term in the amplitude � is of the form

iL � �

�
�
g

�

����

mi

Mw
���� � ln�

Mw
� �mi

�

Mw
� ��� h�
� *�i�k�� ����k� � k��
��i�k�� �	�

The contribution of diagram shown in Fig �b� is suppressed by a factor �m

��Mw

� with respect
to the contribution of diagram �a�
Comparing the coe�cients of the vertex operators given by � and 	 we see that the extra contri

bution to the diagrams Fig � is a �avour dependent term given by

�i � � �� � �fi� ���

with

�fi � �
g

�

����

mi

Mw
���� � ln�

Mw
� �mi

�

Mw
� � ����

In the �avour basis the gravitational couplings of the neutrinos are diagonal due to the fact that
weak interactions conserve the lepton number in the absence of neutrino masses� With non
zero
neutrino masses there are o�
diagonal terms in the �ij matrix but the o� diagonal terms are
suppressed w�r�t the diagonal ones by a factor � m


��Mw
� �

��� Neutrino oscillations by VEP and mass terms

When violation of equivalence principle �VEP� occurs by weak radiative corrections then the �avour
weak interaction couplings and the gravitational couplings are both diagonal in the same basis�
For neutrino oscillations to occur during propagation there has to be a mass matrix with nonzero
o�
diagonal elements�
For simplicity we shall assume there are only two neutrino �avors� In the �avour basis the evolution
of neutrino �avor in a medium is described by �� ��

i
d

dt

�
�e
��

�
�

�
�m�

�E
UM

� �� �
� �

�
U yM

� �Ej��r�j�f UG

� �� �
� �

�
UyG ����

�

p
�

�
GFNe

�
� �
� ��

���
�e
��

�
Here �m� � m�

��m�
� denotes the di�erence in neutrino vacuum masses Ne is the electron density

of the medium and GF is Fermi�s constant� The �rst term describes the contribution from vacuum
masses the second term describes the contribution from equivalence principle breaking and the
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third term describes the contribution from a background of normal matter� There are two unitary
matrices which parametrize the mixing UM and UG and they are generally completely unrelated�
If VEP occurs via weak interaction loops then UG is diagonal in the �avour basis and �fi is given
by ��� The condition of resonant oscillations is when the trace of r�h�s becomes zero

�m

�

�E
Cos����� �E%�f � �� ����

Where � is the mixing angle �in vacuum� between the mass and the weak eigenstates and % is
the Newtonian potential� For the case of solar neutrinos % � ���� and E � ��MeV and the
resonant conversion occurs for neutrino mass di�ernce of the order �m
 � eV � Interestingly for
the atmospheric neutrinos % � ���� and E � �GeV and again resonant conversion occurs for
neutrino mass di�erence of the order �m
 � eV �
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In assessing an artist� one often distinguishes an early� a middle� and a late period� and
the distinction is generally one of growing maturity and depth� But this is not the way
a scientist is assessed� he 
or she� is assessed by the signi�cance of one or more of the
discoveries that he 
or she� may have made in the realm of ideas or in the realm of facts�
And� it is often the case that the most �important� discovery of a scientist is his �rst� In
contrast� the deepest creation of an artist is equally often his last� I continue to be puzzled
by this dichotomy�

� S� CHANDRASEKHAR



TOPOLOGICAL DEFECTS IN COSMOLOGY

Pijushpani Bhattacharjee�

Indian Institute of Astrophysics
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Abstract

Topological Defects like magnetic monopoles� cosmic strings� domain walls� etc�� could
have formed during symmetry breaking phase transitions in the early universe� We give an
overview of the implications of topological defects for cosmology� with particular emphasis on
their possible role as sources of the extremely high energy cosmic rays detected in several recent
cosmic ray experiments� these experiments may indeed provide the signature of existence of
topological defects in the Universe�
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� � � still I cannot close without stating the simple fact that I and everyone of my col
leagues who share the title of astrophysicist is personally in your debt� It is a very happy
event to see a portion of that debt recognized in this fashion�

� A�A�PENZIAS�

Please accept my warmest congratulations� It is hard to imagine a Nobel Award that
would be as widely and enthusiastically approved by physicists and astronomers�

� E�M�PURCELL�



� Introduction

Extended particle
like non
dissipative solutions of classical non
linear �eld theories variously called
solitons lumps etc� have been known and studied for a long time� For a comprehensive review
of the subject see for example Refs� �� ��� The importance of these solutions came into sharp
focus with the discovery in the early seventies that spontaneously broken gauge theories �SBGTs�
possessed these �nite
energy non
singular soliton
like solutions namely the vortex solution of
Nielsen and Olesen simplest of spontaneously broken gauge theories and the magnetic monopole
solution of �t Hooft ��� and Polyakov ��� in the simplest spontaneously broken non	abelian gauge
theory�

A fundamental notion in a SBGT is the existence of more than one degenerate vacua �indeed a
whole continuum of them in general� which allows one to choose non
trivial boundary conditions
for the �elds and thereby construct topologically non
trivial solutions� Typically these solutions
represent extended objects with a �core� at the centre of which the symmetry under consideration
is unbroken while outside the core the symmetry is spontaneously broken� It is in this sense that
these solutions are generally called topological defects �TDs�4 they represent regions of space
within which the underlying �elds are constrained due to the special topological properties of
these solutions to remain in the �false� vacuum of unbroken symmetry as opposed to the �true�
vacua representing the broken symmetry outside the regions� The �center� of a defect could be
a point a line or a �
dimensional surface corresponding respectively to point
like line
like and
surface
like defects� in the cosmological context these are usually referred to as monopole cosmic
strings and domain walls respectively�

Topological Defects as physical objects can be formed in a system that exhibits the phenomenon
of spontaneous symmetry breaking �SSB�� Often the phenomenon of SSB in a physical system is
manifested in the form of a phase transition as the system is cooled through a critical temperature�
Laboratory examples of TDs include vortex �laments associated with super�uid phase transition
in liquid 	He magnetic �ux tubes associated with superconducting phase transition in Type
II su

perconductors disclinations and dislocations associated with isotropic
to
nematic phase transition
in liquid crystals and so on� Similarly in the cosmological context TDs could have been formed
during SSB phase transitions in the early Universe as the Universe expanded and cooled through
certain critical temperatures�

The link between temperature and symmetries is well known� One well
known example is the
Ferromagnet� A piece of iron cooled below the Curie temperature becomes a ferromagnet� the
full rotation symmetry of the piece of iron �in which the spins are randomly aligned� is broken
below the Curie temperature 4 the spins get aligned along a particular direction which de�nes
the magnetization vector� So a higher temperature in general corresponds to more symmetry
and symmetry can be �broken� as temperature is reduced� Conversely a symmetry can also be
restored at high temperatures4 the ferromagnet loses its magnetization when heated above the
Curie temperature and the full rotation symmetry is restored� When a symmetry is broken
it need not always be completely broken however� in the above case of ferromagnet there is a
residual symmetry left unbroken namely the invariance under rotation about the direction of
magnetization� Perhaps we should also mention here that there are counterexamples at least
theoretical models��� in which a symmetry broken at a high temperature can be restored at a lower
temperature� These models are however rather special�

In the example of ferromagnet above the relevant symmetry is the rotation symmetry in the
physical space4 it is a space	time symmetry associated with a transformation of the space
time
coordinates� It was shown in the mid
seventies �� 	 �� that gauge theories involving internal
symmetries �i�e� symmetries associated with transformations of the �elds themselves� may also
possess similar behaviour4 the internal symmetries broken at low temperatures can be restored
at higher temperatures� Thus within the context of the Big
Bang model of the Universe according
to which the Universe was hotter �and denser� in the past than it is now it is possible that the
spontaneously broken �internal� symmetries incorporated in uni�ed gauge theories �of which the
electroweak theory is the most successful example� were actually unbroken at some su�ciently
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early time� In particular it is possible that the full symmetry of the so
called Grand Uni�ed
Theories �GUTs� that describe uni�ed strong and electroweak interactions was unbroken at some
epoch in the early Universe and as the Universe expanded and cooled a series of phase transitions
took place by way of which the full GUT symmetry was successively broken to the presently
observed fundamental unbroken symmetry of the Universe namely the symmetry under the group
SU���c�U���em where SU���c denotes the �color� symmetry group that describes strong interaction
of quarks and gluons and U���em describes the electromagnetic interaction� Various kinds of TDs
namely magnetic monopoles cosmic strings domain walls textures etc� ���� would have formed
at some of these symmetry breaking phase transitions� As we shall see below the typical mass
�energy� scale of the TDs are roughly of same order as the energy �or temperature� scale of
the symmetry breaking phase transition at which the particular kind of TD is formed� Thus
TDs formed at a GUT scale phase transition �at an energy or temperature scale of � ����GeV�
would be very massive and so they would have tremendous implications for cosmology mainly
through their gravitational interactions with matter� For a nice summary of the subject of TDs
their formation evolution and their �mainly gravitational� implications for cosmology in general
see the recent monograph by Vilenkin and Shellard����� In this talk I will not deal much with
those well
known gravitational implications of TDs but will rather concentrate on some non	
gravitational implications of TDs� in particular I shall discuss the possibility that TDs under
certain circumstances may be sources of extremely energetic particles in the Universe and that
some of the currently operating and planned future detectors of extremely high energy cosmic rays
�with energy �� ���� eV� may provide direct signatures of TDs in the Universe�

In section � we brie�y discuss the nature of TDs in theories that exhibit SSB� For illustration we
explicitly discuss three di�erent kinds of TDs namely domain walls cosmic strings and monopoles
by considering the simplest models of SSB in which these objects are possible and also discuss the
general topological classi�cation of TDs� In section � we discuss the mechanism of cosmological
formation of TDs during phase transitions in the early Universe and brie�y discuss the cosmological
constraints on domain wall and magnetic monopole defects� Finally in section � we discuss the
possibility that TDs under certain circumstances may be the sources of the observed highest

energy cosmic rays�

Unless otherwise stated I use natural units with *h � c � kB � � where kB denotes the
Boltzmann constant� I should emphasize that this talk is not intended to be an exhaustive review
of the subject of TDs4
for this purpose see Ref������

� Topological defects and their classi�cation

��� Spontaneous Symmetry Breaking �SSB� and Topological Defects
�TDs�

����� Domain Wall

Consider the theory of a single scalar �eld � described by the Lagrangian density

L � �

�
�������

���� V ��� � ���

where the "potential# V ��� is chosen as

V ��� �
�

�
�
�
�� � ��

��
� ���

where � is a constant� The shape of this potential is shown schematically in Fig� ��
This Lagrangian with the above "double
well# potential is invariant under the symmetry ��

��� For the case of a static �eld � +� � �� the equilibrium or the lowest
energy state of the �eld
corresponds to the minimum of the potential V ���� The above potential has two minima and
so there are two lowest
energy or ground states of the theory corresponding to � � � � � and
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Figure �� The double
well potential

� � �� � ��� The symmetry � � �� is spontaneously broken because although the Lagrangian
is invariant under the above symmetry the ground states themselves are not �� � ����

Now suppose in one region of the universe we �nd the �eld to be in the state � � � and
in a neighbouring region � � ��� �We shall discuss later why we may expect this to happen in
general in a cosmological situation�� Then the spatial continuity of the �eld � implies that along
any line joining the two regions the �eld must pass through the value zero at least once� Indeed
in � spatial dimensions the set of points where the �eld is zero forms a �
dimensional surface 4
a "domain wall# that separates a region where � � � from a neighbouring region where � � ���
The domain wall region �in which � � �� has a higher energy density than the background �in
which � � ��� because of the higher potential energy density V ��� there and also because of the
contribution from the non
zero gradient term �r��� across the wall�

The equation of motion obtained from the Lagrangian ��� admits a closed form analytical
solution that represents a domain wall� Thus e�g� one can check that there exists a solution
namely

�wall�x� � � tanh�x��� � ���

which represents an in�nite static domain wall in the yz
plane� �An arbitrarily moving domain
wall solution can be obtained by applying an appropriate Lorentz transformation to the above
solution�� The �core� of the wall is at x � � and the wall has a "thickness# characterized by
� � � �� �

������� The above solution shown schematically in Fig� � interpolates between � � ��
at x � �� and � � �� at x � ���

x

Figure �� The domain wall solution

The topological stability of the solution is ensured by the above non
trivial boundary conditions�
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�A trivial boundary condition would be one in which � takes the same value either �� or �� at
both x � �� and x � ���� Thus no continuous rearrangement of the �eld con�guration can get
rid of the "kink# �see Fig� �� and the associated energy density of the solution� Thus a domain
wall once formed cannot disappear by itself unless it annihilates with an "anti
wall# �characterized
by the solution with the opposite boundary conditions i�e� � � �� at x � �� and � � �� at
x � ����

The characteristic thickness of the wall � is determined by the need to minimize the surface
energy density �&� associated with the wall� There are two contributions to &� �a� The gradient
term � � � �r��� � ���� which tends to make � as large as possible and �b� the potential
energy term � � � V ��� � ���	 which tends to make � as small as possible� The balance
between these two competing terms gives � � ��������� Substituting this back in the gradient
term and the potential energy term one gets & � ������� A more rigorous calculation in terms of

the full energy
momentum tensor obtained from the Lagrangian ��3 �� gives & � �
p
�

� �������
We have discussed the domain wall solution in some details because it illustrates several general

features of all defect solutions �except for textures�� These general features are the following� �a�
The mass�energy density scale associated with the defect is essentially �xed by the magnitude of
the "vacuum expectation value# �VEV� h�i of the scalar �eld � �i�e� its value in the symmetry

breaking vacuum which for the potential ��� is ��� �b� The asymptotic con�guration of the
symmetry breaking scalar �eld determines the existence of the defect� Note that existence of
multiple degenerate vacua �allowed in theories with SSB� is an essential pre
requisite for it allows
us to choose the non
trivial asymptotic �eld boundary conditions required for the defect solutions
to exist� �c� The �location� of the defect is the point of space where the scalar �eld is forced to
remain in the symmetric state�

These general features will be more apparent when we consider other kinds of possible topo

logical defects below�

����� Vortices and Cosmic Strings

Domain walls as topological defects arise in theories with spontaneously broken discrete symme

tries� To illustrate other kinds of defects let us now consider a theory with a spontaneously
broken continuous symmetry� More speci�cally consider now the theory of a complex scalar �eld
� described by the Lagrangian density

L � ������������ V ��� � V ��� �
�

�
�

�
j�j� � �

�
��
��

� ���

The potential V ��� in ��� is the "Maxican
hat# potential the generalization of the "double
well#
potential of Eq� ��� to the case of a complex
 i�e� two real
component scalar �eld� The Lagrangian
��� has a global U��� symmetry under transformations � � � exp�i�� with � a real constant�
A ground state or vacuum solution corresponding to the minimum of the potential is �� �
���

p
�� exp�i��� where �� is an arbitrary real constant� This is not the only ground state however�

Indeed there is now an in�nite number of degenerate ground states obtained by simply applying
U��� transformations exp�i�� with di�erent values of � to the ground state ��� Thus any chosen
ground state is not invariant under U��� transformations although the Lagrangian ��� is� In other
words the global U��� symmetry of the Lagrangian ��� is spontaneously broken by the vacuum�
This theory has a scalar particle with mass ms �

p
� � and also a massless scalar particle the

so
called Nambu
Goldstone boson associated with the spontaneously broken global symmetry�
The existence of the whole in�nity of ground states again allows us to construct a defect solution

by choosing the appropriate asymptotic boundary conditions on the complex �eld �� To illustrate
the "vortex# defect let us go over to cylindrical polar coordinates f�� �� zg and consider a closed
circular loop C of large radius in the xy
plane� Let us assume that on the loop C the complex �eld
� has the following cylindrically symmetric con�guration�

������ �� �
�p
�
exp�in�� � ���

���



where n is an integer� The �eld con�guration ��� thus de�nes a mapping of a circle in the xy

plane into the manifold of vacua which in the present case is also a circle� Let us take the �eld
con�guration ��� as de�ning our boundary conditions for the �eld �� It is then easy to see that if
the �eld � is spatially continuous and if it is to satisfy the boundary conditions ��� then there
must be at least one point on the disk bounded by the closed curve C at which � � �� This
point in the xy
plane de�nes the location of a topologically stable defect the vortex where the
potential energy density is maximum and the symmetry is unbroken� In fact one can show that
the Euler
Lagrange equations of motion derived from the Lagrangian ��� admit static solutions
�with non
zero energy density� representing vortex lines in �
dimensional space� For example for
an in�nitely long straight static vortex line along the z
axis at origin the general solution can be
written as

���� �� �
�p
�
f��� exp�in�� � ���

where � � ms�� Unfortunately unlike the case of domain wall solution it is not possible to write
the function f��� in terms of any known function� however it can be easily obtained numerically�
The boundary condition on f is that f � � for � � � and the continuity of � demands that
f � � as � � �� Thus at all points on a vortex line the �eld � is zero and far away from this
�nodal line� the �eld takes on one of the vacuum values given by Eq� ���� Moreover the phase of
the complex �eld � turns by an integral multiple of �
 as we make one complete circuit along any
closed curve encircling any point on the vortex line� The above vortex defects are usually referred
to as "global# vortices or "global# strings because they arise in theories with a spontaneously
broken global U��� symmetry� The global strings are closely related to the vortex �laments in
super�uid 	He where the complex scalar �eld represents the wave function of the condensed 	He
atoms� The core of a global string has a thickness � m��

s within which most of the energy density
of the defect is located� However it turns out that a global string has a formally in�nite energy per
unit length� within a cylinder of radius � around a straight vortex line the energy per unit length
is proportional to �� ln�ms�� which diverges logarithmically with �� This divergence is traced to
the existence of the massless Nambu
Goldstone scalar particle in the theory which gives rise to
long range interactions in the problem� However in a �nite system or in the cosmological context
�where the cosmological horizon or the distance to the nearest string provides a cuto� radius� the
global strings have e�ectively �nite energy per unit length�

Let us now consider a theory with a spontaneously broken local U��� symmetry� The simplest
theory of this type is the so
called Abelian Higgs model which is the theory of a complex scalar
�eld � interacting with a vector �eld A�� It is described by the Lagrangian

L � ��
�
F�
F

�
 � �D���
��D���� V ��� � ���

where D� � �� � ieA� is the covariant derivative �e being the gauge coupling constant� F�
 �
��A
 � �
A� and the potential V ��� is the same as in Eq� ���� The Lagrangian ��� is invariant
under the local �i�e� space
time dependent� U��� transformations

�� � expfi��x�g � A� � A� � �

e
����x� � �	�

where � is a real single
valued but otherwise arbitrary function of space
time� The form of the
potential V ��� again implies that the local U��� symmetry is spontaneously broken by the vacuum
states of the �eld �� So like the global string defects described above we can obtain now a "local#
or "gauge# string defect solution which has the same asymptotic con�guration for the �eld � as
implied by Eq� ���� However the presence of the gauge �eld A� now makes the properties of the
local string solution very di�erent from the global string� First note that the particle spectrum
of the theory again contains a massive scalar �eld �the so
called "Higgs boson#� with a mass
mH �

p
� � but in contrast to the global case the massless Nambu
Goldstone boson which by

virtue of its long
range interactions was responsible for making the energy per unit length of global
strings formally in�nite is now absent� Instead there is now a massive gauge �eld A� with a mass
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mv � e�� The asymptotic con�guration of the gauge �eld in the local vortex string solution can be
chosen such that by its coupling with the � �eld through the covariant derivative D�� it cancels

the divergent part of
R
��r���d�x which in the global string case had led to an in�nite energy per

unit length� In other words the energy per unit length of the local string denoted by � hereafter
is �nite� The asymptotic con�guration of the gauge �eld for a straight static local string along the
z
axis can be written with an appropriate �gauge choice� as

A� � � � �A����� � n

e�
,� � ���

where ,� is the unit vector in the azimuthal direction and the integer n is the same integer that
describes the winding number of the � as in Eq� ���� All components of the gauge �eld except
the azimuthal component are zero everywhere� Also � is zero at the origin i�e� the local U���

symmetry is unbroken at the centre of the vortex� The "magnetic# �eld �B � �r� �A is along the ,z
direction� The full solutions for � and A� can be obtained numerically �see ���� for details�� The
solutions are parametrized by the quantity � � ��e� � �mH�mv�

�� An important point to note is
that the total magnetic �ux is in fact quantized� By Stokes theoremZ

d�x �B 	 ,z �
Z ��

�

�d�
n

e�
� n

�


e
� ����

The local string thus contains a tube of "magnetic# �ux quantized in integer units of a basic
�ux quantum of magnitude ��

e � The magnetic �ux also makes a local string �orientable�4 if the

solution characterized by a positive value of n is de�ned as the "string# � �B along �,z� then that

with �n can be called "antistring# � �B along �,z�� It can be shown that for � � � a local string
with jnj � � is unstable with respect to dissociation into n number of strings each with n � �� If
however �  � then a local string is stable for any value of n� For � � � the n
string is neutrally
stable� All this can be understood in terms of the ranges of the attractive �for the scalar �eld� and
repulsive �for the vector �eld� interactions in the theory� Most importantly however an jnj � �
string is always �topologically� stable� it can never relax to the �trivial� con�guration with n � �
because the winding number n is a topologically conserved quantity� Thus a string once formed
cannot by itself disappear unless it annihilates with an antistring� �We shall see later that the
latter eventuality of annihilation is indeed possible under certain physical circumstances and it
has important implications��

Finally as already mentioned the energy per unit length of the local string is �nite � � ��
and is determined primarily �up to a numerical factor of O���� by the vacuum expectation value
of the scalar �eld �� Actually � also depends on the parameter � but that dependence is rather
mild �see ������ The size of the core or the thickness of the string is � ����
The local strings are analogous to quantized magnetic �ux tubes that appear inside a Type II

superconductor placed in an external magnetic �eld of strength greater than some critical value�
This is not surprising since the Abelian Higgs model Lagrangian ��� is in fact just the relativistic
version of the phenomenological Ginzburg
Landau Lagrangian that in condensed matter physics
describes the superconducting phase transition in certain conductors at low temperatures� The
�local� string solution of the abelian higgs model was �rst obtained by Nielsen and Olesen ����

In the cosmological context the vortex strings resulting from U��� symmetry breaking phase
transitions in the Universe are called cosmic strings�

����� Magnetic monopoles

Domain walls and vortex strings are examples of �
dimensional �surface
like� and �
dimensional
�line
like� defects respectively in the �
dimensional space� It is also possible to have point	like
defects called magnetic monopoles �for reasons that will become clear shortly�� These appear in
some spontaneously broken non	abelian gauge theories� The simplest theory allowing magnetic
monopole solution �� �� incorporates the SSB scheme SO���� U���� Here SO��� refers to the
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rotation group in the �
dimensional "internal# space generated by a triplet of scalar �elds �a
with a � �� �� �� �Thus the scalar �eld � in the present case can be regarded as a "vector# �� in
the �
dimensional internal space�� The potential V ��� in the Lagrangian that incorporates this
symmetry breaking can be chosen as

V ��� �
�

�
���a�a � ���� � ����

Clearly this potential is invariant under transformations belonging to the group SO���� these
transformations preserve the �length� j�j � p�a�a of the scalar �eld� One can write down the full
Lagrangian invariant under local SO��� transformations in the standard way by introducing the
required triplet of gauge �elds Aa

� �a � �� �� �� and the associated covariant derivatives� In the

vacuum state j�j � �� However the �direction� of �� in the internal space is not �xed� Thus there
is again a whole manifold of degenerate vacua� The vacuum manifold is just S� a �
sphere of
�radius� �� The SO��� symmetry is therefore spontaneously broken� However it is not completely
broken� all rotations about a given �a leave it invariant� Thus a subgroup U��� of SO��� remains
unbroken� �t Hooft ��� and Polyakov ��� showed that this theory admits a spherically symmetric
static defect solution which has the following asymptotic boundary conditions�

�a�r ��� � �,ra � ����

Aa
i �r ��� � 	iaj

,rj

er
� Aa

� � � � ����

Here r is the spatial radial coordinate and ,r the radial unit vector in the spherical polar coordinate
system� The �hedgehog� con�guration of the scalar �eld triplet implied by Eq����� guarantees the
topological stability of this defect solution� Like in the domain wall and cosmic string case the
continuity again implies that the scalar �eld must vanish as r � �� Thus the �eld �� retains the
full SO��� symmetry at r � � while far away from this point only a U��� symmetry remains�
The remarkable property of this defect solution as shown by �t Hooft��� and Polyakov��� is that
the asymptotic con�guration of the gauge �eld corresponds to a radially outward magnetic �eld
corresponding to the unbroken symmetry U���� Now in the context of realistic uni�ed theories
of fundamental interactions in nature the only known unbroken U��� symmetry is the one that
corresponds to U���em the gauge group of electromagnetism� One can therefore identify the
above unbroken U��� symmetry with U���em� Therefore the "magnetic# �eld of the defect at
in�nity is actually the magnetic �eld we are familiar with in electromagnetism� Moreover the
radial nature of the magnetic �eld implies that the defect is actually a magnetic monopole� it can
be further shown that the magnetic charge carried by this solution is g � ��
�e� The energy
associated with the monopole is � 	�

e � which can be regarded as the mass of the monopole� Since
any model of GUT must necessarily incorporate in it the unbroken U���em symmetry it follows
that the monopole solution is allowed in all realistic GUT models� They would be very massive
with a mass of � ����GeV for a GUT symmetry breaking scale given by � � ���	GeV� This
has important cosmological consequences� Note that like domain walls and cosmic strings the
topological stability implies that a monopole once formed cannot by itself disappear� the only way
it can do so is by annihilating with an antimonopole whose asymptotic con�guration is given by
Eq����� with a negative sign on the right hand side�

There is a vast amount of literature on magnetic monopoles because of their fascinating and
often intriguing properties for which the reader can consult e�g� Refs� ��� �� ����

����	 Other defects

There is a variety of other possible topological defects discussed in literature� These include global
texture superconducting cosmic strings and domain walls hybrid or composite defects �such as a
monopole
antimonopole pair connected by a cosmic string in between domain walls bounded by
cosmic strings and so on� and the so
called embedded or semi
local defects� We will not discuss
these here� the reader may consult Ref����� for details�
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��� Topological classi	cation of Defects

In general in a theory with a spontaneous symmetry breaking from a symmetry group G to a
symmetry group H �which is a subgroup of G� G � H  the degenerate vacua of the scalar �eld
�that implements this symmetry breaking through its potential energy density� form a manifold
M� The existence and the kind of possible TDs are determined by the topology of the vacuum
manifoldM in particular by its homotopy groups� We will not go into the details here but will
simply mention that domain walls cosmic strings magnetic monopoles and texture solutions are
allowed if 
��M� 
��M� 
��M� and 
��M� are respectively non
trivial� Here 
n�M� is the n
th
homotopy group of the manifoldM� A non
trivial 
n�M� �for n � �� means that not all n
spheres
�Sn� inM can be shrunk to a point� Note that 
��M� although it is often referred to as the "zeroth
homotopy group# ofM is not in general a group� it simply counts the disconnected components
of M� An important point is that the vacuum manifold M may in general be identi�ed with
the coset space G�H �M� G�H� This allows one to calculate the relevant homotopy groups just
by knowing the topological structures of the groups G and H � For more details on the homotopy
classi�cation of TDs see e�g� Ref� �����

� Cosmological formation of topological defects

��� The Kibble mechanism

We have already indicated in the Introduction that several spontaneously symmetry breaking phase
transitions may actually have occurred in the early Universe as it expanded and cooled� In the
non
zero �actually high�
 temperature environment of the early Universe the potential V ��� used
in our discussions above is actually a temperature dependent object� In fact it is the relevant free

energy density of the �eld or more speci�cally the so
called �nite temperature e�ective potential
VT ���� Consider for example the double
well potential of Fig� �� It can be shown that above
a certain critical temperature Tc � � �where � is the vacuum expectation value �VEV� of � in
the broken symmetry phase� the shape of the potential changes to a simple harmonic oscillator
potential with a single minimum at � � � but below Tc the potential develops the double
well
shape with two degenerate minima at non
zero values of �� Thus initially at T � Tc the Universe
can be in an unbroken symmetry phase �� � �� but as it cools below Tc the symmetry is broken
a phase transition takes place and the �eld settles down to a minimum of the potential i�e� �
develops a non
zero VEV h�i �� �� However there is no special reason for all points in the Universe
to settle down to the same vacuum� Thus e�g� for the case of the double
well potential of Eq�
��� as the Universe cools below Tc the h�i at di�erent points of the Universe would be randomly
chosen to be either �� or ��� Moreover as �rst pointed out by Kibble ���� the value of h�i
chosen at two di�erent points would in general be uncorrelated if the two points are separated by
a distance greater than the correlation length � of the �eld � at the phase transition temperature
Tc� But causality necessarily implies that ��t�  dH�t� � t where dH�t� is the causal particle
horizon distance in the expanding Universe at time t� Hence after the phase transition the �eld
� would lie at di�erent points of the vacuum manifoldM at di�erent spatial points� It will then
happen just by chance that the �eld con�guration on some asymptotic surfaces �with respect to
some points lines or �
surfaces� will be topologically non
trivial like in the case of domain wall

cosmic string
 and monopole solutions discussed earlier and so a defect will be present somewhere
inside the asymptotic surface� This is the so
called "Kibble mechanism# of formation of TDs in the
Universe� Recent laboratory experiments studying defect formation in phase transitions in liquid
crystal ���� and in liquid 	He ���� give qualitative support to this general idea of defect formation
in cosmology� for more details on this see e�g� Zurek ���� and references therein�
One simple consequence of the Kibble mechanism is that it gives a rough lower limit on the

density of defects formed at a phase transition� At least one defect should be formed per horizon

size volume of the Universe at the time of the phase transition�

Defects could also be formed by quantum mechanical nucleation of a defect
antidefect pair
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during an in�ationary phase of the Universe ����� However since this is a quantum mechanical
process the rate and number density of formation of defects by this process is small�

��� Cosmological constraints on defects

����� Domain Walls

A topological defect once formed in the early Universe cannot by itself disappear �unless it somehow
collapses or annihilates with the corresponding anti
defect� and so it should be present in the
Universe today� There are however rather strong cosmological constraints on certain kinds of TDs�
For example domain walls formed at a GUT scale phase transition with � � ����GeV would have a
mass per unit area of the wall of order � �� � ������	� g cm��� Even a single domain wall of such
huge mass density stretched across one Hubble volume �of radius � H��

�

�� ����cm� of our Universe
today would make the Universe very far from the almost homogeneous and isotropic Universe
we know today� It would also create unacceptably large �uctuation in the cosmic microwave
background radiation �CMBR�� We can therefore conclude that theories which predict GUT
scale domain walls are certainly ruled out� see e�g� Ref� ��	�� �Lighter� cosmological domain walls
those formed in a phase transition at a temperatures below � ��MeV are however not apriori
ruled out�

����� Monopoles

There are similar constraints on monopoles� A monopole formed at a GUT scale phase transition
would have a mass � ����GeV� It is not very hard to show that for such massive monopoles even
the lower limit on the monopole number density implied by the Kibble mechanism would make the
total mass density of the Universe far exceed the critical mass density for closure of the Universe
��� ��� soon after the formation of the monopoles� In other words GUT
scale monopoles if their
number densities are not drastically reduced by some mechanism subsequent to their formation are
incompatible with the expanding Universe today� The only way to reduce the number density of
the monopoles is by annihilation with antimonopoles and this has been shown ���� to be too slow
a process to reduce their number density signi�cantly� This leads to the famous monopole problem�
There is an apparent con�ict of GUTs with the standard cosmology because essentially all GUT
models necessarily predict the existence of monopoles� Solution of this monopole problem was
one of the motivating factors that in fact led to the development of the idea of in
ation���� �see
e�g� Ref� ���� for details�� In�ation basically solves the monopole problem by diluting the number
density of monopoles to very low levels during the exponentially expanding phase of the Universe
envisaged in the theory of in�ation� There are also particle physics solution of the monopole
problem� see e�g� Ref� ����

Apart from the cosmological constraints discussed above there is also a variety of astrophysical
constraints on monopoles� see Ref� ���� for a review�

It should be mentioned that monopoles could also be produced by thermal monopole
 anti

monopole pair production process in the early Universe and such a process could leave behind a
small but interesting relic abundance of monopoles in the Universe today�

����� Cosmic strings and Textures

In contrast to domain walls and monopoles which lead to "problems# the other two major kinds
of TDs namely cosmic strings and textures are generally found to be cosmologically �useful�� In
particular they form the basis of some of the most successful theories of formation of galaxies
and large scale structure in the Universe� I will not discuss this aspect of the usefulness of cosmic
strings and textures in this talk� see Ref����� for a contemporary review of this topic� It should be
mentioned however that cosmological and astrophysical constraints also exist for these defects� For
example oscillating closed loops of cosmic strings emit gravitational waves creating a stochastic
gravitational wave background in the Universe today� Cosmic strings as well as textures can
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also give rise to distinctive patterns of distortion in the CMBR� Cosmic strings because of their
distinctive gravitational �elds can also act as gravitational lenses� At the present moment it
can be said that no current observations rule out the existence of GUT scale cosmic strings and
textures� For detailed discussions of these topics see Ref������

� Topological defects as sources of extremely high energy
cosmic rays

The discussions of constraints on cosmological TDs in the previous section were concerned with
mainly their gravitational e�ects� This is due to the fact that GUT
scale TDs are expected to
be very massive and hence their gravity provides the dominant mode of their interactions with
other matter in the Universe� However one should remember that at the microphysical level
TDs represent highly non
trivial classical con�gurations of the underlying quantum �elds in the
theory and as such have important �non
gravitational� particle physics implications too� Indeed
under certain circumstances TDs can be sources of extremely energetic particles� In this section
we discuss the possibility that such energetic particles created by TDs can provide the signature of
TDs in the Universe� We also discuss the possibility that TDs may even be the sources of extremely
high energy �EHE� �energy �� ���� eV� cosmic rays� �For a review of cosmic rays at the highest
energies see for example Refs� ��� �� �� �����
TDs can be thought of as �made� of massive quanta of gauge
 and higgs bosons �hereafter

referred to as the "X# particles� of the underlying spontaneously broken gauge theory� The X
particles are �trapped� in topologically non
trivial con�gurations which under normal dynamical
evolution cannot �unwind�� The X particles are thus not free and cannot decay as long as they are
trapped inside TDs� Thus owing to topological stability the TDs formed in the early Universe
and along with them the massive X particles trapped inside the TDs can survive down to the
present epoch� The TDs can nevertheless be occasionally and in certain circumstances frequently
destroyed in physical processes like collapse or annihilation� This may happen for example if
monopole annihilates with an antimonopole ��� ��� or if a closed loop of cosmic string collapses
��� �	� or in the so
called "cusp evaporation# process for cosmic strings����� When a TD is
physically destroyed the energy stored in the TD is released in the form of massive X particles
that �constitute� the TD� The released X particles would then decay essentially instantaneously
typically into fundamental particles like quarks and leptons� Hadronization of the quarks would
then produce jets of hadrons containing mainly light mesons �pions� together with a small fraction
of nucleons �protons and neutrons�� The gamma rays and neutrinos from the decay of the neutral
and charged pions respectively would thus be the most abundant particles in the �nal decay
products of the massive X particles� If the TDs under consideration were originally formed at a
GUT energy scale the mass mX of the X particles released from the TDs can be � ����eV� The
decay of the X particles released from the TDs can thus give rise to protons neutrons gamma rays
electron
positrons and neutrinos with energies up to � mX � The relevant experiments that may
be able to detect these extremely energetic particles are the large extensive air shower experiments
set up to detect the extremely high energy cosmic rays �see for example Sokolsky���� for a review
of the relevant cosmic ray experiments��

Recent cosmic ray experiments have detected several cosmic ray events with energies above
���� eV ����� Several analyses��� �� ��� have shown that it is indeed very di�cult if not impossible
to explain the origin of these energetic events in terms of the standard di�usive shock acceleration
mechanism �see e�g� Drury����� of producing high energy cosmic rays in known astrophysical
environments such as in Active Galactic Nuclei �AGN� in the lobes of powerful radio galaxies
and so on� As mentioned above and as detailed studies ��� �� �� �� ��� have shown TDs can
indeed provide a natural and fundamentally di�erent mechanism of production of extremely high
energy cosmic rays�

The release of X particles from TDs may occur continually at all cosmological epochs after the
formation of the TDs under consideration in the early Universe� However only the X particles
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released in relatively recent epochs are likely if at all to contribute to the present
day �ux of
protons and gamma rays in the ultrahigh energy �UHE� energy region �i�e� energy �� ���� eV�
because those released in the earlier epochs would have to traverse greater distances through
the cosmic background radiation �elds in order to reach us and would therefore lose signi�cant
fractions of their energy in collision with the photons of the background radiation� However
neutrinos can come from relatively earlier cosmological epochs because they su�er little energy
loss as a consequence of their small cross section of interaction with the relevant particles of the
background medium�

In the TD model the shapes of the energy spectra of protons gamma rays and neutrinos at
production �i�e� the injection spectra� at any time are determined primarily by the physics of
fragmentation of quarks into hadrons and not by any astrophysical parameters� At any given time
the injection spectra are therefore also independent of the speci�c kind of TDs responsible for
release of X particles� Di�erent kinds of TDs however evolve in di�erent ways� Therefore the
absolute magnitude and the rate of production of the various particles and so also the �nal evolved
spectra will be di�erent for di�erent kinds of TDs� However in the highest energy regions the
shapes of the proton as well as gamma ray spectra become insensitive to the kind of TDs producing
them because to survive at these energies the protons and photons must originate at relatively
close �i�e� non
cosmological� distances for which the cosmological evolution is immaterial� The
shape of the neutrino spectrum will however remain sensitive to the kind of TDs producing
them and their cosmological evolution because neutrinos can propagate over large �cosmological�
distance scales without much attenuation�

The injection spectra of nucleons gamma rays and neutrinos in the TD model have been
calculated��� �� ��� by extrapolating the available models of hadronization of quarks as described
by the theory of Quantum Chromo
Dynamics �QCD� to extremely high energies� This gives
approximately power
law di�erential injection spectra for nucleons gamma rays and neutrinos
all with a power
law index � � ���� It is to be emphasized however that there is a great deal
of uncertainty involved in extrapolating the low
energy QCD based models of hadronization of
quarks to extremely high energies involved in the present situation� It is also possible that the
value of � for nucleons may be somewhat di�erent from that for say gamma rays� The main point
however is that the injection spectra of cosmic ray particles in the TD model can in principle be
considerably 
atter than in the standard shock acceleration scenarios which by and large produce
di�erential injection spectra with � � ��

The typical shapes of the �nal proton gamma ray and neutrino spectra including the e�ects
due to propagation through the extragalactic medium are shown in Figure ��

Fig� � was actually obtained for a speci�c TD model namely that involving annihilation of
magnetic monopole
antimonopole pairs����� however as explained above the spectra have more
or less a universal shape independent of the speci�c kind of TD
process one considers especially
at the highest energies and hence the spectra shown in Fig� � are representative of the particle
spectra expected in TD models in general� One major uncertainty in this scenario is the absolute
magnitude of the cosmic ray �ux produced by TDs i�e� the �normalization� of the predicted �ux�
This clearly depends on the speci�c process of particle production involving speci�c kind of TDs�
The normalization of the particle �uxes in Fig� � implies a monopole abundance that is well below
the stringent astrophysical upper limit on the monopole abundance 4 the so
called "Parker limit#
�see Ref������ 4 and is therefore quite plausible�

From Fig�� we see that TD models are probably not relevant for cosmic rays below about
�� ���� eV� it is only at energies above this energy that TD models become a viable option� It is
to be mentioned here that the shape of the proton spectra in the acceleration models �not shown
in Fig� �� which typically yield power
law injection spectra with index � � � would correspond
to a sharply falling curve at energies beyond � ���� eV and so would be unable to explain the two
highest energy events indicated in the �gure� The �dip� of the proton curve of Fig� � beginning
at � ���� eV and its subsequent �recovery� at � ���� eV are characteristic features induced by the
propagation e�ects� The �recovery� of the proton spectrum after the �dip� is however a feature
that is not shared by the proton spectra one gets in standard acceleration models� The recovery
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Figure �� The proton �solid line� gamma ray �long
dashed line� and the neutrino �short
dashed
line� spectra in the TD scenario including the e�ect of propagation through the cosmic back

ground medium� The X particle mass is taken to be ����GeV and an extrapolation of QCD
based
hadronization spectrum to the relevant high energies has been used to obtain the injection spectra�
The combined proton and gamma ray �ux has been normalized at ������ eV to the "extragalactic
�ux component# �thin solid line� see Bird et al in Ref� ����� �tted to the data from the Fly�s Eye
experiment ��lled circles with error bars� Bird et al in Ref� ����� � Also shown �dash
dotted line�
is an approximate limit on the neutrino �ux determined from non
detection of deeply penetrating
particles by the Fly�s Eye detector �����

in the present case is essentially due to �atter nature of the proton injection spectrum in the TD
model as compared to that in the acceleration models� Note also from Fig� � that the two highest

energy events are naturally explained in the TD model if these are gamma ray events and not
protons� Experimentally it is hard to determine the composition of the events at these energies
with full certainty� Although the traditionally favoured composition for these events are protons
a gamma
ray composition is certainly not ruled out �see Bird et al in Ref�������

Besides the characteristic shapes of the UHE cosmic ray �UHECR� spectra the TD models
of UHECR origin have two de�nitive predictions� Firstly the UHECR should consist of only
�fundamental� particles like protons neutrons gamma rays neutrinos electrons positrons and so
on �and perhaps their antiparticles too� but de�nitely no nuclei such as 	He or Fe� �There is no
way hadronization of quarks would directly give rise to nuclei��� Secondly the UHECR should be
highly rich in gamma
rays and neutrinos� These predictions can be used as crucial tests of the TD
model in future UHECR experiments with large
area detector coverage such as the proposed Pierre
Auger project ���� which could thus provide the signatures of existence of TDs in the Universe�
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I cannot allow myself to congratulate you� but allow me to tell you that when I heard
the news� I was turned upside down� For some reason� I feel so happy and proud that your
long work has found such a world recognition� Not that you need�if I may dare to express
my humble feelings�any wordly grati�cation� for you and my father belong to the same
kind� but still� I cannot help feeling immensely happy and proud� After all� you are a little
bit my father� Someone said� the rich and the poor are two locked caskets� of which each
contains the key to the other 
it was Karen Blixen� A Danish writer�� How wonderful�

� KAREN CHALLONGE
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Abstract

A recent generalisation of the Raychaudhuri equations for timelike geodesic congruences
to families of D dimensional extremal� timelike� Nambu!Goto surfaces embedded in an N
dimensional Lorentzian background is reviewed� Specialising to D � � �i�e the case of string
worldsheets� we reduce the equation for the generalised expansion �a	 �a � �	 
� to a second
order� linear� hyperbolic partial di�erential equation which resembles a variable!mass wave
equation in � � � dimensions� Consequences� such as a generalisation of geodesic focussing
to families of worldsheets as well as exactly solvable cases are explored and analysed in some
detail� Several possible directions of future research are also pointed out�
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I �rst constructed proofs for myself� Then I compared my proofs with those of Newton�
The experience was a sobering one� Each time� I was left in sheer wonder at the elegance�
the careful arrangement� the imperial style� the incredible originality� and above all the
astonishing lightness of Newton�s proofs� and each time I felt like a schoolboy admonished
by his master�

� S� CHANDRASEKHAR



� Introduction

It is a well established fact today that the proof of the existence of spacetime singularities in the
general theory of relativity �GR� largely relies on the consequences obtained from the Raychaud

huri equations for null�timelike geodesic congruences ������ Even though the applications of the
Raychaudhuri equations are mostly con�ned to the domain of GR it is important to note that these
equations contain some basic statements about the nature of geodesics in a Riemannian�pseudo3
Riemannian geometry� GR comes into the picture when one assumes the Einstein �eld equation
and thereby reduces one crucial term containing information about geometry into an object re

lated to matter stress3energy� Subsequently if one imposes an Energy condition �such as the Weak
Energy condition which implies that the energy density of matter is always positive in all frames
of reference� it is possible to derive the fact that geodesic congruences necessarily converge within
a �nite value of the a�ne parameter� This is known as the focussing theorem which along with
other assumptions about causality essentially imply the existence of spacetime singularities�

In string and membrane theories the notion of the point particle �and its associated world3line�
which is basic to GR as well as other relativistic �eld theories gets replaced by the string�membrane
�and its corresponding world3surface�� This is a radically new concept and has paid rich dividends
in recent times� For instance it is claimed that quantum gravity as well as a uni�cation of forces
comes out naturally from quantizing string theories�

If one accepts the string�membrane viewpoint then it should in principle be possible to derive
the corresponding generalized Raychaudhuri equations for timelike�null worldsheet congruences
and arrive at similar focussing and singularity theorems in Classical String theory� Very recently
Capovilla and Guven ��� have written down the generalized Raychaudhuri equations for timelike
worldsheet congruences� In this talk we shall �rst give a brief review of these equations� Thereafter
we construct explicit examples of these rather complicated set of equations by specializing to certain
simple extremal families of surfaces� Our principal aim is to extract some information regarding
focussing of families of surfaces in a way similar to the results for geodesic congruences in GR�

Finally we shall summarize some recent work in progress and point out several future directions
of research�

� Review

��� What are Raychaudhuri Equations 

An useful way of visualising the content of the Raychaudhuri equations is to look at an analogy
with �uid �ow� The �ow lines of a �uid �which are the integral curves of the velocity �eld� form
a congruence of curves� If we focus our attention on the cross3sectional area enclosing a certain
number of these curves we �nd that it is di�erent at di�erent points� The gradient of the velocity
�eld contains crucial information about the behaviour of this area� What can happen to this area
as we move along the family of curves� The obvious answer is3it can expand �i�e� a smaller circle
may become a larger circle which is concentric to the former� it can become sheared �i�e� a circle
can become an ellipse� or it can twist or rotate� The information about each of these objects �i�e�
the expansion shear and the rotation� is encoded in the gradient of the velocity �eld�� Recall that
this gradient is a second rank tensor� Such a quantity can be split into its symmetric traceless
antisymmetric and trace parts 3 these are respectively the shear rotation and expansion of the
congruence ��ow lines� For geodesic congruences in Riemannian�pseudo3Riemannian geometry we
have to replace the �ow lines with geodesics and the velocity �eld by the tangent vectors to the
geodesic curves�

Therefore expressed in mathematical language we have �

v�

 � ��
 � ��
 �
�

�
�h�
 ���

���



The evolution equation for each of these quantities 3 expansion shear rotation along the
geodesic congruence are what are known as the Raychaudhuri equations�
For example the equation for the expansion � for a timelike geodesic congruence turns out to be �

d�

d�
�
�

�
�� � �� � �� � �R�
�

��
 ���

An analysis of the nature of the solutions of this equation leads us to the concept of geodesic
focussing� First let us convert this equation into a second order linear equation by rede�ning
� � �F

�

F � This results in the following �

d�F

d��
�
�

�

�
�� � �� �R�
�

��

�
F � � ���

Assuming zero rotation one can prove that if � is negative somewhere it has to go to �� within
a �nite value of the a�ne parameter if the coe�cient of the second term in the above equation is
greater than or equal to zero� This largely follows from the theorems on the existence of zeros of
a general class of such second order linear equations proofs of which can be found in the paper by
Tipler ����

What happens when � � ��� If A� is the area at �� and A� at �� we can write � as
� � A��A�

A�
� Therefore � can go to �� if A� � �� Thus the family of geodesics must focus at a

point �i�e� at � � ����
A word about the constraints on the geometry which are necessary for focussing� Notice that if
the rotation is zero we must have R�
�

��
 � �� Using the Einstein �eld equations one can write
this as T�
 � �

�g�
T � �� This is what is known as the Strong Energy Condition� An Energy
Condition in general de�nes a certain class of matter which is physically possible� For instance
the Weak Energy Condition states that T�
�

��
 � � which physically implies the positivity of
energy density in all frames of reference�

We now ask the following questions�
Suppose we replace extremal curves �geodesics� by extremal D dimensional timelike surfaces

embedded in an N dimensional background�

 Are there generalisations of the Raychaudhuri equations�
 Is there an analog of geodesic focussing�
The remaining part of this article is devoted to answering these two questions�

��� Geometry of Embedded Surfaces

We begin with a brief account of the di�erential geometry of embedded surfaces�
A D dimensional surface in an N dimensional background is de�ned through the embedding

x� � X���a� where �a are the coordinates on the surface and x� are the ones in the background�
Furthermore we construct an orthonormal basis �E�

a � n
�
i � consisting of D tangents and N � D

normals at each point on the surface� E�
a  n

�
i satisfy the following properties�

g�Ea� Eb� � �ab � g�Ea� ni� � � � g�ni� nj� � �ij ���

We can write down the Gauss3Weingarten equations using the usual de�nitions of extrinsic
curvature twist potential and the worldsheet Ricci rotation coe�cients�

DaEb � �cabEc �Ki
abni ���

Dani � Ki
abE

b � �ija nj ���

where Da � E�
aD� � D� being the usual spacetime covariant derivative�� The quantities K

i
ab

�extrinsic curvature� �ija and �cab are de�ned as �

���



Ki
ab � �g�DaEb� n

i� � Ki
ba ���

�ija � g�Dan
i� nj� �	�

�abc � g�DaEb� Ec� � ��acb ���

In order to analyse deformations normal to the worldsheet we need to consider the normal
gradients of the spacetime basis set� The corresponding analogs of the Gauss3Weingarten equations
are�

DiEa � Jaijn
j � SabiE

b ����

Dinj � �JaijEa � �kijnk ����

where Di � n�i D� � The quantities J
ij
a  Sabi and �

k
ij are de�ned as �

Siab � g�DiEa� Eb� � �Siba ����

�ijk � g�Dinj � nk� � ��ikj ����

J ija � g�DiEa� n
j� ����

��� Sketch of Derivation

The full set of equations governing the evolution of deformations can now be obtained by taking
the worldsheet gradient of J ija � This turns out to be �for details see Appendix of Ref� �����

-rbJ
ij
a � � -riKj

ab � J ibkJ
kj
a �Ki

bcK
cj
a � g�R�Eb� n

i�Ea� n
j� ����

where the extrinsic curvature tensor components are Ki
ab � �g�
E�

a �D�E
�
b �n


i

On tracing over worldsheet indices we get

-raJ
aij � �J iakJakj �Ki

acK
acj � g�R�Ea� n

i�Ea� nj� ����

where we have used the equation for extremal membranes �i�e� Ki � ��
The antisymmetric part of ���� is given as�

-rbJ
ij
a � -raJ

ij
b � Gij

ab ����

where g�R�Y�� Y��Y�� Y	� � R���
Y
�
� Y

�
� Y

�
� Y



	 and

Gij
ab � �J ibkJkja �Ki

bcK
cj
a � g�R�Eb� n

i�Ea� n
j�� �a� b� ��	�

One can further split Jaij into its symmetric traceless trace and antisymmetric parts �J
ij
a �

&ija � /
ij
a �

�
N�D�

ij�a� and obtain the evolution equations for each of these quantities� The one
we shall be concerned with mostly is given as

�� �
�

�
�a��

a� � �M��ii � � ����

with the quantity �M��ij given as �

�M��ij � Ki
abK

abj �R�
�	E
�
an


iE�an	j ����

ra is the worldsheet covariant derivative �� � rara� and �a� � �a� Notice that we have set
&ija and /ija equal to zero� This is possible only if the symmetric traceless part of �M��ij is zero�
One can check this by looking at the full set of generalized Raychaudhuri equations involving
&ija  /

ij
a and �a ���� For geodesic curves the usual Raychaudhuri equations can be obtained by

���



noting that Ki
�� � � the Jaij are related to their spacetime counterparts J�
a through the relation

J�
a � ni�n
j

Jaij  and the � is de�ned by contracting with the projection tensor h�
 �

The �a or � basically tell us how the spacetime basis vectors change along the normal directions
as we move along the surface� If �a diverges somewhere it induces a divergence in Jaij  which
in turn means that the gradients of the spacetime basis along the normals have a discontinuity�
Thus the family of worldsheets meet along a curve and a cusp�kink is formed� This we claim
is a focussing e�ect for extremal surfaces analogous to geodesic focussing in GR where families of
geodesics focus at a point if certain speci�c conditions on the matter stress energy are obeyed�

��� Is the evolution of Jaij constrained

For each pair �ij� there are D quantities J ija � To analyse whether the evolution of J
ij
a is constraint3

free or not we split the antisymmetric equations into two sets�

-r�J
ij
A � -rAJ

ij
� � Gij

ab ����

-rBJ
ij
A � -rAJ

ij
B � Gij

ab ����

Thus �rst of these contains a total of D equations for each ij� Eqn ���� on the other hand
contains one equation� Thus the total number of equations contained in these is D which is the
number necessary to specify the evolution of the quantity J ija � Therefore the second set above is
actually a set of constraints on the evolution�

However note that the number of equations in this second set is equal to �
� �D � ���D � ���

Therefore for D � � �curves� and D � � �string worldsheets� these equations are vacuous and
the evolution of J ija is entirely constraint3free� Even more surprising is the fact that for any
general D � � also the second set of equations are identities �for a proof see ����� Therefore if the
constraints and equations of motion are satis�ed at any initial time they continue to be so for all
future values�

� Focussing of string worldsheets ���

Two dimensional timelike surfaces embedded in a four dimensional background are the objects of
discussion in this section� We begin by writing down the generalised Raychaudhuri equation for
the case in which &ija and /

ij
a are set to zero �i�e implicitly assuming that �M

��ij does not have a
nonzero symmetric traceless part�Thus we have

� ��F

���
�
��F

���
�)���� ���M��ii��� ��F � � ����

where )� is the conformal factor of the induced metric written in isothermal coordinates� Notice
that the above equation is a second3order linear hyperbolic partial di�erential equation� On the
contrary the Raychaudhuri equation for curves is an linear second order ordinary di�erential
equation� The easiest way to analyse the solutions of this equation is to assume separability of the
quantity )��M��ii� Then we have

)��M��ii �M�
� ��� �M�

� ��� ����

F ��� �� � F����� F���� ����

With these we can now split the partial di�erential equation into two ordinary di�erential
equations given by

���



d�F�
d��

� ��� �M�
� ����F� � � ����

d�F�
d��

� ��� �M�
� ����F� � � ����

Since the expansions along the � and � directions can be written as �� �
�F�
F�
and �	 �

F ��
F�

we can analyse focussing e�ects by locating the zeros of F� and F� much in the same way as for
geodesic curves ���� The well3known theorems on the existence of zeros of ordinary di�erential
equations as discussed in ��� make our job much simpler� The theorems essentially state that the

solutions of equations of the type d�A
dx� �H�x�A � � will have at least one zero i� H�x� is positive

de�nite� Thus for our case here we can conclude that focussing along the � and � directions will
take place only if

�� � max�M�
� ���� � �� � max��M�

� ���� ��	�

For stationary strings one notes that �M��ij will not have any dependence on � � Thus we can
set M�

� equal to zero� Thus focussing will entirely depend on the sign of the quantity M
�
� � We

can write M�
� alternatively as follows� Consider the Gauss3Codazzi integrability condition�

R�
��E
�
aE



bE

�
c E

�
d � Rabcd �KaciK

aci �KbdiK
bdi ����

Trace the above expression on both sides with �ac�bd and rearrange terms to obtain �

KabiK
abi � ��R�KiKi �R�
��E

�
aE

�aE

bE

�b ����

Thereafter use this expression and the fact that ni�n
i � g�
�E�aE

a in the original expression

for �M��ii �see Eqn������ to get

M�
� � ��R�R�
E

�aE

a ����

One can notice the following features from the above expression�
�i� If the background spacetime is a vacuum solution of the Einstein equations then the positivity
of M�

� is guaranteed i�
�R � �� Thus all string con�gurations in vacuum spacetimes which have

negative Ricci curvature everywhere will necessarily imply focussing� This includes the well known
string solutions in Schwarzschild and Kerr backgrounds�
�ii� If the background spacetime is a solution of the Einstein equations then we can replace the
second and third terms in the expressions for M�

� by the corresponding ones involving the Energy
Momentum tensor T�
 and its trace� Thus we have

M�
� �

�
��
�
g�


�R� T�
 � �

�
Tg�


�
E�aE


a ����

Notice that if we split the quantity E�
aE


a into two terms such as E�
� E


� and E�
	E


	 then we
have �

M�
� � ��R�

�
T�
 � �

�
Tg�


�
E��E


� �

�
T�
 � �

�
Tg�


�
E�	E


	 ����

The second term in the above equation is the L� H� S� of the Strong Energy Condition �SEC��
Apart from this we have two other terms which are entirely dependent on the fact that we are
dealing with extended objects� The positivity of the whole quantity can therefore be thought of as
an Energy Condition for the case of strings� Thus even if the background spacetime satis�es the
SEC focussing of string world3sheets is not guaranteed3worldsheet curvature and the projection
of the combination T�
 � �

�g�
T along the � direction have an important role to play in deciding
focussing�defocussing�

Let us now try to understand the consequences of the above equations for certain speci�c �at
and curved backgrounds for which the string solutions are known�

���



��� Rindler Spacetime

The metric for four dimensional Rindler spacetime is given as

ds� � �a�x�dt� � dx� � dy� � dz� ����

We recall from ��� the a string solution in a Rindler spacetime�

t � � � x � ba cosha�c �

y � ba��c � z � z� �constant� ����

where d�c �
d	
a�x� and b is an integration constant� The orthonormal set of tangents and normals

to the worldsheet can be chosen to be as follows�

E�
� �

�
�

ax
� �� �� �

�
� E�

	 � ��� tanha�c� secha�c� �� ����

n�� � ��� �� �� �� � n
� � ��� secha�c�� tanha�c� �� ����

In the worldsheet coordinates �� �c the induced metric is �at and the components of the extrinsic
curvature tensor turn out to be

K�
ab � � � K�

�� � �K�
	c	c �

�

ba cosh� a�c
�

K�
	� � � ��	�

The quantity �M��ii which is dependent only on the extrinsic curvature of the worldsheet �the
background spacetime being �at� turns out to be

�M��ii �
�

b�a� cosh	 a�c
����

Therefore the generalized Raychaudhuri equation turns out to be

� ��F

���
�
��F

���c
�

�a�

cosh� a�c
F � � ����

Separating variables �F � T ���&��� � one gets the harmonic oscillator equation for T and the
Poschl Teller equation for positive eigenvalues for & which is given as�

d�&

d��
�

�
�� �

�a�

cosh� �

�
& � � ����

From the results of Tipler ��� on the zeros of di�erential equations one can conclude that
focussing will occur �H��� � � always��
Several other examples can be found in ��� and ����

� Focussing of hypersurfaces ���

We now move on to the special case of timelike hypersurfaces� Here we have D quantities Ja but
only one normal de�ned at each point on the surface� The Eqn� �	� turns out to be�

�bJa � �aJb � � ����

Therefore one can write Ja � �a� and the traced equation ��� becomes

��	



�� � ��a����
a�� �M� � � ����

with

M� � KabK
ab �R
	n


n	

� ��R�R�
E
�aE


a � ��R�� R� R�
n
�n
 ����

where we have used n�n
 � g�
 �E�
aE


a and the Gauss3Codazzi integrability condition�
If we assume that the background spacetime satis�es the Einstein equation then we have�

M� � � �
�Rg�
 � T�
 � Tg�


�
n�n
 ����

Thus for stationary two dimensional hypersurfaces �strings in �D backgrounds� we have the
same conclusions as obtained in the previous section� For a two3dimensional hypersurface in three3
dimensional �at background the task is even simpler� M� can be shown to be equal to the negative
of the Ricci scalar of the membrane�s induced metric and �R � � guarantees focussing�

Let us now turn to a speci�c case where the equations are exactly solvable�

��� Hypersurfaces in a � � � Curved Background

Our backgound spacetime here is curved Lorentzian background and � � � dimensional� The
metric we choose is that of a Lorentzian wormhole in � � � dimensions given as �

ds� � �dt� � dl� �
�
b�� � l�

�
d�� ����

A string con�guration in this background can be easily found by solving the geodesic equations
in the �D spacelike hypersurface �	�� This turns out to be

t � � � l � � � � � �� ����

The tangents and normal vectors are simple enough�

E�
� � ��� �� �� � E�

	 � ��� �� �� � n� �

�
�� ��

�

b�� � l�

�
��	�

The extrinsic curvature tensor components are all zero as the induced metric is �at� Using the
Riemann tensor components �which can be evaluated simply using the standard formula� we can
write down the generalised Raychaudhuri equation� This turns out to be �

� ��F

���
�
��F

���
�

�
� b��
�b�� � ����

�
F � � ����

A separation of variables F � T ���&��� will result in two equations3one of which is the usual
Harmonic Oscillator and the other given by�

d�&

d��
�

�
�� � b��

�b�� � ����

�
& � � ����

The above equation can be recast into the one for Radial Oblate Spheroidal Functions by a
simple change of variables 3 &� �

p
b�� � ��&�

�� � ���
d�&�

d��
� ��

d&�

d�
�
�
��b���� � ���

�
&� � � ����

where � � 	
b�
�

The general equation for Radial Oblate Spheroidal Functions is given as �

���



�� � ���
d�Vmn

d��
� ��

dVmn

d�
�

�
��mn � k��� � m�

� � ��

�
Vmn � � ����

Assuming m � � and ��n � �k� � ���b�� we get the equation for our case� The solutions are
�nite at in�nity and behave like simple sine�cosine waves in the variable �� Consulting the tables
in ���� we conclude that only for n � �� � we can have ��n to be negative� In general the scattering
problem for the Schroedinger3like equation has been analysed numerically in �����

As regards focussing one can say from the di�erential equations and the theorems stated in ���
that the function &� will always have zeros if �� � �

b�
�

� Even from the series representations �see

���� of the Radial Oblate Spheroidal Functions we can exactly locate the zeros and obtain explicitly
the focal curves� However we shall not attempt such a task here�

� Work in progress and future directions

A systematic study of the generalised Raychaudhuri equations has only begun� A large number of
open problems therefore exist in this sub�eld� Here we report brie�y on some recently obtained
results and list a few of the outstanding issues�
�i� Although we have been able to derive an analog of geodesic focussing for extremal timelike
membranes by looking at some special cases a general treatment of the problem is still lacking�
For example recall that we made the crucial assumption of separability in the equation for the
case of strings and hypersurfaces� In order to avoid this assumption a way out could be to de�ne
an initial value problem with the expansions in di�erent directions taking on a negative value at
speci�c locations on the surface� The initial value as well as the partial di�erential equation can
be recast into one Volterra integral equation of the second kind� Solving this would then give
the necessary condition for focussing� Note that in this approach one does not assume an Energy
Condition at the outset because one does not have a choice to do so� Some progress along these
directions are to be reported in �����
�ii� What does one need to have an energy condition in this case� Recall that in the Raychaudhuri
equation for geodesic congruences the appearance of the term R�
�

��
 and the Einstein equation
relating geometry to matter were the deciding factors� One could translate the purely geometric
term into a term containing properties of matter stress energy� Focussing was a consequence of
assuming certain physically relevant features of matter� To have such a situation in the case of
strings we need to have an Einstein equation in string theory� This may sound outrageous but we
will see why it need not be so�

General relativity as a theory has a unique feature in comparison to all other theories that we
know of� The motion of test particles can be derived from the Einstein �eld equations� We must
remember that this is a fact which is not true in all other theories� For example in electrodynamics
the Lorentz force law cannot in any way be derived from the Maxwell equations� The basic question
therefore reduces to the following �

What is the �eld equation from which one can arrive at the equation of motion for test strings
�

An answer to this question will help us in analysing worldsheet focussing by assuming an Energy
condition much in the same way as one does it for geodesic congruences�
�iii� It is important to note that we have restricted ourselves exclusively to extremal Nambu3
Goto type membranes while deriving the generalised Raychaudhuri equations and exploring its
consequences� What are the corresponding equations for actions other than Nambu3Goto �rigidity
corrections presence of antisymmetric tensor �elds supersymmetric generalisations etc��� It has
been found ���� that in the presence of antisymmetric tensor �elds one has several nontrivialities
appearing� Firstly one cannot set the &aij �/aij equal to zero and work with only the equation of
the expansions� If one sets &aij equal to zero then one has to identify the components of /aij with
the projections of H�
�� Therefore we can now attribute a physical meaning to /aij by associating

���



it with the background antisymmetric tensor �eld�s projections� Further work is clearly needed to
understand the consequences of actions other than Nambu3Goto and is in progress�
�iv� Finally we indicate a possible application in a totally di�erent area3the theory of biological
�amphiphilic� membranes� Deformations of these membranes �D � � hypersurfaces in a D � �
Euclidean background� can be analysed using the same formalism as presented here and may
turn out to be useful in understanding the �uctuations of these objects� The simplest case of the
catenoidal membrane is discussed in detail in the appendix to ����
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So far� my remarks have been con�ned to what we may all concede as great ideas
conceived by great minds� It does not� however� follow that beauty is experienced only in
the context of great ideas and by great minds� This is no more true than that the joys
of creativity are restricted to a fortunate few� They are� indeed accessible to each one
of us provided we are attuned to the perception of strangeness in the proportion and the
conformity of the parts to one another and to the whole� And there is satisfaction also
to be gained from harmoniously organizing a domain of science with order� pattern� and
coherence�
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AN OVERVIEW OF EXACT SOLUTIONS
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Abstract

In this note an overview of reviews on exact solutions for stationary axisymmetric �elds
and anisotropic cosmological models has been presented� Senovilla class of singularity free
space time is reviewed�
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A �nal observation bearing on the attitude to physical problems that we have maintained
in our studies of the mathematical theories of black holes and of colliding waves� in the
theory of spacetimes with two Killing �elds one timelike and one spacelike or both spacelike
the basic governing equations are one or more Laplace�s equations� the Ernst equations�
and the X and Yequations� The simplest solutions of the Laplace and the Ernst equations
have provided all the fundamental solutions describing black holes and colliding waves� But
the simplest solution of the X and Y equations have been left out� At long last it has
found its place� it provides the �rst nontrivial binary black hole solution with supporting
strings�

� S� CHANDRASEKHAR�



� Introduction

Einstein�s �eld equations
Gij � �	
T ij �����

where T ij represents the energy momentum tensor of the matter and �eld are second order non
linear partial di�erential equations� There are basically three approaches to study them � exact
solutions approximation schemes and numerical computation� These approaches are listed in
order of decreasing aesthetic appeal� The exact solutions as explained below are necessarily very
special and constitute a measure of zero in the space of all solutions� However exact solutions
play an important role in generating tests for numerical codes �Centrella ���	��� and also for
providing checks on the validity of the approximation schemes� They can also provide models for
important though oversimpli�ed physical situations e�g� the Schwarzchild and Kerr black holes
and the Friedmann cosmological model on which almost all of the relativistic astrophysics and
astrophysical cosmology is based� Besides they can also provide counter
examples to conjectures
�Misner �������� for a discussion of these aspects one may refer to �MacCallum ���	� ��	� ab���

Due to the nonlinearity of the Einstein�s equations it is impossible to solve these equations in
their full generality� The usual practice is to assume at the outset some symmetry e�g� Cylindrical
Planar Axial or the ones described in terms of Killing vectors� In addition to this one has to resort
to some speci�c energy momentum tensor� The most commonly used energy momentum tensors
are that characterising dust perfect �uid electromagnetic �eld imperfect �uid and radiation �eld�
At this point it is to be noted that the solutions where energy momentum tensor is generalized
by way of introducing say null radiation electromagnetic �eld heat conducting �uid etc� and
which do not leave any of its trace in the metric coe�cients are not important unless a physical
interpretation of decomposing the energy momentum tensor and an explanation of how ambiguities
in the decomposition are to be removed is provided� �MacCallum ���	�� Krasinski ��������

Exact solutions is one of the topics which attract many scientists working in General Relativity�
About ��( of the research papers at the International conferences on the subject and ��( on the
average at the Indian conferences are devoted to this topic� Hence it is very di�cult to present
an overview of the subject in such a short duration unless some selection rules and procedures
are adopted� Fortunately in the literature good review articles are available from time to time
on this topic and it would be easier to paint a �broad
brush� picture of the state of a�airs by
looking at these reviews� I would present an overview of these reviews with the year ���� as the
cut o�� Besides we have to narrow down our interests to �i� stationary axi
symmetric �elds and
�ii� inhomogeneous cosmologies� This restriction is guided mainly by the fact that the physically
relevant solutions fall into these two subtopics but re�ects my personal interests and prejudices as
well�

� Stationary Axisymmetric Fields

Kinnersley ������ describes brie�y all known vacuum solutions including electrovacuum and their
inter
relationships� He discusses space times admitting two commuting �
forming Killing vectors
containing �i� Tomimatsu
Sato solution �ii� stationary axially symmetric solutions and various
transformation theorems for generating solutions from other known solutions� Here the alge

braically special solutions with non
diverging rays and with non rotating rays have also been
discussed�

Starting from the early seventies and for about a decade there has been active interest and con

siderable progress in obtaining new axisymmetric stationary solutions of Einstein�s �eld equations�
The main motivation was the close resemblance of Einstein�s equations for this case with the
non
linear di�erential equations e�g� Sine
Gordon or Korteweg
de Vries �KdV� equations arising in
other branches of Physics� Consequently extensive use of Backlund transformations and Soliton
techniques has been made� The various topics e�g� Hoensaelers Kinnersley Xanthopolous �H K
X� transformations Kinnersley
Chitre�K C� transformation Geroch group have been discussed

���



thoroughly and every aspect has been considered in detail at the Seminar with the title "Solutions
of Einstein�s Equation � Techniques and Results# edited by Hoensealers and Dietz ������� For the
bene�t of the reader list of topics covered there are included as Appendix I� For an earlier review
of the topic one may refer to Kramer and Stephani ���	���

��� Anisotropic Cosmology

The well known Friedmann
Lemaitre Robertson
Walker �FLRW� model represents Universe in
which all space points and all directions at any space point are equivalent� If one assumes the matter
to be represented by dust the Universe turns out to be homogeneous� The isotropy on a large scale
is con�rmed by experiments but the issue whether the Universe was homogeneous and isotropic
already at its early stages and has it still these properties in very distant regions is so far unresolved�
Besides there are mathematical arguments in favour of inhomogeneous models �Tavakole and
Ellis ���		��� It is to be pointed that even at the very early stage of Relativistic Cosmology
several physicists were able to see the importance and necessity of investigating inhomogeneous
cosmological models �Dingle ������ Tolman �������� For a detailed discussion of these aspects
one may refer to a recent review by Krasinski ������ where one may �nd topics e�g� memorable
statements about the cosmological principle why one should consider inhomogeneous models of the
universe� In view of the above there has always been active interest in inhomogeneous cosmological
models and in the literature several good review articles e�g� MacCallum ���	�� Jantzen ���	��
Kramer and stephani ���	�� are available for a recent review one may refer to Krasinski �����
������

����� Senovilla Class of Solution

Senovilla ������ has discovered an important solution representing a perfect �uid distribution
with cylindrical symmetry and obeying an equation of state � � �p� This solution represents
the distribution for ��  t  � having the curvature as well as matter invariants regular and
smooth everywhere� The �uid �ow lines have inhomogeneous expansion nonvanishing shear and
anisotropic acceleration� Until now the conventional and prevalent view of Cosmology was that of
FLRW which represents spherically symmetric isotropic and homogeneous perfect �uid distribution
with vanishing shear and homogeneous acceleration� The anisotropic and inhomogeneous models
obtained by earlier workers viz� Wainwright and Goode ���	�� Feinstein and Senovilla ���	��
Davidson ������ possess space 
 like Big Bang singularity� Consequently it was considered that
this would represent general singularity structure in other models as well� This experience was
strongly aided by the singularity theorems according to which if one adheres to Einstein�s theory of
General Relativity and assumes physically reasonable conditions of positivity of energy causality
and regularity etc the initial singularity �t � �� is inescapable� Chinea Fernandez
Jambrina
and Senovilla ������ have carried out the analysis of geodesics and have found that the Senovilla
spacetime is geodesically complete� Senovilla and his coworkers have made a thorough scrutiny to
unravel how this solution could avoid the powerful singularity theorem� Senovilla argues that the
general reason presented by Hawking and Ellis ������ in establishing the singularity theorem makes
use of the assumption of geodesic motion of the cosmological matter which is clearly not supported
by any theoretical reasoning� He further �nds that the singularity free nature of his solution is
in accordance with Raychaudhuri�s work ������ according to which the presence of acceleration or
rotation may prevent the existence of a universal singularity in our past �Senovilla �������� The
other reason is attributed to the shear of the �uid �ow
 lines which is nonvanishing and to the
nonexistence of compact surfaces� This is interpreted to mean that nowhere in the spacetime
gravity becomes strong enough to focus geodesics in a small compact region for the trapping of
the all particles including photons to take place �Dadhich Tikekar and Patel �������� Recently
Ruiz and Senovilla ������ have obtained a general class of inhomogeneous perfect �uid solution
which contains singular solutions due to Wainwright and Goode ���	�� Feinstein and Senovilla
���	�� and the solution being discussed presently� It is easier to understand Senovilla�s solution if
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we express FLRW solution in cylindrical coordinates ��� r� �� z� as

ds� � T ���d�� � dr� � �� �M

�X
�d�� �

�X
dz�� �����

where T is an arbitrary function of time and M is an arbitrary constant � its sign is related the
usual curvature index in FLRW model�

P
is a function of r given by

��X
� � �M

�X
�����

where a prime indicates derivative with respect to r� The density � and the pressure p of the �uid
are given by

� �
�

T �

�
+T �

T �
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�
� p � � �

T �

�
� +T

T
�
+T �

T �
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�����

where an overhead dot represents derivative with respect to time� The Senovilla solution is given
by

ds� � T ���n�
P�n�n��� ��d�� � dr�

�
�T ���n�

P�nP��
d��

�T ����n�P���� n�dz�

�����

where
P
is a function of r satisfying

��X
� M

�X
��� nK

�����n�X
�����

and M�n and k are arbitrary constants� There arises two cases �

�i� n � � and T arbitrary �����

�ii� n � � and T � �

�����������
A cosh��

p
MC� �B sinh��

p
� � � M � �

A� �B � M � �

A cosh���p�M�� �B sinh��
p�M�� � M  �

����������� �����

The expansion � acceleration ai and shear �ij have their nonvanishing components as given by

� � �n� ��
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The anisotropy of the �uid motion the scale factor R��� and deceleration parameter q are given
by
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The solution reduces to FLRW solution for n � �� The physical scenario described by this
solution is as follows� The distribution if � we assume it initially to contract collapses to r � � and
then reverses its motion and expands for ever� This model may be compatible with observational
fact that the present Universe is to be homogeneous and expanding provided one prefers to have
the dynamics of the distribution as given by

T ��� �
��� TSF around � � � with any n

TFLRW for C � *� with n � �
������

where TSF represents the time scale for singularity free Senovilla solution valid up to *�  the instant
of bounce and TFLRW is the time scale as given by FLRW solution� However there are many
conceptual issues to be resolved� For a discussion of these one may refer to Senovilla ������� Some
recent works attempting to establish the uniqueness of Senovilla class of cylindrically symmetric
solution among separable irrotational space times are going on and encouraging results are reported
�Dadhich Patel Govinder and Leach ������ Dadhich and Patel ��������

����� Spherically Symmetric Non�vanishing Shear Models

I have remarked above that the existence of the shear of the four velocity is attributed to be a reason
for resulting in a singularity free solution� For spherically symmetric perfect �uid distribution with
vanishing shear there is no dearth of exact solutions� �Srivastava ���	������� But the investigations
with non
vanishing shear are rare and may be counted� The solutions for a sti� matter �Wesson
����	� Vaidya ����	�� and for equation of state � � ��p� under the assumption of separability of
metric coe�cientists �Vandenberg and Wils ���	��� are available� The additional assumptions to
yield a solution are �i� existence of self similarity �Collins and Lang ���	��� �ii� The four velocity
begin perpendicular to surface � constant �Vaidya ���	��� Biech and Das ������ have shown
null coordinates to be useful for obtaining solutions of this class� This investigation also presents
reviews of the earlier works� Recently an interesting result has emerged out of the earlier works of
Mc Vittie and Wiltshire ������ � the solution is found to have shear� �Bonnor and Knutsen ������
and Knutsen �������� This investigation employs noncomoving coordinates� It is interesting to
remark that investigations for solutions with shear has been a topic of interest in the very early
days� �Narlikar ������ Narlikar and Moghe ��������

����� Shearfree Models

In contrast to the above there is su�cient reason to study the perfect �uid distributions with
vanishing shear� As has been discussed by Collins ���	�� shear free solutions would retain the
feature of isotropy of local motions but redshifts need not be isotropic� It is shown following Ellis
������ that relative recessional motion of the neighbouring galaxies is isotropic i� �ij � � whereas

for the relative red shift to be isotropic one would need in additon vanishing of +Ui� Further the
isotropy of the transverse motion of the neighbouring galaxies would require �ij � wij � �� Thus
�ij � � is a common feature of all these aspects� For a review of shear free perfect �uid solutions
one may refer to Barnes ���	��� Besides there is another strong reason to study shear free models�
It is because of following conjecture due to Collins ���	���

�ij � � � w� � � ������

This conjecture is based on the observation that for shear free motions�it must have either w � �
or � � �� The conjecture has been proved for �i� and parallel to each other �White and Collins
���	��� and �ii� the vanishing magnetic part of the Weyl tensor �White ���	���� The importance
of the study is in obtaining a counter
example to the conjecture because in Newtonian theory it
is fairly readily shown that for because in Newtonian theory it is fairly readily shown that for
self gravitating shear free �uids neither vorticity nor expansion vanish� The intuitive picture in
general relativity would therefore be illusive if conjecture holds� At this point I would like to quote
Chandrasekher�
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�On the relativistic theory� the frequencies of oscillation of the nonradial models 
as
we have shown� depend only on the distribution of the energy density and the pressure
in the static con�guration and the equation of state only to the extent of its adiabatic
exponent� If this is a true representation of the physical situation then it must be valid in
the Newtonian theory as well � the true nature of an object cannot change with modes and
manner of one�s perception��

� S� CHANDRASEKHAR 
������

� Commentary

Kinnersely ������ while presenting his talk on "Recent progress in exact solutions# at the GR�
International Conference has remarked "the study of exact solutions has acquired a rather low
reputation in the past for which there are several explanations� Most of known exact solutions
describe situations which are frankly unphysical and these do have a tendency to distract attention
from useful ones� But the situation is also partially the fault of us who work in the �eld� We toss
in null currents macroscopic neutrino �elds and tachyons for the sake of greater "generality#� We
seem to take delight at the invention of confusing anti
intuitive notion � and when all is done we
leave our newborn wobbling on its vierbien without any visible means of interpretation#�

More or less similar views have been expressed by later workers� There is another aspect
of the problem� We have too many solutions rather than too few solutions� Simple minded
attempts to derive a new solution from natural assumptions are likely to result in yet another
discovery� As a side e�ect some simple results are published again and again while important �ne
developments remain unnoticed for a long time �Krasinski �������� For example the investigation
of Kustaanheimo and Kvist ����	� pertaining to shear free perfect �uids could only be noticed after
the publication of book by Kramer et al� ���	��� To avoid such repetition and also for our own sake
we should not stop just after obtaining a solution but should look for invariant characterisation� At
present the literature is full of materials where these aspects are clearly discussed e�g� MacCallum
���	�� Krasinski ������ Kramer et al� ���	���

In fact even in the early seventies it was being felt that number of exact solutions was growing�
consequently to any serious minded research worker in the �eld it was necessary to have a stock 

taking of known solutions in order to avoid duplication� The notable investigations among these
are Kramer Neugebauer and Stephani ������ and Kinnersley ������� Kramer et� al started in
���� an exhaustive survey of the literature on exact solutions of Einstein�s �eld equations and
have published their results in the form of a book �Kramer et� al ���	���� It is devoted to the
classi�cation and construction of exact solutions� They have discussed the classi�cation schemes
for exact solutions viz� �i� algebraic classi�cation of conformal curvature tensor �Petrov types�
�ii� algebraic classi�cation of the Ricci tensor �Plebanski types� and the physical characterisation
of the energy momentum tensor �iii� the existence and structure of the preferred vector �elds and
�iv� the group of symmetry admitted by the metric� However they have based the classi�cation of
the known solutions primarily on �i� symmetry group and �ii� Petrov types and subdivided these to
include other main classi�cation schemes� Besides these studies have remarkably brought to our
notice many old works to name a few Wyman ������ Narlikar ������ Kustaanheimo and Qvist
����	� which were otherwise almost out of sight but are more rigorous and deep as compared to
the later works which rederive their results�

��� What should we be doing

An uptodate account of exact solutions has been presented by MacCallum at ICGC 	� and the
material covered there under the titles what solutions do we know� Can we �nd physically inter

esting solutions� Can we put realistic physics into our solution� Can we interpret the solutions we
�nd� Do we �nd interesting mathematics� is relevant even today and the reader may refer to it
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�MacCallum ���	���� However I would conclude my comments which are of course not completely
independent�

 Tackle whole class of solutions at once�
 Analyse the symmetry structure of �eld equations viz� Lie Painle�ve analysis� A good recent
reference to Painle�ve analysis of which I am aware may be the lecture notes �unpublished�
of Leach Govinder �������

 Explore new solutions for the well identi�ed �eld e�g� solution having two Killing vector �elds
source for Kerrmetric anisotropic inhomogeneous cosmologies radiating star colliding plane
waves etc�

 Apply more e�orts towards physical interpretation of the known solutions rather than to
increase the number of solutions�

 Have more physical motivation in obtaining exact solution than the mathematical skill� I
would explain this point by an example from one of my work �Srinivastava ���	��� in appendix
II�

 Obtain the invariant characterisation of the solution e�g� kinematical parameters classi�ca

tion of Weyl tensor and of principal null eigen vectors after one has obtained it�
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APPENDIX � I

Some topics in the Proceedings Seminar on Solutions of Einstein�s �eld Equations� Techniques
and results

Sl�No� Title Page Authors

�� Backlund transformations in general relativity �
�� Kramer D� and
Neugehauer G�

�� Vector Backlund transformation and associated ��
�� Chinea F�J�
superposition principle

�� H K X transformations � An introduction �	
	� Hoensaelers C�

�� The Geroch group is a Banch Lie group ���
��� Schmodt B�G�

�� On the homogeneous Hilbert problem for e�ecting ��	
��� Hauser I�
Kinnersley
Chitre transformations

�� Non
iterative methods for constructing exact �	�
��	 Guo D�S�
solutions of Einstein equations

�� Inverse scattering di�erential geometry ���
��� Gurses M�
Einstein Maxwell solutions and one
soliton Backlund transformations

	� N Kerr particles ���
��� Yamazaki M�

�� Algebraically special shearfree diverging and ���
��� Stephani H�
twisting vacuum and Einstein
Maxwell �elds

��� Exact solutions in Cosmology ���
��� MacCallum M�A�H�

APPENDIX � II

The purpose of this appendix is to show with the help of an example how physical motivation
renders a solution not to be new which otherwise had appeared as new� The solution refers to
spherically symmetric perfect �uid distribution executing shearfree motion �Srivastava ���	�a���

We start with the metric ansatz

dS� �

�
��%
� � %

��

dt� �
�
�� � %��S

V

�� �
dr� � r�d�� � r� sin� �d��

�
�II���

where V � V �r� t�� S � S�t� and % � %�r� t� are arbitrary functions of their arguments� An
analysis of �eld equations reveals that

% �
�

C

�Z �
C

S

�
Sdt� U�r�

�
�II���

C � bS��� �as����� �II���
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�U �V �
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a
�UV

-F � a �� � �II���
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V
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rV
�
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�
V -F �II���

where a and b are arbitrary constants and U�r� and -F �r� are arbitrary functions of r� It is to be
noted for later reference that -F is related to Weyl conformal curvature invariant as
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�
-F

�
S

V
�� � %�

���
�II���

Hereafter the analysis gets divided into two classes�

CaseI � a � � � CaseII � a �� � �II���

In the �rst case the functions U� V and -F are determined explicitly and the solution becomes the
one obtained earlier by Glass and Mashhoon ������� Whereas in the second case one has to solve
equations �

U �V � � q	�a�U� � b�� � q � const� �II�	�

�a�b�U ��

�a�U� � b���
� �U ���

U �
�

�
U �

U

��

�
�

r�
�II���

These equations can be solved in principle but it had not been possible to �nd U�r� explicitly� At
this stage I thought that the two cases ought to be new precisely because of the way they appear
in �II���� However before the solution for the case �ii� could be claimed to be new its invariant
classi�cation is needed� For this one way is to evaluate -F �r� for the two cases� Fortunately
following the analysis made by Stephani ���	�� I could evaluate the function -F �r� for the second
case and met happy surprise to see that �II��� is a perfect third order di�erential equation��

a�U� � b�

Ux

�
xxx

� � � � �x �
d

dx
� � � x � r� �II����

The function -F �r� for the case �ii� has the same functional form as in the case �i� hence the two
cases should be the same� This means that by a suitable parameterisation equations �II���
�II���
should reduce to corresponding ones with a � �� The required parameterisation is found to be

U � u � aU�b
aUb

V � v � ��ab�V
�aUb��

����� �II����

which in no way is an obvious parameterisation� This illustrates the point�
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Abstract

The recent developments in string theory are discussed and it is argued that string theory
holds the most promising prospect of solving some of the important problems of quantum
gravity in a uni�ed manner�
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The fact that two standard theorems of the subject� the nonexistence of solutions
describing assemblages of black holes except those of the extreme Reissner Nordstrom type
and the rule jQj � jM j for isolated charged black holes can be transgressed with a minimal
violation of the smoothness requirements on the spacetime manifold by allowing only simple
conical singularities suggests the fragility of the theorems of general relativity to the strict
enforcement of smoothness conditions����Could one conclude from the very natural way in
which strings emerge in the binary blackhole solution that strings are indeed predicted by
general theory of relativity�
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� Introduction

The most outstanding unsolved problem in this century is to synthesise the two magni�cent theo

ries of our time� quantum mechanics and general theory of relativity� to construct a theory which
will describe gravitational e�ects and microscopic distances which is the order of the Planck scale�
Some of the most brilliant minds have tried to quantize gravity eversince the birth of quantum
mechanics and the problem has eluded generations of physicists over a period of half a century�
It is accepted that the conventional method of renormalisation so successful in describing quan

tum electrodynamics and in the construction of the so called �Standard Model� when applied to
Einstein�s theory fails to remove the in�nities in the perturbation theory� The Newton�s constant
appearing in the Einstein
 Hilbert action carries a dimension and the power counting theorem tells
us that the resulting theory is not renormalisable�

The gravitational interaction is very feeble in its strength however our present knowledge of
fundamental interactions and the facts about cosmology force us to conclude that we cannot ignore
the phenomena associated with quantum gravity� Let us recall that the experimental observation
of the ��K microwave background radiation and the asymmetry in its distribution support the Big
Bang hypothesis and it is accepted that our Universe is �� to �	 billion year old �could be a little
less if the new experimental data remain unaltered� and it is still expanding� Thus if we go back in
time our Universe was very small in size and therefore in the Planck epoch of ���	� sec the laws of
evolution of the Universe cannot be described by classical mechanics� We are naturally led to ask
what is the quantum mechanical formulation of gravitation and what is the quantum mechanical
wave equation associated with the quantum time evolution of the Universe � Furthermore the
Universe today is large and the motion of the celestial bodies are described by classical physics
in an appropriate frame work� Therefore it is pertinent to seek answer to the question how did
the quantum Universe evolve and at what stage one goes over to the classical description from the
quantum description�

The next issue concerns the problem of vanishing cosmological constant� It it probably the
physical parameter measured closest to zero� When the cosmological constant is viewed from the
macro physics perspective it is found to be small because the Universe is large and �at� However
it can be interpreted from another view point in the microscopic frame work� The cosmological
constant will appear in the action like any other set of parameters that appear in physics such as
masses and coupling constants when we write down an action� It is natural to expect that such
parameters are controlled by the ultraviolet behavior of the theory and the short distance scale in
this case the Planck mass scale will determine parameter� Thus we notice that the cosmological
constant problem is related to the physics at the Planck scale and the e�ects of quantum gravity
have an important role to play if we are to resolve this fundamental problem� It is amusing to
note from the above discussions that the cosmological constant plays a dual role and it is probably
the only parameter in physics which provides us a relation between the very large distance scale
dealing with the size of our Universe and very short distance scale like the Planck length�

It is well known that black holes appear as macroscopic objects at �nal stages of stellar evo

lution� Classically we expect that the matter falls into a black hole and disappears behind the
event horizon and we have no means of communication between regions outside the event horizon
and inside� Hawking has argued that a black hole radiates due to quantum mechanical e�ects�
The distribution is that of a black body and the temperature is inversely proportional to the mass
of the black hole� When the black hole is quite massive the calculations for the emission of the
radiation can be carried out in the semiclassical frame work as was done by Hawking in his seminal
paper where the metric is treated as a �xed background� It is justi�ed for very massive �black
holes� since the energy loss at a given instant is very small and the metric does not get a�ected
signi�cantly due to a very small change in the mass of the black hole� However at a later stage
when black hole has lost most of its energy such that the mass is quite small and the Schwarzschild
radius is indeed very much reduced say order of the Planck length then a small change in mass
due to Hawking radiation will a�ect the metric con�guration signi�cantly� Thus we must take
into account the change in metric which is called the back reaction e�ect� Thus at this scale the
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semiclassical approximation is no longer valid and the problem deserves attention in the frame
work of quantum gravity� It is also well known that when we look at the matter falling into a
black hole we can prepare these incoming objects in quantum mechanically pure states� However
the Hawking radiation has a thermal distribution of a black body and thus the out going state
is a mixed one� Consequently we are not in a position to describe this phenomena by a unitary
S
matrix� Thus we might have to re
examine foundations of quantum mechanics itself if we are
to describe the phenomena associated with a quantum black hole�

In view of the preceding observations it is obvious that it is essential to construct a quantum
theory of gravity if we want to consistently formulate laws of fundamental processes� It is accepted
that the string theory has provided a basis to understand phenomena associated with quantum
gravity in a uni�ed frame work�

Let us recapitulate essential aspects of string theory ���� Since it is a one dimensional object as
it evolves the string traces out a surface the world sheet just as when a particle evolves it traces
the world line� The theory should be invariant under deformation of the world sheet and therefore
the conformal invariance of the string theory at the quantum level imposes stringent constraints
on the theory� For example the consistency of the theory demands that the bosonic strings live in
twenty
six spacetime dimensions whereas such critical dimensions for the superstrings is required to
be ten� Furthermore if we consider the evolution of a closed string in the background of its massless
excitations then the conformal invariance restricts the con�gurations of these massless �elds� We
can envisage in the �rst quantised approach the evolution of the string in these backgrounds as a
�
model and these backgrounds �nd a natural interpretation as coupling constants of the theory�
Now conformal invariance of the quantum theory demands that the trace of the two
dimensional
stress energy momentum tensor associated with the two dimensional world sheet metric must be
traceless� This constraint translates to the condition that the �
functions associated associated
with these coupling constants must vanish� Thus the constraints on backgrounds are expressed
as di�erential equations known as �equations of motion�� Since the �
functions are computed
perturbatively these equations of motions can be obtained order by order in the perturbation
theory in the �
model sense� These equations motion can be utilised to construct the string
e�ective action in the following way� we look for an action in the target spacetime dimensions
��� for bosonic string in critical dimensions and �� for superstrings� involving these background
�elds so that the variation of this action with respect to these backgrounds exactly reproduce
the �
function equations alluded to above� The string e�ective action plays an important role in
understanding of several aspects of string theory�

It is well known that the string theory possesses a very rich symmetry structure and these
symmetries have a central role in unravelling dynamics of string theory� We have mentioned the
symmetry of the string on the worldsheet which was so essential in deriving the constraints on the
backgrounds� These are several symmetries in the target space� Of particular interest are local
symmetries such as general coordinate transformation associated with the presence of graviton in
the theory Abelian gauge transformation related to the antisymmetric tensor �eld and nonabelian
gauge transformations present due to the massless nonabelian gauge �elds in the compacti�ed string
theories� Indeed the string e�ective action is invariant under these symmetry transformations�

There are another class of symmetries in the target space which involve global transformations�
One such symmetry is T
duality� In its simplest form it tells us that if we have a string theory
with one of its spatial dimension compacti�ed on a circle of radius R it is equivalent to a string
theory compacti�ed on a circle of radius �

R � The T
duality and its generalisation O�d� d� symmetry
can bested perturbatively and have several applications� Another important symmetry which has
attracted considerable attention in recent times is the S
duality� Under this transformation the
strong and weak coupling phases of string theory are related� Under certain circumstances S

duality transformation relates two di�erent string theories and naturally it has played a very
important role in our understanding of string dynamics in diverse dimensions� Naturally S
duality
symmetry cannot be tested in the perturbative frame work and it gives us a deep understanding
of the string theory in its nonperturbative regime�

I would like to discuss now the vacuum con�gurations of string theory� When we seek solutions
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to the equations of motion we arrive at some background �eld con�gurations� For example if
we consider a string only in its graviton background then the manifold of the target space has
to be Ricci
�at� Each of these solutions to the equation of motion can be interpreted as the
ground state of the associated string theory and thus called the vacuum of the theory� Thus if we
get a cosmological solution a black hole solution or a wormhole solution each of these solutions
corresponds to an acceptable vacuum con�guration of the theory�

The transformations associated with T
duality and its generalized version the noncompact
global group O�d� d� transform one set of vacuum background �eld con�gurations to another set
of gauge inequivalent background �elds� Furthermore it is possible to cast the e�ective action
after it is dimensionally reduced to lower dimensions with d
compact coordinates in a manifestly
O�d� d� invariant form�

It is natural to expect that string theory should be able to address fundamental questions
pertaining to quantum gravity in a uni�ed way and provide answers� Indeed considerable attention
has been focussed to understand the issues mentioned above and there has been de�nite progress
in several directions� As an illustration I shall present below an application of the string theory to
black hole physics which exhibits how T
duality and S
duality play important roles in the context
of black holes� This work has been done in collaboration with Amit Ghosh at the Saha Institute
of Nuclear Physics�

Recently Hawking and Ross ��� have implemented S
duality transformation to derive interesting
results for the electrically and magnetically charged black holes� It is well known that the partition
function for electrically charged black holes is analogous to that of the grand canonical ensemble
with a chemical potential� whereas the partition function for the magnetically charged black holes
has the interpretation of canonical partition function� Naturally the two partition functions di�er
from one another� In order to investigate the implications of S
duality the partition function for
electrically charged black hole is projected to one with de�nite charge and then it is argued that
the partition functions for the electrically and magnetically charged black holes are identical�

It is recognized that the consequences of S
duality are interesting and surprising ���� In the
recent past considerable attention has been focussed to investigate the implications of S
duality in
string theory ��� and supersymmetric �eld theories ���� This transformation in its simplest form
when applied to electrodynamics interchanges the role of electric and magnetic �elds� However
in theories with larger number of �eld contents the transformation rules for the �elds are to be
appropriately de�ned so that the equations of motion remain invariant under S
duality transfor

mations� Note however that the action is not necessarily invariant under these transformations�
If we toroidally compactify ten dimensional heterotic string e�ective action ��� to four dimensions
the reduced e�ective action is endowed with N�� supersymmetry� One of the attractive features of
the four dimensional theory is that the quantum corrections are restricted due to the existence of
non
renormalization theorems� It is expected that this theory respects strong
weak coupling dual

ity symmetry and might provide deeper insight into the non
perturbative aspects of string theory�
Furthermore the four dimensional reduced action can be cast in a manifestly O����� invariant
form� Consequently one can generate new background �eld con�gurations by implementing suit

able O����� and S
duality transformations on a known solution of the e�ective action� It is well
known that string e�ective action admits black hole solutions���� Sen �	� has obtained interest

ing solutions such that they preserve N�� supersymmetry saturating Bogomol�nyi bound in the
extremal limit�

Our aim here is to investigate the consequences of S
duality transformations for the black hole
solutions of the four dimensional heterotic string e�ective action and investigate the thermodynamic
properties of these black holes� First we compute the partition function of an electrically charged
black hole which resembles a grand partition function with a chemical potential� Then we adopt the
techniques due to Coleman Preskill and Wilczek ��� to project to a partition function with de�nite
charges� The free energy entropy and the thermodynamical potential are derived� The entropy
is shown to be zero in the extremal limit� Our result is of importance due to the fact that these
extremal black hole solutions saturate Bogomol�nyi bound and the partition functions are expected
not to get quantum corrections due to N�� supersymmetry ����� Our next result provide an
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important consequence of S
duality� We envisage electrically charged black hole solutions with zero
axion �eld� Subsequently we implemented the S
duality transformation such that the electrically
charged solutions go over to the magnetic ones� Furthermore it is argued on the grounds of S

duality that the charged projected partition function for electrically charged black hole is identical
to that of the magnetically charged black hole and hence the entropy is also vanishing for the
magnetically charged black hole� While calculating the partition functions we use the Euclidean
formulation throughout the paper�
The massless bosonic sector of four dimensional heterotic string e�ective action consists of

dilaton graviton axion �dual to the antisymmetric tensor �eld� and �	 abelian gauge �elds denoted

respectively by � G�
  � and A
�a�
�  a � � 	 	 	 �	� The e�ective action written in Einstein metric

g�
 � e�G�
 takes the following form

S �

Z
d	x

p�g
�
R�

�

����
��*��

���
�

	
tr���ML��ML�

� ��F
�a�
�
 �LML�abF

�b��
 � ��F
�a�
�
 Lab

-F �b��



� Boundary terms ���

where

F �a�
�
 � ��A

�a�

 � �
A

�a�
� � ���

M and L are �	��	 symmetric matrices� whereas M parametrizes the coset O������
O���	O����  L has ��

eigenvalues �� and � eigenvalues �� and has the following form

L �

��I�� �
� I�

�
� ���

M satis�es the property MLMT � L� � is a complex scalar �eld de�ned in terms of the axion
and the dilaton � � �� ie�� The equations of motion associated with ��� remain invariant under
the S
duality transformations

� � �� �
a�� b

c�� d
� ad� bc � �

F �a�
�
 � �c�� � d�F �a�

�
 � c���ML�ab -F
�a�
�
 � ���

where abc and d are real� The backgrounds g�
 and M remain invariant under the transformation�
The invariance property of the action under the non
compact global transformations has been

utilized by Sen to generate charged rotating black hole solutions �	� starting from an uncharged

rotating black hole solution with � � � B�
 � � A
�a�
� � �M � I��� A special case corresponding

to non
rotating charged black hole is given by the following background con�gurations

ds� � �������r� � �mr�dt� ������r� � �mr���dr� �����d)�
II ���

where � � r	 � �mr��cosh� cosh � � �� �m�r��cosh�� cosh ���� The dilaton is given by
e � r������ ���

The gauge �elds are

A
�a�
t � �n�a�p

�

mr

�
sinh��r� cosh��mr�cosh�� cosh ��� � � a � ��

� �p�a����p
�

mr

�
sinh ��r� cosh��mr�cosh � � cosh��� �� � a � �	 ���
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The M
matrix satisfying the equations of motion is

M � I�� �

�
PnnT QnpT

PpnT PppT

�
�	�

where P � �m
�r�

� sinh� � sinh� � and Q � �mr
� sinh� sinh ��r� �mr�cosh� cosh �� ���� The mass

of this black hole is

M �
m

�
�� � cosh� cosh �� ���

The �	 charges are given by

Q�a� �
n�a�p
�
m sinh� cosh � � � a � ��

�
p�a����p

�
m sinh � cosh� �� � a � �	 ����

Note that the "boost# angles �� � are the parameters �	��� that appear in global non
compact
transformation to obtain charged solution from the uncharged one�

The horizon of this black hole is at r � �m there is a curvature singularity at r � � the area
of the event horizon is AH � 	
m��cosh� � cosh �� and the Hawking
temperature is given by
TH �

�
	�m�cosh�cosh �� �

There are two extremal limits of this black hole which preserve supersymmetry and consequently
saturate the Bogomol�nyi bound for the mass�

�I� m � � � � � while keeping m cosh � � m� �nite and � is �nite but arbitrary� For this
case � � r��r� � �m�r cosh��m�

�� the mass is M � m�

� cosh� and the charges are

Q
�a�
L �

n�a�p
�
m� sinh� � � a � ��� Q

�a�
R �

p�a����p
�

m� cosh� �� � a � �	 ����

The horizon of this black hole is at r � � hence AH � � and temperature  TH �
�

��M cosh��
The expression for the gauge �elds become

A
�a�
tL � �n�a�p

�

m�r
�

�
sinh� � � a � ��� A

�a�
tR � �p�a����p

�

m�r
�

�
cosh� �� � a � �	 ����

The Bogomol�nyi bound is saturated andM� � �
�
�Q�
R where R stands for the right hand sector

and the index a runs from �� to �	� Also Q
�a�
L �

p
�Mn�a� tanh��

�II� The other black hole corresponds to limits� m� � � � � �� such that m cosh� � � m�

is �nite� The parameters are � � r��r� � �m�r� M � m�

� 
the charges are

Q
�a�
L �

n�a�p
�
m� � � a � ��� Q

�a�
R �

p�a����p
�

m� �� � a � �	� ����

The horizon is at r � � so AH � � and TH ��� The gauge �elds are given by

A
�a�
t � �n�a�p

�

m�r
�

�
� � a � ��

� �p�a����p
�

m�r
�

�
�� � a � �	 ����
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The mass saturates the Bogomol�nyi bound M� � �
�
�Q�
R �

�
�
�Q�
L�

We mention in passing that the thermodynamic properties follow naturally from the non


extremal solution� De�ne %�a� � A
�a�
t jr��m to be the electrostatic potential at the horizon� Then

the following relations hold�

THd
AH

�
� dM �

X
a

%�a�dQ�a�

TH
AH

�
� M �

X
a

%�a�Q�a� ����

The explicit form of %�a� is given by

%
�a�
L �

n�a�p
�

sinh�

cosh�� cosh �
� � a � ��

%
�a�
R �

p�a����p
�

sinh �

cosh�� cosh �
�� � a � �	 ����

For case �I�

%
�a�
L � � � � a � ��� %

�a�
R �

p�a����p
�

�� � a � �	 ����

and for case �II�

%
�a�
L �

n�a�

�
p
�

� � a � ��� %
�a�
R �

p�a����

�
p
�

�� � a � �	 ��	�

Now we turn to equations of motion

R�
 �
�

����
���*��
�� �
*����� �

�

	
Tr���ML�
ML�� g�


�

��
Tr���ML��ML�

� ���F
�a�
�� �LML�abF

�b��

 � �

�
��g�
F

�a�
�	 �LML�abF

�b��	

D������ML�abF
�b��
 � �� -F

�a��
� � � ����

where -F �a��
 � �
�
p�g 	

�
�	F
�a�
�	 is the usual dual tensor satisfying Bianchi identities�

The �rst equation in ���� corresponds to the Einstein equation where R has been eliminated in
favour of the matter energy
momentum stress tensor and the second one corresponds to the gauge
�eld equation�

In order to compute the partition function we need to determine the action on shell� One of the
e�cient ways to obtain this action is to take the trace of R�
 in ���� to obtain the scalar curvature
R and use the expression in ���� A straightforward calculation shows that the contributions come
from the well known gravitational boundary term as well as from the gauge �eld surface term

�

	


Z
��

p�gd�x nr����A�a�
t �LML�abF

�b�tr � ��A
�a�
t LabF

�b�tr� ����

Now we proceed to compute the partition function for the electrically charged black hole� It
is necessary to specify the time integral of the fourth component of the vector potential on the
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boundary� We follow the procedure of ��� to carry on this computation for the problem at hand
where the e�ect of �	 gauge bosons are to be taken into account� The gauge potential and the
electric �eld strength have the following form for asymptotically large r

�AtL�R �
��L�R

�e
���m

�L�R

r
�

�FtrL�R �
m�L�R ��L�R

�e

�

r�
����

A few comments are in order at this point� the subscript L�R� refers to the gauge �elds arising
from the compacti�cation of the left�right� moving string coordinates� We recall that �� gauge
�elds arise from compacti�cation of left hand sector and other � of them come from the right hand
sector� Here ��L�R are the generalized version of the parameter introduced in ���� Here � is the
inverse temperature and we have introduced the parameter e to keep track of some power countings�
however note that e will not appear in our expressions for partition function and entropy� The
equations ���� are used in ���� to compute the boundary term contributions� The constants �L�R
have the following form

�L � cosh ��cosh�� cosh �� �R � cosh��cosh�� cosh �� ����

The geometry is asymptotically �at and the boundary is taken to be at r ��� As we have to
subtract the �at space contribution according to the prescription of Gibbons and Hawking �����
we shall �rst take the radius to be large and �nite and eventually take the limit r �� after the
subtraction�

Sboundary � Sflatboundary � ��
�
��grr�

�����r�����f�g����rr � �g�

�
�

�
�M ����

where M is the mass of the black hole given by ���� The contribution of ���� together with ����
can be written as

Z��� ��� � exp���
�
�M � �

�e�
�L��

�
L � �R��

�
R

�
�cosh�� cosh ��
� ����

This equation can be interpreted as a grand canonical partition function for electrically charged
black holes where �� collectively representing ��L�R play the role of chemical potential� In or

der to derive the partition function with speci�c charge con�gurations we have to introduce a
generalization of the projection technique of ����

Z��� �Q� � e��F ����Q�

�

Z �

��
 a

d��a�

�

exp�� i

e
���L 	 �QL � ��R 	 �QR�� Z��� ��� ����

where �Q stands for both �QL and �QR� This integral can be evaluated by the saddle point approxi

mation after inserting the expression for Z��� ��� given by ����� Thus

F ��� �Q� �
�

�
M � �
�cosh�� cosh ��

�
�Q�
L

��L
�

�Q�
R

��R

�

�
�

�
M �

�

�
��%L 	 �QL � �%R 	 �QR� ����
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where %L�R are the twenty two� six components of the potentials given in ����� The thermody

namic potential is given by

)��� �%� � M � TS � �% 	 �Q
� F ��� �Q�� �% 	 �Q ����

Thus the entropy S is given by

S � ��M � F �

�
AH

�
��	�

We have used the relation ���� in arriving at ��	� � Notice that in both the extremal limits� case
�I� and case �II� mentioned earlier the entropy vanishes identically� It is important to note that
the quantum corrections to this entropy are vanishing due to the non
renormalization theorems�

Now we proceed to estimate the partition function for magnetically charged black holes which
are obtained from the electrically charged ones by S
duality transformation� In general axion and
dilaton are transformed to new con�gurations along with the gauge �eld strengths as given by ����

The electrically charged black hole corresponds to �� � � and � and A
�a�
t given by ��� and ����

Our purpose is to implement a special class of duality transformation under which ��� � � and

� � ��
F �a�
�
 � ����ML�abF

�b�
�
 � ����

This is accomplished by a simple choice of parameters a � d � � and b � �c � ��� Note
that under this transformation � �QL� �QR�� �� �QL� �QR�� For the magnetically charged black holes
the string coupling blows up at the horizon and strictly speaking the semiclassical approximation
breaks down� Hence it becomes technically impossible to calculate the partition function and
entropy for such black holes� Now since by N � � supersymmetry Z��� �Q� or equivalently the

free energy F ��� �Q� is an exact result on the basis of S
duality on expects that this answer should
remain the same in the strong
coupling region namely for the magnetically charged solutions
under consideration� One evidence is that the magnetic charges � �QL� �QR� are to be regarded as

the electric charges �� �QL� �QR� in the dual theory and the projected partition function being a
quadratic function of charges is indeed invariant under the S
duality transformations ����� Then
we can equate the free energy obtained with M � TS to obtain the expression for the entropy�
S � AH

	  which is the same for the electric case
��

We see that our results derived from the string e�ective action imply that both the extremal
black holes have vanishing entropy which is conformative of the works ����� In the past it has been
proposed that extremal black holes might be identi�ed with elementary particles ����� massive
states of the string theory ����� Computation of partition functions and entropy for the extremal
case are protected from quantum corrections due to presence of N�� supersymmetry ����� S
duality
is believed to be exact symmetry of string theory ���� which has far reaching consequences� Indeed
our work indicates another interesting implication of S
duality�

I would like to conclude this talk with a few remarks� Although string theory holds the promise
of unifying all fundamental interactions there are �ve di�erent string theories� type IIA type IIB
typeI with gauge group SO���� heterotic string theories one with gauge group SO���� and an

other with E��E�� Therefore when we say that the string theory uni�es fundamental interactions
which string theory we should choose� There has been rapid progress during the last few months

�One should be careful about the statement regarding the use of supersymmetry� because it appears to be a
symmetry only in the extremal limits� To really see that the argument goes through one has to ensure that the
free energy has well dened limits for both the solutions I and II� In both the cases F �M and as S � ��M � F ��
entropy vanishes automatically�

���



in our understanding of the string dynamics in the nonperturbative regime and we have made
progress in revealing intimate relations among various string theories� Some of these results are
nonperturbative in nature and thus are beyond the reach of perturbative calculations� One of the
important breakthrough came with the realization of string�string duality in six dimensions� We
know that in four dimensions both magnetic and electrically charged particles can be accommo

dated� The point charged particle couples to the vector potential whereas the magnetic monopole
appears as a soliton of the theory� The string couples to a two form potential and the corresponding
�eld strength is a three form�Its dual is also a three form tensor in six dimensions� Thus if we
have an �electrically charged� string in six dimensions its dual is a �magnetic string� and the Dirac
quantization condition in this case tells us that the strong coupling phase of one theory is the weak
coupling phase of the other and vice versa� This is an example of an S
duality transformation
and we can test these results from string theories� Furthermore it has been shown by Witten
that the strong coupling limit of the type IIA theory takes it to D � �� N � � supergravity
theory� There has been intensive activities to construct string theories in diverse dimensions using
various methods of compacti�cations and test the duality conjectures� We �nd all the di�erent
string theories are connected to one another in various interesting ways and there is now a strong
belief that one has a hint for the existence of one fundamental theory� All the string theories we
construct might be di�erent phases of that unique theory� We have seen facets of this theory in so
many ways but the consistent quantum theory theM theory is yet to be discovered� This is the
most challenging problem for us�
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EIKONAL APPROACH TO PLANCK SCALE PHYSICS
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Abstract

We consider gravitational scattering of point particles with Planckian centre�of�mass energy
and �xed low momentum transfers in the framework of general relativity and dilaton gravity�
The geometry around the particles are modelled by arbitrary black hole metrics of general
relativity to calculate the scattering amplitudes� However� for dilaton gravity� this modelling
can be done only by extremal black hole metrics� This is consistent with the conjecture that
extremal black holes are elementary particles�
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After the early preparatory years� my scienti�c work has followed a certain pattern mo
tivated� principally� by a quest after perspectives� In practice� this quest has consisted in
my choosing 
after some trials and tribulations� a certain area which appears amenable
to cultivation and compatible with my taste� abilities� and temperament� And when after
some years of study� I feel that I have accumulated a su�cient body of knowledge and
achieved a view of my own� I have the urge to present my point of view ab initio� in a
coherent account with order� form� and structure�

� S� CHANDRASEKHAR

Actually� completion of the theory was never achieved� Chandra wanted� and he tried
very hard� to decouple and�or separate the perturbations of the KerrNewman black hole�
It is well known in the scienti�c community that he did try and did fail� Since Chan
dra failed� no one seems willing to give this problem a serious try� and the perturbations
of KerrNewman solution have remained an unsolved problem for the dozen years since
Chandra gave up� Perhaps� for the sake of science� he should have kept his failure se
cret� On the other hand� it is very likely that the Kerr Newman perturbations cannot be
separated� and his documented failure will have saved many scientistyears of fruitless e�ort�

� BASILIS XANTHOPOULOS



� Introduction

It is well known that the quantum e�ects of gravity come into play at the Planck energy scale
�which is about Mpl � ���� GeV �� The space
time curvatures become too large for classical
general relativity to hold good at this scale� There has been various attempts to understand
these e�ects and to formulate a quantum theory of gravitation� Notable among them are string
theory and the Ashtekar formalism� However till date there is no fully satisfactory renormalisable
theory of quantum gravity� We address the issue of Planck scale physics in the context of particle
scattering via gravitational interaction at very high energies� The kinematics of particle scattering
can be expressed by the two independent Mandelstam variables s and t which are Lorentz scalars�
They are respectively the squares of the centre
of
mass energy and the momentum transfer in the
scattering process� Newton�s constant G being a dimensional constant and equal to M��

pl  the
Planck scale can arise in two ways either when Gs � � or when Gt � �� Thus the most general
quantum gravitational scenario involves both s and t approaching the Planck scale�

The eikonal approximation on the other hand is characterised by scattering at high s and
�xed low t� Physically this signi�es scattering of particles at very high velocities �and kinetic
energies� and at large impact parameters such that the interaction is weak and the particles
deviate slightly form their initial trajectories� In other words they scatter almost in the forward
direction� We would restrict our analyses to this approximation and try to extract whatever
information is available about the Planck scale e�ects as re�ected in the scattering amplitudes�
The motivation to study this kinematical regime is as we shall see that the scattering amplitudes
in this approximation can be exactly calculated and expressed in a closed form� These of course
become signi�cant only at Planckian centre
of
mass energies and we can obtain some quantitative
results about quantum gravity in this kinematical domain�

Without loss of generality two
particle scattering processes are considered� An inertial frame
is chosen in which one of the particles move at almost the speed of light and the other is relatively
slow� Then one of these point particles is modelled as the source of an appropriate metric of general
relativity� For example neutral particles are modelled by Schwarzschild metric and electrically or
magnetically charged particles are modelled by Reissner
Nordstr'om metric� Finally the quantum
mechanical wave
function of the other particle in the background of this space
time is analysed
to deduce the corresponding scattering amplitude� The e�ect of electromagnetism is also studied
when the particles also carry electric and�or magnetic charges�

Next we replace these black hole metrics by their counterparts in dilaton gravity i�e� those
that arise in low energy string theory� Here we see that the above mentioned modelling cannot be
done by generic black holes as was the case for general relativity� If we consider charged particles
for example the modelling can be successfully done only by extremal black holes to be able to
calculate the scattering amplitudes� This supports the conjecture that extremal black holes can
indeed be identi�ed with elementary particles�

� Eikonal Scattering in General Relativity

We begin by considering the scattering of neutral point particles� The space time around any such
particle when it is static is obtained by solving Einstein�s equations and given by the well known
Schwarzschild metric�

ds� �

�
�� �GM

r

�
dt� �

�
�� �GM

r

���
dr� � r�

�
d�� � sin� �d��

�
� ���

To obtain the corresponding space
time when the particle is moving at a very high velocity say
along the positive z
axis we perform a Lorentz transformation on the metric tensor components
with the velocity parameter � according to�

t� � � �t� �z� �

���



z� � � �z � �t� �

where � � ��
p
�� ��� Simultaneously the mass M is parametrised as

M �
P�
�

�

This is to ensure that the energy of the boosted particle remains �nite and equals P�� The metric
tensor components transform as a symmetric second rank tensor� Dropping the primes and taking
the limit � � � the �nal form of the metric is�

ds� � dx�
�
dx � �GP�

jx�j dx
�
�
� dx�
 � ���

where x� � t � z the light cone coordinates� The above geometry was �rst obtained in ��� and
then in ���� De�ning the new coordinate di�erentials d-x� as

d-x � dx � �GP�
jx�j dx

� � d-x� � dx� � d-x
 � dx
 �

Eq���� can be re
written as
ds� � d-x�d-x � d-x�
 � ���

The above form of the in�nitesimal line element seems to indicate that we have simply arrived at �at
space
time by a coordinate re
de�nition� However writing the �nite forms of these re
de�nitions
we get�

-x � x � �GP��
�
x�

�
lnx
 � ���

-x� � x� � ���

-x
 � x
 � ���

Note that the transformations are continuous everywhere except at x� � � which is the
trajectory of the boosted particle where there is a step function discontinuity in the coordinate
x� Calculation of the Riemann
Christo�el curvature tensor reveals that they are Dirac
delta
functions �derivatives of the � functions� which are non
vanishing only at x� � �� Thus all
space
time curvatures are localised on the two
dimensional transverse plane perpendicular to the
trajectory of the boosted particle and travelling along with it� We call this in�nite plane the shock	
wave� The space
time in front of and behind the shock
wave is Minkowskian� It is analogous to the
case of a boosted charged particle where the electromagnetic �elds tend to become concentrated
along the direction perpendicular to the particle trajectory and in the limit � � � they are
completely localised on the plane fronted �electromagnetic� shock
wave� Note that the coordinate
x� is however continuous at all points and serves as a bona�de a�ne parameter for any test
particle in the above background� The classical geometry is depicted in Fig��� which can be
thought of as two Minkowski spaces pertaining to x�  � and x� � � respectively and glued
along the null plane x� � � which is the trajectory of the boosted particle and the shock
wave�
Having found the geometry of the luminal particle now we concentrate on the other particle
assumed to be relatively slow� It serves as the test
particle in the above background� Before the
shock wave comes and hits this particle it is free from any interactions and its wave
function is
given by

�� � eip�x � ei�p�x
�p�x

��p���x�� � x�  � � ���

The moment when it is hit by the shock
wave the x coordinate undergoes a discrete shift given
by Eq���� and the wave function picks up a space
time dependent phase factor� Simplifying we
get the �nal wave function to be�

�� � e�iGs lnx
�
� �� � �	�
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Fig.1: Shock-wave geometry of  boosted Schwarzschild metric.
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Here we have used the identity �p�p� � s� To calculate the scattering amplitude from this
wave function we expand it in terms of a complete set of momentum eigenstates and perform an
inverse Fourier transform to obtain the expansion coe�cients� The latter can be identi�ed with
the scattering amplitude modulo kinematical factors� The detailed calculation is done in ref� ���
and the �nal result is�

f�s� t� �
Gs

t

���� iGs�

��� � iGs�

���
t

��iGs
� ���

Note that the above expression is simply the Rutherford Scattering amplitude with the gravitational
coupling constant �Gs replacing its electromagnetic counterpart �� As advertised it captures the
gravitational interactions between point particles at the Planck scale and is insigni�cant for sub

Planckian energies when Gs� ��

Without going into the details which the reader will �nd in ��� we summarise in brief the
situation when electromagnetic interactions are included in the scattering process� That is the
scattering particles also carry electric or magnetic charges� If they carry electric charges e and e�
then the scattering amplitude is modi�ed to�

f�s� t� �
Gs� ee�

t

� ��� i�Gs� ee���
� �� � i�Gs� ee���

���
t

��i�Gs�ee��
� ����

The remarkable fact about this expression is that it can be obtained from the purely gravitational
result in Eq���� simply by making the replacementGs� Gs�ee�� This means that the gravitational
and electromagnetic coupling constants simply add up to give the e�ective coupling and there is
no interference between them� This is quite unique and holds only in the eikonal approximation
because as we know the two forces do a�ect each other in a non
trivial manner in generic cases�
This decoupling is reminiscent of the Newtonian limit where gravitation and electromagnetic
interactions can be assumed not to a�ect each other� However as far as the velocities and the
energies of the particles are concerned we are far removed from the Newtonian �low velocity�
regime�

If on the other hand one of the particles carry an electric charge e and the other a magnetic
charge g then the scattering amplitude is ����

f�s� t� �
�n
�
� iGs

� � �n� � iGs
�

�
�
n
� � iGs

� ���
t

���iGs
����

���



Here the two couplings do not add up in a simple manner as in the previous case but the same
in not expected intuitively because with magnetic monopoles the interaction is no longer central
in nature like gravitation or electromagnetism involving charges only� Comparing Eqs� ���� and
���� we �nd that the electromagnetic contribution to the former is insigni�cant �with ee� typically
of the order of the �ne structure constant ������ while for the latter it is comparable to the
gravitational contribution �both couplings being of the order of unity�� In short gravitation
dominates overwhelmingly over electromagnetism at Planckian energies in the absence of magnetic
monopoles� Introduction of the latter entails drastic changes in the result�

� Shock Waves in Dilaton Gravity

As noted earlier the results in the previous section were derived in the framework of general
relativity and all the black hole metrics used to model the particles satisfy the Einstein�s equations�
Now string theory in the low energy limit provides us an alternative theory of gravitation known
as dilaton gravity where in addition to the metric tensor a scalar �eld called the dilaton is also
an independent degree of freedom� We will not go into the details as to how this theory emerges as
a low energy e�ective theory from string theory� Instead we will analyse the scattering situation
envisaged in section � using dilaton gravity� We would like to investigate whether the scattering
amplitudes are modi�ed in this framework and whether the electromagnetic and gravitational
decoupling still hold good� We will see that modelling the scattering particles by dilatonic black
holes poses some generic pathologies which are removable only under certain speci�c conditions
and when these are satis�ed the decoupling exists just as in the case of general relativity� The
counterpart of the Reissner
Nordstr'ommetric in dilaton gravity is given by the following expression
�in the so
called �string metric�� ����

ds� �
�
�� �

Mr

���  �
�� �GM

r

�
dt� �

�
�� �GM

r

���
dr�

�
� r�d)� � ����

where � � Q�e��  Q being the electric charge and �� the asymptotic value of the dilaton �eld�
Note that setting Q � � reproduces the Schwarzschild metric which means that the dilaton �eld
has non
trivial e�ects only when we consider charged solutions� Like the Reissner
Nordstr'om
solution the above metric has two horizons r and r� given by�

r � �GM �

r� �
�

M
�

However here a crucial di�erence is that the inner horizon r� is a space
time singularity where the
curvature tensor blows up� For black holes of large masses this singularity is hidden behind the
event horizon r and there is no naked singularity which however develops as the mass decreases�
We will see that this singularity plays a crucial role in eikonal scattering� Analogous to the
Schwarzschild or the Reissner
Nordstr'om metric we apply a Lorentz boost to the dilaton gravity
metric along the positive z
axis and take the limit � � �� The resultant metric is of the form ����

ds� � dx�
�
�� ���P�jx�j
�� ��P�jx�j

� �
dx � �GP��jx�j

�� ��P�jx�j dx
�
�
� dx�
 � ����

As before to express this in a form representing Minkowski space we de�ne the new coordinates

d-x� � dx�
�
�� ���P�jx�j
�� ��P�jx�j

�
����

d-x � dx � �GP��jx�j
�� ��P�jx�j dx

� � ����

���
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Fig.2: Shock-wave geometry of  boosted non-extremal dilaton
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Note that here both the coordinates x� and x are discontinuous for non
vanishing �� This is
rather disturbing because as we saw in the previous section x� served as the continuous a�ne
parameter for the test particle and a discontinuity in it signals a breakdown in the description
of the evolution of the particle in terms of geodesics� This is indeed con�rmed by writing the
classical geodesic equations of the test particle in the background of the boosted dilaton metric
and trying to solve it perturbatively in powers of the mass M � The failure of the latter indicates
that the null geodesics are incomplete in this case and the curvature singularity at r� � ��M
shows up as an extended naked singularity in the boosted limit and renders eikonal scattering
impossible� The classical geometry in this case is shown in Fig���� where the rectangular shaded
region denotes the �nite region of singularity that originated from the singular horizon r�� Thus
we see that modelling the particles by dilaton gravity metric gives rise to singularities which makes
the subsequent calculation of scattering amplitudes impossible�

To circumvent this di�culty we can try various possibilities� In particular we can examine the
case by imposing the extremal limit r � r�� Then the metric assumes the form

ds� � dt� � dr��
�� �GM

r

�� � r�d)� � ����

which is perfectly regular everywhere� The curvature singularity has simply disappeared when the
two horizons coincide � This is precisely the motivation behind considering this limit� Note that
the metric above is entirely distinct from the Schwarzschild metric� However on performing the
usual Lorentz boost on it along with the limit � � � it can be easily veri�ed that the boosted
version coincides with the metric ���� This is a pleasant surprise because now the test particle
will �see� an identical background as in the case of Schwarzschild and the corresponding scattering
amplitude is simply the eikonal result ����

Thus it is clear that the curvature singularity shows up as an extended singular region and
makes it impossible to calculate scattering amplitude� The extremal limit on the other hand
plays a special role whose imposition reproduces the elegant eikonal results� In the next section
we will probe into the details of the role of this singularity by invoking a di�erent formalism�

���



� Scattering in Static Dilaton Gravity Background

In this section we try to establish rigorously the role of the naked singularity in dilaton gravity
metric in eikonal scattering� Here we consider the scattering of the fast particle in the background
of the other static particle� Note that the de�nitions of �source� and �test� has been reversed� The
Klein
Gordon equation for the wave function � of the fast particle is given by�

g�
 D
�D
% � � � ����

where D� denotes the covariant derivative� The above equation can be simpli�ed to

�p�g��
�p�gg�
�
%� � � � ��	�

We assume a solution of the form

% � f�r� Ylm��� �� e
iEt � ����

where we have split the wave function into a radial part the spherical harmonics and the ex

ponential of asymptotically measured energy E� This decomposition results from the spherically
symmetric and static nature of the dilaton gravity metric ����� With this ansatz the following
radial equation is obtained from Eq���	� ����

r�/
d�f

dr�
�
d
�
r�/

�
dr

df

dr
�
�
l�l� ��

�
� E�r�

/

�
f � � � ����

where we have de�ned the quantities / � � � �GM�r and � � � � ��Mr� As expected we
recover the radial equation for Schwarzschild background for � � ��� � � and the subsequent
scattering amplitude ��� ����� However for generic values of � it can be shown that the above
radial equation does not admit of a solution at all� This follows from an elementary theorem in
ordinary di�erential equations since the coe�cient of f in eq����� su�ers an in�nite discontinuity
at � � �� Thus as in the previous section we conclude that the dilaton gravity metric ���� cannot
be used to successfully model the high energy particles� Moreover we are now in a position to
understand the physical origin of the pathology� The curvature singularity at r� � ��M grows
inde�nitely large as we take the limit M � � and eventually �lls all space around the dilatonic
particle� Thus the other particle at arbitrary impact parameter is forced to hit this singularity
and get trapped signalling the breakdown of the scattering process� This was re�ected in the
non
existence of solutions of the classical geodesic equations in section �� Imposing the extremal
limit on the other hand eliminated this singularity and thus the scattering amplitude became
calculable which yielded the eikonal result� This can be veri�ed using the Klein
Gordon radial
equation also� In the extremal limit Eq����� assumes the form �����

d�f

dr�
�

�

r�/

d
�
r��

�
dr

df

dr
� �

/�

�
l�l� ��

r�
�E�

�
f � � � ����

The above radial equation can be expanded in powers of GM�r and this recovers the Schwarzschild
radial equation to the lowest order� The scattering amplitude ��� follows immediately� This re

emphasises the importance of the extremal limit for Planckian scattering via dilaton gravity�

� Perturbative approach

In the previous two sections we have explicitly used a classical solution of the low energy string
e�ective action to arrive at the scattering amplitudes �in the extremal limit�� However the prob

lem can be approached without the help of such explicit solutions at the level of the action itself�
Historically the eikonal scattering amplitude was derived in the context of quantum electrodynam

ics by summing an in�nite subset of Feynman diagrams known as ladder diagrams with certain

���



kinematical restrictions on the matter propagators� It was shown that this in�nite sum can be
expressed in a neat closed form ����� A crucial assumption required to arrive at the eikonal result
is the assumption that the scattering particles have well de�ned classical trajectories which di�er
slightly from the free particle trajectories� The sum of ladder diagrams were seen to converge for
gravitational scattering as well in ���� which reproduced the amplitude ��� exactly� For dilaton
gravity however the assumption regarding classical trajectories is invalidated because as we saw
in the previous sections an incoming particle is swallowed up by the expanding curvature singu

larity and there are no well de�ned scattering solutions� Thus a priori it seems impossible to
construct and calculate ladder diagrams from dilaton gravity action given by�

S �

Z
d	x

p�ge��
�
�R

G
� F�
F

�
 � �����
��

�
� ����

First we simplify the action by linearising the metric as well as the dilaton �eld

g�
 � ��
 � h�
 � ����

� � �� � f � ����

where ��
 is the �at Minkowskian metric and �� is some constant� Retaining terms to leading
order in these quantum �uctuations the action ���� reduces to�

S �
e���

G

Z
d	x��� �f��

	
h�


�
����
	 � ��	�
� � ��
��	

�
�h�	

� e���
Z

d	x

�
� �

�

�
h �
�

�
��� �f� �����f��f � F � � ����

��
�
� ����

Here we have also included the action for the massless matter �eld � representing the scattering
particles� In addition to the graviton and matter propagators and the matter
graviton interaction
vertex already calculated in ���� now we have a dilaton propagator and a matter
dilaton interaction
vertex� The factors associated with them can be read of fom the linearised action and turns out to
be �i��p� �m� � i	� and ��p 	p� respectively where p and p� are the momenta associated with the
external matter lines� With these the new in�nite set of ladder diagrams with dilaton exchanges
can be computed in a straightforward manner� The details of the calculation is done in ��� and
the �nal result is�

iM �
ip��p

�
�

�t
���� ip��p

�
��Ep�

��� � ip��p
�
��Ep�

�
�

�t
��i p��p��

Ep

� ����

Now if we make the momenta p� and p� on
shell and replace them by m� and eventually take
the massless limit m � � then we see that the dilaton amplitude vanishes identically and we are
simply left with the gravitational result ����

At this point we investigate the circumstances under which the action can be linearised because
without the latter the eikonal sum can never be attempted� The metric g�
 is linearised under the
assumption that there are small graviton �uctuations over a Minkowskian background� As for the
dilaton �eld we can try to estimate its quantum �uctuation f by looking at the classical solution
for � obtained by minimising the action �����

e� � e��
�
�� �

Mr

�
� ����

which implies that the �uctuations over �� are of the order of

f � j�� ��j � j ln ����Mr� j � ��	�

Smallness of this requires j��Mrj � � or in other words alpha should scale at least as M� as we
take M � �� But this is equivalent to the extremal limit when � � �GM� � Thus even in a
solution
independent approach where we look at the action and impose certain restrictions on it
the extremal limit seems to emerge in a natural way if we want to obtain well de�ned scattering
amplitudes�

���



� Conclusion

Our analysis of Planckian scattering in the light of dilaton gravity unambiguously point to the
fact that there are important constraints to be satis�ed while trying to model the scattering
particles by a suitable metric� Namely the extremality condition should be necessarily imposed on
the parameters to obtain physically meaningful scattering amplitudes� Otherwise the curvature
singularity at a �nite radius inevitably shows up as pathologies in the calculations� In the shock

wave approach where we boosted the dilaton gravity metric this was seen to give rise to the
a discontinuous a�ne parameter� Next while trying to solve the Klein
Gordon equation in the
background of the above metric we saw that there were no scattering solutions to the corresponding
radial equation� Finally in the approach of perturbation theory we showed that the eikonal
scattering amplitude can be reproduced if and only if the dilaton �eld was linearised and the lowest
order terms in its quantum �uctuation is retained in the action� Once again this linearisation is
consistent with the extremality condition� There is yet another solution
independent way to arrive
at identical conclusions starting from the dilaton gravity action where one uses the so called
�Verlinde
scaling� to incorporate the eikonal kinematics� The interested reader may refer to ��� for
a detailed discussion of this approach� The important point to note is that no such restrictions
were ever necessary in the general relativistic framework to calculate scattering amplitudes� Thus
it is perhaps correct to say that the theory of gravity that emerges from string theory incorporates
certain problematic features at least in the context of Planckian scattering� But the same theory
contains the cure to this problem also namely in the form of the extremal limit� The latter
constraint once imposed removes the pathologies altogether and reproduces the �nite amplitudes
of general relativity� It is also curious to note the consistency of these results with the well known
conjecture that extremal black holes are actually elementary particles ����� Here we are considering
scattering of point particles which can also be regarded as �elementary�� Thus it seems logical in
the spirit of the conjecture to model them as extremal black holes�
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The parable entitled �Not lost but gone before�� is about larvae of dragon�ies deposited
at the bottom of the pond� A constant source of mystery for these larvae was what happens
to them� when on reaching the stage of chrysalis they pass through the surface of the pond
never to return� And each larva� as it approaches the chrysalis stage and feels compelled
to rise to the surface of the pond� promises to return and tell those that remain behind
what really happens� and con�rm or deny a rumour attributed to a frog that when a larva
emerges on the other side of their world it becomes a marvellous creature with long slender
body and iridescent wings� But on emerging from the surface of the pond as a fullyformed
dragon�y� it is unable to penetrate the surface no matter how it tries and how long it hovers�
And the history books of larvae do not record any instance of one of them returning to tell
them what happens to it when it crosses the dome of their world� And the parable ends
with the cry

���Will none of you in pity�
To those you left behind� disclose the secret�

� S� CHANDRASEKHAR



� Introduction

A black hole is classically thought of as a region of intense gravitational �eld from which no form
of energy 3 not even light 3 can leak out� The best known example is the Schwarzschild black hole
solution of Einstein�s equation� It is described by the metric

ds� � ���� �M

r
�dt� � ��� �M

r
���dr� � r�d)� ���

It has a horizon at r � �M  which is a singularity of this coordinate system but the curvature is
not singular there and regular Kruskal coordinates may be chosen� There is however a curvature
singularity at r � � which is to be regarded as the location of a point source of mass M �

Another example is the Reissner 
 Nordstr'om solution of the Einstein 
 Maxwell equations� The
metric is given by

ds� � ���� �M

r
�
Q�

r�
�dt� � ��� �M

r
�
Q�

r�
���dr� � r�d)� ���

and the electric �eld by

Ftr �
Q

r�
� ���

with M and Q denoting the mass and the charge respectively� There are apparent singularities at

r� �M �
p
M� �Q� ���

provided M � Q� This inequality must hold if a naked singularity is to be avoided and then there
is a horizon at r� The limiting case when Q �M and r � r� is referred to as the extremal case�
There is again a curvature singularity at r � � which is to be regarded as the location of a point
source with mass M and charge Q�

Classically a black hole is stable and does not radiate� So a black hole may at that level
be assigned zero temperature and correspondingly zero entropy� But the situation changes when
quantum �eld theory is brought in to describe the interaction of matter with a black hole back

ground� A careful de�nition of the vacuum using regular �Kruskal� coordinates shows that there
is a net �ow of particles away from the black hole with a thermal spectrum corresponding to a
temperature determined by the black hole parameters like mass and charge�

The strong gravitational �eld may be imagined to produce a particle 
 antiparticle pair by
polarizing the vacuum� If this occurs outside the horizon one of the pair may fall in with the
other moving away to in�nity thus contributing to an outward �ow�

If the process continues it actually becomes faster� This is because a black hole gets hotter
when it loses mass� The black hole is thus expected to evaporate completely� A regular spacetime
should be left behind with all the matter moving away�

This process of evaporation leads to a puzzle� A black hole can be imagined to start o� in a
pure state� When it evaporates there is only thermal radiation which is in a mixed state� Such a
transition would appear to be non
unitary and to involve loss of information� Can it really occur�

Three di�erent answers have been proposed�

�� Yes� Quantum gravity is non
unitary and indeed the laws of quantum mechanics as known
to us should be modi�ed to accommodate this kind of process�

�� No� The thermal nature of the radiation is only an approximation� There are correlations
between di�erent times and the state is really pure�

�� No� The process of evaporation stops at some point to be determined by an yet unknown
theory of quantum gravity� This means that the black hole leaves a remnant�

It has to be emphasized that each of these proposals involves some new physics i�e�� there is no
way of understanding black hole evaporation in terms of known principles�

It is to be hoped that some day a clear answer will emerge� We shall not discuss this question
any further but shall pass on to a closely related topic� black hole entropy� Entropy is of course
a measure of lack of information�

���



� Black hole entropy in the seventies

A precursor of the idea of entropy in the context of black holes was the so
called area theorem
���� According to this theorem the area of the horizon of a system of black holes always increases
in a class of spacetimes� The asymmetry in time is built into the de�nition of this class� these
spacetimes are predictable from partial Cauchy hypersurfaces� This result is certainly reminiscent
of thermodynamical entropy�

Some other observations made around that time were collected together into a set of laws of
black hole mechanics analogous to the laws of thermodynamics ����

 The zeroeth law states that the surface gravity � remains constant on the horizon of a black
hole�

 The �rst law states that
�dA

	

� dM � �dQ� ���

where A represents the area of the horizon and � the potential at the horizon� For the
Reissner 
 Nordstr'om black hole

� �
r � r�
�r�

� � � Q�r� A � �
r
�
� ���

 The second law is just the area theorem already stated�

�
When these observations were made there was no obvious connection with thermodynamics it

was only a matter of analogy� But it was soon realized ��� that the existence of a horizon imposes a
limitation on the amount of information available and hence may lead to an entropy which should
then be measured by the geometric quantity associated with the horizon namely its area� Thus
upto a factor A should represent the entropy and �

�� the temperature�
Not everyone accepted this interpretation of the laws of black hole mechanics and in any case

the undetermined factor left a question mark� Fortunately the problem was solved very soon�
It was discovered that quantum theory causes dramatic changes in the behaviour of black hole
spacetimes� A scalar �eld theory in the background of a Schwarzschild black hole indicates the
occurrence of radiation of particles ��� at a temperature

T �
*h

	
M
�
*h�

�

� ���

This demonstrated the connection of the laws of black hole mechanics with thermodynamics and
�xed the scale factor� It involves Planck�s constant and is a quantum e�ect�

For a Schwarzschild black hole the �rst law of thermodynamics can be written as

TdS � dM �	�

and can be integrated because of ��� to yield

S �
�
M�

*h
�

A

�*h
� ���

Although the expression for T given above is speci�c to the case of Schwarzschild black holes
the relation between the temperature and the surface gravity given in ��� is more generally valid in
the case of black holes having gtt � ��� rh

r �� The �rst law of black hole mechanics then becomes

Td
A

�*h
� dM � �dQ� ����

�	�



Comparison with the �rst law of thermodynamics

TdS � dM � -�dQ ����

is not straightforward because the chemical potential -� is not clearly known� However one way of
satisfying these two equations involves the identi�cation

S �
A

�*h
� -� � �� ����

In another approach the grand partition function is used� For charged black holes ��� it can be
related to the classical action by

Zgrand � e�
M�TS���Q

T � e�I��h� ����

where the functional integral over all con�gurations is semiclassically approximated by the weight
factor with the classical action I � The action is given by a quarter of the area of the horizon when
the Euclidean time goes over one period i�e�� from zero to ��T � Consequently

M � T �S �
A

�*h
� � -�Q� ����

Now there is a standard formula named after Smarr ���

M �
�A

�

� �Q� ����

which can be rewritten as

M � T
A

�*h
� �Q� ����

Comparison with ���� suggests once again the relations ����� Although the result is the same it
should be noted that there is a new input� the functional integral� There is a hope that corrections
to the above formulas may be obtained by improving the approximation used in the calculation of
the functional integral�

Before closing this section let us brie�y point out that the entropy can be di�erent from
A���*h� ���� The di�erence between the �rst laws of thermodynamics and black hole mechanics can
be written as

TdF � ��� -��dQ� ����

where F � S �A���*h�� Hence

�F

�M
� ��

�F

�Q
�

�� -�

T
� ��	�

The �rst equation can be satis�ed by an arbitrary function of Q and the second equation serves
to �x -� rather than to put any constraint on F �

What happens in the functional integral approach� The di�erence between ���� and ���� is

TF � ��� -��Q� ����

By itself this does not impose any restriction but it can be used to restrict F in conjunction with
��	�� We observe that

F � Q
�F

�Q
� ����

which means that F is a homogeneous function of Q of degree �� This is true even if there are
several charges �Q has several components��

�	�



� Matter around black hole

The investigation of �eld theory in the background of a black hole ��� had given a physical meaning
to the temperature of a black hole but the entropy remained mysterious� An attempt was then
made �	� to study the entropy of matter in such a background� It is convenient to employ what
is called the brick wall boundary condition� Then the wave function is cut o� just outside the
horizon at rh� Mathematically

��x� � � at r � rh � 	 ����

where 	 is a small positive quantity and signi�es an ultraviolet cut
o�� There is also an infrared
cut
o�

��x� � � at r � L ����

with the box size L �� rh�
The wave equation for a scalar is

�p�g���
p�gg�
�
���m�� � �� ����

A solution of the form
� � e�iEtfElYlml

����

satis�es the radial equation

�gttE�fEl �
�p�g

�

�r
�
p�ggrr �fEl

�r
�� �l�l � ��g�� �m��fEl � �� ����

An r
 dependent radial wave number can be introduced from this equation by

k��r� l� E�fEl � �grr �p�g
�

�r
�
p�ggrr �fEl

�r
�

� grr��gttE� � l�l � ��g�� �m��fEl� ����

Only such values of E are to be considered here as make the above expression nonnegative� The
values are further restricted by the semiclassical quantization condition

nr
 �

Z L

rh�

dr k�r� l� E�� ����

where nr has to be a nonnegative integer�
To �nd the free energy F at inverse temperature � one has to sum over states with all possible

single
 particle combinations�

�F �
X

nr�l�ml

log��� e��E�

�
Z

dl ��l � ��

Z
dnr log��� e��E�

� �
Z
dl ��l � ��

Z
d��E� �e�E � ����nr

� ��




Z
dl ��l� ��

Z
dE �e�E � ����

Z L

rh�

dr
p
grrq

�gttE� � l�l � ��g�� �m�

� ���
�


Z L

rh�

dr
p
grrg

��Z
dE �e�E � ������gttE� �m������ ��	�

�	�



Here the limits of integration for l� E are such that the arguments of the square roots are nonneg

ative� The l integration is straightforward and has been explicitly carried out� The E integral can
be evaluated only approximately�

The contribution to the r integral from large values of r yields the expression for the free energy
valid in �at spacetime because of the asymptotic �atness�

F� � � �

�

L�

Z �

m

dE
�E� �m�����

e�E � � � ����

This part has to be subtracted out �	�� The contribution of the black hole is singular in the limit
	� �� For ordinary black holes the leading singularity is linear�

F � ��

�

��	
�
rh
�
�	� ����

where the lower limit of the E integral has been approximately set equal to zero� �There are
corrections involving m��� which will be ignored here�� � is now replaced by the reciprocal of the
black hole temperature and the cuto� 	 in r replaced by one in the "proper# radial variable de�ned
by

d-r �
p
grrdr� ����

whence -	 � p
rh	� The contribution to the entropy due to the presence of the black hole is obtained

from the formula

S � ��
�F

��
����

to be

S �
A

���
-	�
� ����

The appearance of the area led to a lot of interest� The divergence in the limit of vanishing
cuto� 	 is clearly due to the concentration of the matter states near the horizon� The question
then was how the �nite result A����G�*h� is to be obtained from this expression� It was suggested
that di�erent species of matter which have to be summed over might renormalize the Newton
constant in the denominator of the entropy and might even produce it� However an alternative
point of view is that the calculation indicated above refers to the entropy of the matter rather than
that of the black hole� Whereas the calculation of the temperature of matter can tell us about the
temperature of the black hole the entropy of one need not have any connection with that of the
other� In support of this view one can cite the case of extremal dilatonic black holes which carry
mass and magnetic charge but the charge has the maximum value that can exist for a given mass
without giving rise to a naked singularity� For these black holes the entropy as calculated by the
above procedure is nonzero though the area vanishes ����

� Counting of states� string based black holes

While the previous section reviewed an attempt to calculate the entropy by counting states it was
an entropy in the background of a black hole rather than the entropy of a black hole itself which
remained unexplained� Recently it has been possible to make some progress in this direction
though in the context of special black holes arising from string theory ����� In four dimensions
the massless bosonic �elds of the heterotic string obtained by toroidal compacti�cation lead to an
e�ective action with an unbroken U����� gauge symmetry�

S �
�

��


Z
d	x

p�Ge���RG �G�
r�%r
%�
�

	
G�
Tr���ML�
ML�

�G���G

�F �a�
�
 �LML�abF �b�

��
� �
�

��
G���G

�G���H�
�H��
��� �� ����

�	�



Here L �

��I��
I�

�
� with I representing an identity matrix M a symmetric �	 dimen


sional matrix of scalar �elds satisfying MLM � L� and there are �	 gauge �eld tensors F �a�
�
 �

��A
�a�

 � ��A

�a�
� � a � �� ����	 as well as a third rank tensor H�
� � ��B
� � �A

�a�
� LabF �b�


� �
cyclic permutations of �� �� � corresponding to an antisymmetric tensor �eld B� The canonical
metric de�ned by g�
 � e��G�
 possesses black hole solutions�

The dilaton �eld is nontrivial though H still vanishes in the solutions to be considered� The
metric g�
 and the dilaton % are given by

ds� � g�
dx
�dx


� �r� � �mr

����
dt� �

����

r� � �mr
dr� �����d)�

II ����

with

� � r�
�
r� � �mr�cosh� cosh � � �� �m��cosh�� cosh �����

and e� �
g�r�

����
� ����

Here �� � are real parameters and g is a constant� The time components of the gauge �elds are
given by

�At �


� g�nLp
�
mr sinh�

� �r� cosh � �mr�cosh�� cosh ��� L � �� �����

� g�nRp
�

mr sinh �
� �r� cosh��mr�cosh�� cosh ��� R � ��� ����	

����

with �nL� �nR denoting respectively ��
component and �
component unit vectors and

M � I�� �

�
PnLn

T
L QnLn

T
R

QnRn
T
L PnRn

T
R

�
� ��	�

where

P �
�m�r�

�
sinh� � sinh� �

Q � ��mr

�
sinh� sinh ��r� �mr�cosh� cosh � � ���� ����

All other backgrounds vanish for this solution�
The ADM mass of the black hole and its charges are given by

M �
�

�
m�� � cosh� cosh ��

�Q �



g�nLp
�
m sinh� cosh � L � �� �����

g�nRp
�
m sinh � cosh� R � ��� ����	

����

The area of the horizon which is at r � �m is

AH � 	
m
��cosh�� cosh ��� ����

and the inverse temperature �as de�ned in terms of the surface gravity� is given by

�H � �
m�cosh�� cosh ��� ����

One has to consider the special case

m� �� � ��� with m cosh � � m�� � � �nite� ����

�	�



Then

AH � �� TH �
�

�
m�
� ����

and
M �

m�

�
cosh�� �QL �

gm�p
�
sinh� �nL� �QR �

gm�p
�
cosh� �nR� ����

Consequently

M� �
�

	g�
�Q�
R� ����

The black hole is Bogomol�nyi saturated�
This black hole can be identi�ed with a class of massive string states ���� and this is what

allows its entropy to be determined by direct counting� The density of states in heterotic string
theory is given for a large number N of oscillators by ���� as

� � const�N�����e�a
p
N � ����

where aL � �
� aR �
p
�
� The numbers of oscillators in the left and right sectors are related to

the mass and charges of the corresponding states by the usual formula

M� �
g�

	
�
�Q�
L

g	
� �NL � �� � g�

	
�
�Q�
R

g	
� �NR � ��� ��	�

To �nd the level density in terms of the ADM mass of a black hole one has to combine this formula
with the relation between the mass and the charges as applicable for the solution describing that
black hole� Here NR �

�
� and the entropy arises from large values of NL�

S � log � � �

p
NL � 	


g

s
M� � Q�

L

	g�
�

	


g cosh�
M �

�


g
m�� ����

While this result is nonzero it must be remembered that in this limiting case the horizon has a
vanishing area� So the area formula is not supported� If one desires to express the entropy as the
area of something one can try to construct a surface using various prescriptions �����

However these limiting cases describe special black holes where the mass and the charges are
related with one another so that these are extremal cases� It is known ���� that extremal and
nonextremal cases in the euclidean version are topologically di�erent so that continuity need not
hold� If the derivation of an expression for the thermodynamic entropy ��� is attempted afresh for
the extremal case with due attention paid to the fact that the mass and charges are no longer
independent as in the usual cases� one obtains a form proportional to the mass of the black hole
with an undetermined scale ���� as we now show�

Let �% represent the chemical potential corresponding to the charge �Q� We can make use of the
O�����O��� symmetry to write

�% �


 p
�fL�nL
	g L � �� �����

p
�fR�nR
	g R � ��� ����	

� ����

where fL� fR are unknown functions of m� and �� There are standard expressions for the chemical
potential in nonextremal cases but we cannot use them for two reasons� �rst extremal black holes
may not be continuously connected to nonextremal black holes ���� and secondly the standard
expressions are calculated by di�erentiating the mass with respect to charges at constant area in the
anticipation that constant area and constant entropy are synonymous but this is an assumption
we would not like to make� Only such thermodynamic processes are considered here which leave
the black hole in the class being considered i�e�� all variations are in the parameters m�� � and the
unit vectors �nL� �nR� Other processes too can occur but are not needed for this discussion�
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Once again in the leading semiclassical approximation the partition function can be taken to
be the exponential of the negative classical action which vanishes in this case as the area vanishes�
Hence the thermodynamic potential vanishes too and we have as in ����

TS �M � �% 	 �Q � �cosh�� fL sinh�� fR cosh��m�

�
� ����

Using ���� we then have

S � 
m�
��cosh�� fL sinh�� fR cosh��� ����

Further the �rst law of thermodynamics

TdS � dM � �% 	 d �Q� ����

takes the form

T
�S

�m�
�

�M

�m�
� �% 	 �

�Q

�m�
�
�cosh�� fL sinh�� fR cosh��

�
� ����

This can be written in view of ���� as
�S

�m�
�

S

m�
� ����

whence
S � k���m�� ����

with k��� now an undetermined function of �� This function cannot be �xed by considering the
analogue of ���� where the m�
derivatives are replaced by �
derivatives� what happens is that
fL� fR get expressed in terms of k� The string answer ���� for the entropy is indeed of the form
���� with k��� actually taking the constant value ��

g �

� Conclusion

We have come a long way from the seventies when what seemed like analogues of the laws of
thermodynamics were discovered for black hole physics� First it became clear that the surface
gravity which was the analogue of temperature entering those laws is indeed proportional to the
temperature the proportionality factor involving Planck�s constant� Then it became apparent that
the area of the horizon which was the analogue of entropy naturally enters the expression for the
entropy of matter in the background of a simple black hole� The next step should be to derive the
area expression for the entropy of the black hole itself from a counting of states� But this would
involve a quantum theory of gravity� What has been achieved in this direction is the embedding of
some special black holes in string theory leading to a microscopic calculation of the entropy� This
has not produced the area as the answer but that is no longer an occasion for surprise� for these
special black holes the thermodynamical approach also leads to a form di�erent from the area but
proportional to the mass instead� It is to be hoped that such calculations will soon be extended
to more familiar black holes�

PS� For a new approach not discussed in this talk see �����

�	�



References

��� S� Hawking� Phys� Rev� Letters� ��� ���� �����

��� J� Bardeen� B� Carter and S� Hawking� Comm� Math� Phys�� 	�� ��� �����

��� J� Bekenstein� Phys� Rev�� D�� ���� ������ Phys� Rev�� D�� ���� �����

��� S� Hawking� Comm� Math� Phys�� �	� ��� �����

��� G� Gibbons and S� Hawking� Phys� Rev�� D��� ��� ����

��� L� Smarr� Phys� Rev� Letters� 	�� � �����

�� A� Ghosh and P� Mitra� gr�qc���	�	�	� P� Mitra� gr�qc���	�	��� to appear in Proceedings of the Puri
workshop on Physics at the Planck scale� ����� eds� A� Kumar and J� Maharana� World Scienti�c�
Singapore

��� G� �t Hooft� Nucl� Phys�� B���� � ������

��� A� Ghosh and P� Mitra� Phys� Rev� Letters� �	� ���� ������

��	� A� Sen� Mod� Phys� Lett�� A��� �	�� ������

���� M� Du�� R� R� Khuri� R� Minasian and J� Rahmfeld� Nucl� Phys�� B���� ��� ������� M� Du� and J�
Rahmfeld� Phys� Letters� B	��� ��� ������

���� J� G� Russo and L� Susskind� Nuc� Phys�� B�	�� ��� ������

���� S� Hawking� G� Horowitz and S� Ross� Phys� Rev�� D��� ��	� ������

���� A� Ghosh and P� Mitra� hep�th���	�	�	� see also Phys� Letters� B	��� ��� ������� hep�th���	�	�

���� J� Maldacena and A� Strominger� hep�th���	�	�	

�	�



�The Mathematical Theory of Black Holes� has probably surpassed Hawking�s �Brief
History of Time� in the ratio of copies sold to copies actually read�

� MARTIN REES



ASHTEKAR APPROACH TO QUANTUM GRAVITY

G� Date�

Institute of Mathematical Sciences
Madras ��� ��� INDIA

Abstract
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However� it is well to remember that a theory that is derived from simple and elegant
basic ideas need not be a �correct� one� In the case of general relativity� the �simple and the
elegant� ideas gave rise to a mathematical structure so consistent and rich in content that
one�s con�dence in the theory results from these latter facts� Perhaps I could explain my
meaning as follows� One commonly says nonlinear equations are di�cult to solve� Indeed�
Einstein remarks in one of his papers� �If only it were not so damnably di�cult to �nd
rigorous solutions�� This remark is consistent with his earlier reaction to Schwarzschild�s
discovery of the exact solution for the spacetime about a point mass� that he was �aston
ished that the problem could be solved exactly�� The experience during the past twenty�ve
years has been exactly in the opposite� so many problems of physical signi�cance have been
solved exactly that one is almost tempted to say that the test whether a question one asks
of general relativity is physically signi�cant or not is the solvability of the problem when it
is properly formulated�

� S� CHANDRASEKHAR

There is no doubt that Chandra was enchanted by general relativity� He worked in this
area for over thirty years� nearly half of his career� He found in it the �strangeness in pro
portion� which to him was an essential feature of beauty� He had heard from Henry Moore
that �great sculptures should be viewed from all distances since new aspects of beauty will
be revealed at every scale�� And he found that general relativity� and especially the mathe
matical theory of black holes� did just that�

� ABHAY ASHTEKAR



It has been a long standing occupation of theoretical physicists to construct a non	perturbative
quantum theory of gravity� There are several di�erent approaches and e�orts of which canonical
quantization is one�

Within canonical quantization approach itself there are at least two main versions�

a� Geometro
dynamics 5a la ADM et al �

b� Connection
dynamics 5a la Ashtekar et al�

In this talk I will try to discuss some of the relatively recent developments in the approach
b�� Even this area is quite vast� The classical aspects of the Ashtekar variables while interesting
in their own right are by now fairly well discussed and understood ���� Therefore I will not discuss
these� Their stronger appeal is when one considers canonical quantization of Einstein gravity�
While quantization in the connection formulation is "easier# than in the geometro
dynamical for

mulation it is still mathematically quite sophisticated and probably not very familiar� My aim in
this talk is to give a concise sketch of a generalization of the quantization prescription and some of
the recent developments in carrying out these steps in the Ashtekar formulation� I will indicate how
some physical operators are de�ned and �nally discuss how a semiclassical description is obtained�
For further details I will refer you to the literature cited at the end�

The talk is divided in �ve parts along the following lines�

�� A minimal introduction to the canonical formulation�s� �

�� Sketch of the steps in the �algebraic� quantization program�

�� Implementation of some of the steps and the current status�

�� Some Operators "weaves# and semiclassical picture�

�� Summary�

� Canonical Formulation�s��

That the Einstein equations can be interpreted in a Hamiltonian framework is well known eg� the
ADM formulation� This is "geometro
dynamics# and is summarised below ����

���



Geometro
dynamics
�variables�

& � Orientable compact �
manifold without boundary
qij � Riemannian metric on &

q � det�qij�

ij � symmetric tensor density of weight � on &


 � qij

ij

*r � metric connection de�ned by qij

� � locally coordinatised by �qij � 

ij�p  �

Ci � ��qij *rk

jk

C � �pq *R�qij�� �p
q �


ij
ij � �
�


��

Geometro
dynamics
Constraints

Ci � � vector constraint � di�eomorphisms of &�
C � � Scalar constraint �"evolution in & � R # �

C �N � R
�N

iCi "smeared# vector constraint �N arbitrary
CN � R

�
NC "smeared# scalar constraint N arbitrary

H�T � � C �N � CN The total Hamiltonian

Note� If & is noncompact �asymptotically �at� then there is an extra term in HT but for our
purposes it is not necessary�

The Constraint algebra

fC �N � C �Mg � �C �K � Ki � � �N 	 �r �M i � �M 	 �r �N i�

fC �N � CMg � �CK � K � � �N 	 �rM�
fCN � CMg � �C�L � Li � qij�N�jM �M�jN�

� refer to Minkowskian�Euclidean theory in the four dimensional sense�

Provided that qij � 

ij �s satisfy the constraints at t � � qij�t�� 


ij�t� can be shown to construct
a four dimensional space
time which solves the Einstein equations�

There is an alternative canonical formulation �rst discovered by Ashtekar ��� and elaborated
by Ashtekar and others ���� For convenience of presentation I will deviate from the historical path
and present instead a line of argument given by Bengtsson ����

With the hindsight of Ashtekar�s discovery one could ask�

���



Can one de�ne a set of "constraints# on the phase space of a non
abelian gauge theory such
that the constraints satisfy the same algebra as above� Further Can one show that this structure
can also be derived via a four dimensional action which is equivalent to the Einstein
Hilbert action
as far as the equations of motion are concerned�

The answer to both these questions is YES�

Connection
dynamics

& � as before

Aa
i � �
form on & taking values in a Lie algebra G

Ei
a � vector density on & taking values in the dual of G

i is a spatial index while a is an algebra index

F a
ij � �iA

a
j � �jA

a
i � fabcA

b
iA

c
j

� � locally coordinatised by Aa
i � E

i
a i�e� 

fAa
i � E

j
bgP�B� � �ji �

a
b �

��x� x��

Ga � �iE
ia � fabc Ac

iE
i
b� �"Gauss law#�

Vi � EjaFaij � �"Vector constraint#�

S � �
�f

ab
c Ei

aE
j
bF

c
ij � �"Scalar constraint#�

Impose these constraints on �� As before one de�nes the "smeared# form of these constraints�
Then it was shown by Bengtsson that the constraint algebra is the same �modulo the Gauss law
constraint� as that of geometro
dynamics provided

One chooses the Lie algebra to be that of SO�� for the Euclidean case and that of complexi�ed
SO�� for the Minkowskian case�

Note�

�a� The above constraint structure can be derived from the �
dimensional Palatini form of the
action

R
e � e � R���  with the spin connection restricted to �anti�self
dual part of the SO����

connection� �This also requires complexi�cation�����

�b� Complexi�cation requires the A�s and E�s to be complex valued to begin with� One there

fore deals with complex gravity�

To recover real gravity one must demand that certain combinations of A�s and E�s must be
real� These are the "Reality Conditions# � "Reality condition# look like further constraints� How
to incorporate these has been a major di�culty for the quantization program�

This is the formulation that we will concentrate on�

Note that in either formulations one is dealing with an in�nite dimensional constrained system�

Following Dirac one has two alternative routes to follow� Either use additional "gauge �xing#
constraints to get the reduced phase space �� use Dirac brackets and proceed with quantization
OR quantise with original phase space � and impose the constraints as operator equations on the
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Hilbert space to get to the "physical# Hilbert space�

Either are easily stated than implemented� Herein lies all the technical sophistication needed�
Ashtekar approach takes the second route�

Let me list a few technical problem that can and do arise�

a� Being an in�nite dimensional system one has to regulate various formal operators suggested
by the quantization prescription� This involves both the short distance singularities and the factor
ordering problems� When the constraints are non
polynomial as in the case of geometro
dynamics
these problems are too severe to handle� In the connection
dynamics formulation however the
constraints are low order polynomials �barring the "reality condition#� and there is chance that
regularisation issues can be handled�

b� Even after regularisation issues are tackled and one has successfully de�ned the operator
constraints the equation ,C j physi � � may admit NO solution in the original Hilbert space �i�e�
solution may be non
normalisable��

If this is so then one needs to modify the Dirac procedure to be able to construct a non

trivial decent physical Hilbert space� It is here the so called algebraic quantization ��� procedure
is adopted� As it may not be very familiar let me sketch brie�y the steps in the procedure�

� Algebraic Quantization Scheme�

In the following � denotes the phase space and Ci�s denote the �rst class constraints generically�

step �� Choose a subset S of the set of all complex valued smooth function on � such that
�i� S is large enough to allow any su�ciently regular function on � to be expressed as a sum of
products of its elements � �ii� S is closed under the Poisson brackets and also closed under complex
conjugation� �iii� elements of S are to have unambiguous quantum analogues�

In short elements of S should play the role played by the q�s and p�s when � � R�n�

step �� Associate to S an abstract free algebra Baux such that

F � -F � F � S �
� -F � -G� � i*h gfF�GgPB

Equip Baux with a complex conjugation operation such that if G � F � in S then -G � � -F ���
Denote Baux now as B

�
aux �

step �� Let Haux denote the Hilbert space on which B
�
aux is �
represented i�e� if

-F is represented

by operator ,F on Haux then d
�fF �� � ,F y

Haux is like the Hilbert space one would construct from the �� These intermediate steps are
needed when � is topologically complicated making it impossible to have global coordinates for ��
Hphy is to be constructed from Haux �usually a subspace��

step �� Let Ci denote the self adjoint operators representing the �rst class constraints �OR
their integrated versions�� Since these may not admit solutions in Haux one needs to generalise
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the procedure of constructing Hphy� One aims at seeking solutions of the operator constraints in
terms of "generalised eigenvectors#� This is done as follows�

a� Let % denote a suitable dense subspace of Haux� Let %
� denote its topological dual �i�e� the

vector space of continuous complex valued linear functions on % with a suitable di�erent topology
on Haux�� Typically % � Haux � %� � Hdual

aux � Haux� Thus % should be "small# enough to have
a "large# enough dual� Further ,Ci should act invariantly on %�

b� Apart from physical states one also wants to de�ne physical operators� Having chosen a
suitable % one de�nes a set of operators B�

phy which consists of those
,F which leave % invariant

commute with the constraint operators and so do the adjoints � ,F �y�

step �� Now one attempts to de�ne an anti
linear map � � %� %� such that ���� �� � %�

�i� � ,Ci�������� � ������ ,Ci��� � � �
�ii� ��������� � �����������

� � ���i���i� � � �

�iii� � ,A -����� � -�� ,A�� � -� � %� � � � � %

step �� The �nal step is to de�ne physical Hilbert space and operators�

Let Vphy be the span of �% � %� � De�ne a new inner product on Vphy as

h���� ���iphy � ��������� � �i � %

and de�ne Hphy to be the completion of Vphy�

Operators de�ned via

,A��%� � �� ,A%��

are actually densely de�ned �A � B�
phy and as such de�ne the physical operators

,Aphy�

This then is the quantization procedure� Note that Hphy is a subspace of the topological dual
%� and NOT of Haux�

There are several inputs needed� One has to choose S % and also restrict one to B�
phy to get

physical operators� The general scheme permits this freedom but does not single out any natural
choices� These are to be made in each physical context separately�

The connection
dynamical formulation actually allows one to carry out all these steps with
the exception of the scalar constraint� I will now sketch how these steps are carried out in the
connection
dynamical formulation �excluding the scalar constraint��

� Implementation of Quantization Scheme and current sta�
tus ����

The phase space� A priori the con�guration space is the space A of all gauge potentials Aa
i �s� The

Gauss law constraint expresses gauge invariance �excluding "large# gauge transformations one
could however promote the gauge group to include these "large# gauge transformations� � One
can "solve# the Gauss law constraint classically i�e� deal with con�guration space A�G the space
of equivalence classes of the gauge connections� This is done and then the phase space is de�ned
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to be�

� � cotangent bundle of A�G

The set S� For every closed curve � in & de�ne

U��s� t� � P exp R ��t�
��s�

A  for t � s � � the curve retraces

U��s� � U��s� s� ��

T� �A� � �
� tr U��s�

The trace is in the fundamental representation of SO���� The loop functions T� �s are s independent
and gauge invariant and thus are functions on A�G� De�ne

T i��� s��A�E� � �

�
trfU��s�Ei���s��g

For every strip /��� �� in &  � � ��� ��� � � ��	� 	� de�ne

T��A�E� �
Z
�

dsij	ijkT
k��� � ��

These strip functions are also gauge invariant� But since these involve the E�s �and A�s� these
are functions on ��

The T� �s and T��s constitute the elements of S� They form an overcomplete set i�e� there are
relations among them� The Poisson bracket algebra of these is also known ���� Thus at this stage we
have got the B�

aux as well� What we need now is a representation of this algebra on a suitable Haux�

To do this concentrate on the commutative subalgebra of the T� �s� These functions serve to
separate the points of A�G i�e� if two potentials are inequivalent then there exists atleast one loop
for which the corresponding T� �s are di�erent� This sub
algebra is the holonomy algebra and is
denoted by HA� If � is a trivial loop T� is � and is the identity element of the sub
algebra� De�ne
the norm�

kT�k � sup�A�A�G jT� �A�j

Completion of HA w�r�t� this norm gives us a commutative C
� algebra with identity HA �

Now one invokes the Gelfand
Naimark theorem which asserts that Every C	� algebra with iden	
tity is isomorphic to the C	� algebra of all continuous� bounded functions on a compact� Hausdor�
space� This space is called the spectrum of the algebra� Let us use the notation

A�G � spectrum�HA�

This suggestive notation is used because A�G is dense in the spectrum and thus the spectrum
can be thought of as the completion of A�G� What the theorem has enabled us to do is to have a
convenient model for the completed holonomy algebra� We have still to construct Haux�

The C
� algebra structure allows construction of its representations on Hilbert spaces� For
every cyclic representation of HA there is Borel measure � on A�G using which we get a Hilbert
space�

Haux � L��A�G� ���

���



Thus Haux consists of square integrable functions on the "quantum con�guration space# A�G�
The T� �s act multiplicatively and are bounded operators on Haux � The T� are linear in mo


mentum variables the E�s� So one expects T� to be represented by vector �elds on A�G� This
essentially turns out to be the case� Further the requirement of self
adjointness of T� picks out a
unique measure ��� At this stage the steps � through � are completed�

Now the further steps get too technical so I will be even more brief�

To incorporate the di�eomorphism constraint one considers its integrated form �group element
as opposed to Lie algebra element�� Consider the group Di��&� generated by complete analytic
vector �elds on &� One then uses the so called "group averaging# technique to construct di�

invariant states� �This requires the subsequent steps of the algebraic quantization��

The dense set % is to be chosen� This is provided by the so called "Cylindrical functions#
Cyl��A�G� �

The upshot is that excepting the implementation of the scalar constraint all the steps in the
quantization scheme are implemented� The scalar constraint also has bearing on the "reality con

ditions# necessary in the complexi�ed case �Minkowskian case�� The recent development regarding
"generalised Wick transform# indicates a possibility of handling this� Let me describe it brie�y�

Consider the Euclidean case� Suppose one could succeed in imposing the scalar constraint in
this case and �nd Hphy and Aphy � Suppose further that one could �nd a transformation taking one
from the Euclidean to the Minkowskian case� One can then attempt to de�ne the Minkowskian
solutions from the Euclidean ones� Recent works of Thiemann and Ashtekar �	 �� propose precisely
such a transformation�

The idea is to �nd a Poisson bracket preserving self map of the algebra of functions on the
phase space which will e�ect the crucial change of sign in the scalar constraint� Such a self map is
de�ned as�

f �� W��� � f where

W �t� � f �
X
n��

tn

n�
ff� Tgn

T � i



�

Z
�

Aa
iE

i
a

It follows that W �Ei
a � iEi

a�W �Aa
i � �iAa

i � This implies that the Gauss law and the vector
constraints are invariant while W � SE � �SL �

If one can complete the Euclidean case and if one could construct the quantum operator cor

responding to the classically de�ned W above then one could de�ne�

,SL � ,W � ,SE � ,W��

HMink
phy � ,WHEucl

phy

The simplicity of the classical expression for T suggests that this step may actually be carried
out� However this not yet done�

Let me emphasize�

The whole approach is conservative in the sense that one is following relatively non radical ex

tensions of the usual procedure of quantization� The approach is constructive with a combination
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of heuristics and technical sophistication �rigour�� This is necessitated in part by our ignorance
about phenomenology at the Planck scale� The only guide then is one�s biases and mathematical
existence� Only after this is done can one hope for uniqueness and make de�nitive predictions to
be confronted with experiments�

� Some operators� �weaves� and semiclassical picture �����

Okay so we have a state space of quantum gravity �modulo the scalar constraint�� How does our
intuition regarding geometry and classical gravity �t into this� This is tied with identifying some
physical operators whose expectation values could re�ect some classical geometrical picture� Let
me discuss this aspect now�

I will take as given that we do have a quantum theory incorporating the di�eomorphism con

straint� Although I have not discussed loop representation so far is the most convenient one ����
Thus physical wave functions are functions of di�
equivalence classes of loops in & i�e� �phy � ��
knot classes of loops in &�� The T� operators act multiplicatively on these ��s�

Consider the �
metric qij � Classically it is given by

�detq�qij � Ei
aE

ja�x�

This involves product of E�s at the same point and one needs to regulate it� Obvious method
is the gauge invariant point splitting� De�ne

T ij
� �x� x

�� � �
� tr �fU��x�� x�Ei�x��gfU��x� x��Ej�x�g�

x x� are the split points and � is a loop through them� The expression is gauge invariant
and in the limit � shrinks to the trivial loop �x � x�� T ij

� � qij � In the loop representation the

corresponding ,T ij can be de�ned and these are taken as a de�nition of ,qij � Using this ,T ij one
de�nes two operators whose classical expressions are�

Q��� �

Z q
qij�i�j

where � is any smooth �
form with compact support

AS � lim
N��

NX
n��

Aapprox
n � where�

Aapprox
n � ��

�

�Z
Sn

d��jk	ijk�x�

Z
Sn

d��j
�k�	i�j�k��x

��T ii��x� x��
����

Here a two dimensional surface S is broken up into N surface elements Sn� In both these
expressions we have qij and T ij

� for which we have well de�ned quantum de�nitions�

These two operators act multiplicatively�

,Q����j�����i � �l�P

I
�

+�i�i� j����i

,AS j����i � �
l�P
�

I�S� ��� j����i

Here lP is the Planck length and I�S�� is the unoriented intersection number between S and
�� In other words each loop contributes half the Planck area to any surface it intersects� Clearly
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the spectrum of the area operator ,AS is discrete� Using these operators one identi�es the so called
"weave states# ����

The idea of weave states is that these are supposed to be quantum states which "semi

classically# "approximate# a given �
geometry� Here "semiclassical# means in the limit *h � �
or lP � �� "Approximation# is meant to be the following�

Both operators de�ned above are multiplicative� The approximation means that on weaves
their eigenvalues should equal the corresponding classical values to leading order in lP �L with L
a length scale provided by the classical quantities i�e�

Let hij be a given classical metric on &� A given surface S has an area as computed from this

metric� Its square root provides a length L� In ,Q��� the �
form � is supposed to vary slowly over
this length scale�

The result is that there is a speci�c procedure to construct weave states� These states ����
are such that on an average only one line cuts every surface element whose area as measured by
hij is one Planck area� However such states are not unique�

This undoubtedly looks like an unconventional way of thinking of semiclassical approximation�
This is because at the quantum level we seem to have wave functions of knot classes of loops in
& rather that any sharp geometry� If classical picture is to emerge in an approximate way then
we need one more scale other that the Planck scale� This additional length scale is supposed to
be provided by an auxilliary geometry� One can then only ask if at a given coarse graining one
can have expectation values of quantum operators to match with the values expected�obtained
from the auxilliary geometry� This is precisely what is attempted in the construction of weaves�
�This is not as outlandish as it may appear if one notes that the quantum framework it self does
not need any geometrical input but its interpretation 3system vs apparatus3 does need at least a
length scale� �

I have only touched upon the idea of weaves� For further details please consult references�

� Summary�

�� For real A�s and E�s quantization steps including the di�eomorphism but excluding the scalar
constraints can be carried out� The arena for quantum states at the kinematical level �Haux�
is the Hilbert space L��A�G� ����

�� The scalar constraint even for the Euclidean case is not yet handled satisfactorily� But if it
could be then the generalised Wick transform provides another strategy of incorporating the
"Reality conditions#�

�� A few quantum operators are well de�ned via the loop representation and have a purely
discrete spectrum�

�� Treating the scalar constraint formally one has a class of solutions of all the quantum con

straints� These are functions of knot classes of loops on & and have support only on simple
loops� This is an in�nite set�

�� Semiclassical states weaves can be constructed which approximate a given �
geometry with
coarse graining provided by the geometry�

�� & is a crucial ingredient in this approach� How to handle a variety of &�s �in the sense of
"topology changing processes# � is not adequately developed�
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Einstein�s theory of course does not stipulate the type �species etc� of matter constituting
the physical world� Some suitable theory of the "matter sector# which will mesh with the above
approach will clearly be needed to complete the picture�
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Some times Thomas Hardy has been compared to Dostoevski� but Dostoevski is an
incomparably �ner artist� If Dostoevski�s works could be compared to some of say� Rubens�
paintings� then Hardy�s are neatly �nished diagrams drawn on graph paper with ruler and
compass� Compare for instance the tragedy to Tess with that of Sonia� or the culmination
of the forces in Raskolniko��s confession with the melodramatic ending of �Return of the
Native�� �Crime and Punishment� is more superb in its conception than even Hugo�s �Les
Mis�erables�� Great as is the tragedy of Raskolniko�� greater still is the tragedy of Sonia�
She reminds us of Fantine when poverty and starvation forces her to a prostitute�s life� of
Ophelia in her tragic devotion of Hamlet� of Cosette in her simplicity� but to whom could
we compare her when� for instance� she reads out the resurrection of Lazarus to her lover�
Dostoevski himself characterizes her most delicately in the words of Raskolniko� as he threw
himself at her feet� �I do not bow to you personally� but to the su�ering humanity in your
person��

� S� CHANDRASEKHAR



� Introduction

At the moment quantisation of gravity called "Quantum gravity# for short appears to be the last
frontier in Physics� This problem has proved to be formidable both conceptually and technically�
At the core of these di�culties has been the fact that the dynamical degrees of freedom here are
space time geometries� It is believed by many that several di�culties in the structure of physics
like the singularities �space
time� of classical general Relativity theory as well as the in�nities
of relativistic quantum �eld theories would be resolved with a successful quantisation of gravity�
Though some may even question the need for quantising gravity the widespread perception is that
lack of progress in quantum gravity represents a major void in our understanding of nature�

Currently many apparently diverse approaches to this problem have surfaced� For example there
are the spin
� graviton theories built around an underlying �at space where e�ects conventionally
ascribed to the curvature of space
time are sought to be explained as dynamical manifestations
of the spin
� quanta� Classically these theories have been shown to account for all the e�ects
predicted on the basis of general theory of relativity as long as the gravitational �elds are not
too strong or are such as to change the topology of space
time as in the case of black holes
for example� Quantisation is realised only perturbatively� A more satisfactory but essentially
equivalent formulation consists in quantising the Einstein
Hilbert action around a �xed �usually
�at� background� Here too quantisation can be achieved only perturbatively� An important aspect
in which perturbative quantum gravity di�ers from other successful quantum �eld theories like
QED QCD is in the lack of renormalisability� Nevertheless a regularised version of the quantum
theory exists which is identical as a formalism to other regularised quantum gauge �eld theories�

Though QG based on the Einstein
Hilbert action is non
renormalisable in d � � the renor

malisability "improves# in the sense that non
renormalisable counter terms begin to appear only
at higher and higher orders of perturbation theory by the inclusion of appropriate matter with
enhanced symmetries called "supersymmetry#� Of all such supergravity theories the so called
N � 	 theory is remarkable in many respects� Apart from possible nonrenormalisability appearing
only at seven loops the matter content of these theories is uniquely �xed making them attractive
choices not only for QG but also for the uni�cation of all fundamental forces� However here too
quantisation can only be realised perturbatively�

The fact that perturbative schemes for quantum gravity pre
select a background metric around
which the �uctuations are quantised makes them rather unattractive even though they may have
validity in some limited domain� The earliest approach the canonical quantisation avoided this
pit fall� However the technical di�culties of implementing this scheme are rather well known� In a
nutshell the theory is seen to be a constrained system with the added di�culty that the solution of
the constraints needs the solution to the dynamics itself� Also the constraints are highly nonlinear
and nonpolynomial� A great ray of hope in this direction is the reformulation in terms of Ashtekar
variables wherein not only do the constraints become polynomial but the metric itself becomes a
secondary object� The approach also promises to open new vistas as far as nonperturbative issues
are concerned�

Finally mention has to be made of approaches to quantum gravity based on string theory� As
is well known consistency with conformal invariance of the two dimensional world sheet theory
automatically incorporates spin
� gravitons with the added bonus that �perturbative� quantum
gravity is �nite in this approach� Still a satisfactory non perturbative approach is lacking� One
has to await further progress in string �eld theory�

The main theme of my talk today is some recent progress made in understanding some nonper

turbative features of QG by using numerical simulations which I have termed "Quantum gravity
on computers# in a lighter vein� The literature on even this recent development is enormous and I
shall not attempt to give a full bibliographical account of this fascinating area� Instead I shall give
a few key references from which the interested reader can construct a "path of understanding#�

Though recourse is made to numerics in this approach it is derived from the �nest analytical
ingredients from simplicial topology geometry statistical mechanics etc� Before discussing the
details of the numerical simulations of quantum gravity it is worthwhile understanding how the
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concepts work when applied to quantum �eld theories in �at space
time� There are essentially two
approaches to such conventional quantum �eld theories � a� the Hamiltonian approach where the
dynamical variables at each space point at a given instant of time are operators acting on a huge
Hilbert space a basis for which is the well known Fock space� The short distance behaviour of the
product of �eld operators is singular

��x� ��x� 	� � �

	�
O � � � � � � � ���

which is a re�ection of the ultraviolet divergences inherent in quantum �eld theories owing to the
in�nitely many degrees of freedom�

The major technical problem of the Hamiltonian formalism is the careful treatment of such sin

gular operator products while maintaining the basic structure of the �eld theory like its symmetries
etc�

The other approach is the so called Path Integral approach� To appreciate this approach consider
the quantum mechanical description of a particle� Though the trajectory of a particle has no
meaning in quantum theory in the path integral approach one considers the space of all possible
paths and assigns to each path a weight factor �in fact a phase factor� eiS�X�t�� where S�X�t�� is
the classical action evaluated for the path X�t�� Then one forms the path integral

K�x�� t��x�� t�� �

Z
DX eiS�X� ���

where DX is a measure �the Wiener measure� for the sum over all paths� This approach can also
be called the "sum over histories# approach� Every quantity that appears in the above equation
is a so called c
number and the use of mathematically subtle operators is circumvented� However
the price one has to pay for this is the care required in constructing the measure DX � As shown
by Feynman this approach is mathematically equivalent to the Hamiltonian �or Schr'odinger�
approach at least when the con�guration space is topologically trivial� The translation to the
Schr'odinger approach is codi�ed by the spectral representation for the Kernel K�x�� t��x�� t��

K�x�� t��x�� t�� �
X
n

��n�x�� t���n�x�� t�� ���

A generalisation of this construction for the case of quantum �eld theory consists of replacing
DX by D� the measure for summing over all "histories of �eld con�gurations# and S�X� by
S��� the action
functional for the particular history of �eld con�guration ��x� t�� The major
technical problem one faces now is the construction of a meaningful measure D� which is an
in�nite dimensional analog of the Wiener measure� Even if one were to succeed in �nding such a
measure the technical problem of giving a meaning to the functional integral

Z �

Z
D� eiS�� ���

still remains because of the oscillatory nature of the integrand� This can be overcome by the so
called Euclideanisation�

t� iXE
	 iS���� �iSE��� ���

As established by Schwinger Wightman Osterwalder Schrader and others there is an unique
extrapolation from the results of euclidean �eld theory to those of Minkowski �eld theory at least
when the topology of spacetime is trivial� For most quantum �eld theories of interest on �at
space
time it follows that

SE��� � � ���

so that the bothersome oscillatory factor has really been made into a damping factor� In fact it
appears that as long as the Hamiltonian of the theory is bounded from below the euclidean action
is positive semi
de�nite�
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A notable exception to this is gravity� The euclideanised action here is

SE �

Z p
gRE ���

and clearly the scalar curvature of a euclidean manifold need not be positive semi
de�nite� We will
have more to say on this later on�

Finally the measure D� is made meaningful by discretising the euclidean space
time�

D� �  xd�x �	�

Now derivatives of �elds in the continuum have to be approximated by �nite di�erences for
example

��� � ���x � ���x � a�e���

a
���

where a is the lattice spacing�
With these modi�cations the generating functional Z of the quantum �eld theory becomes

Z �

Z
 id�i e

�S�fig� ����

and in this form is indistinguishable from the partition function of a classical statistical system in
d�� spatial dimensions where d is the spatial dimensionality of the quantum �eld theory problem�
This exact mapping of quantum �eld theory onto a classical statistical mechanical problem is at
the heart of the numerical simulations to probe the non perturbative aspects of quantum �eld
theory�

Clearly there are many choices of discrete lattices one could consider like hypercubic lattice
triangular lattice and even a random lattice� And for each such choice there are again many
ways of approximating a derivative by a �nite di�erence� Intuitively it appears reasonable that in
the continuum limit all these di�erences in choice should become irrelevant� In fact if one were
to simply take the limit of the lattice spacing a to zero in all the mathematical expressions of
the discretised theory one would recover the formal expressions of the continuous theory� This is
called the �naive continuum� limit� It is a naive limiting procedure because the resulting continuum
expressions are not mathematically well de�ned� But it turns out that the lattice theory a�ords
a much more subtle and meaningful limiting procedure� To appreciate this note that as the
lattice spacing a tends to zero physically measurable length scales like Compton wavelengths of
particles etc must remain �nite� That is the ratio of the physical length scale lph to a actually
diverges� By scaling all dimensionful quantities Q with appropriate powers of a to make them
dimensionless QL �for example mL � m�a� areaL � area�a�� etc� the partition function Z can
the rewritten entirely in terms of the dimensionless quantities except for an irrelevant factor� The
quantity lpha

�� precisely corresponds to one of the many correlation lengths� Thus we see that
the requirement for the existence of a continuum limit is that the classical statistical system onto
which the quantum �eld theory has been mapped must be such that at least one of its correlation
lengths diverges� But this is precisely the criterion for a statistical system to have a second or
higher order �as distinguished from a �rst order� phase transition� Now the recipe for �nding the
true as opposed to the naive continuum limit is clear � treat the parameters of the quantum �eld
theory like coupling constants masses �suitably scaled to make them dimensionless� as parameters
of a classical statistical system �temperature concentration magnetic �eld etc� and tune them
till second order phase transition points �critical� are reached� At each of these critical points
a continuum theory can be de�ned as follows � suppose that as the parameters are tuned to a
particular set of critical values the correlation function � diverges as

� � �c�f�g� where �c�f�cg� � � ����

and let O be an observable of mass dimensionality d then O will survive the continuum limit if
and only if

O � ��dc as f�g � f�cg � ����
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This is called correlation length scaling� In particular if there are two observables O� and O�

of the same mass dimensionality surviving the continuum limit

O�

O�
� c��nite number� as f�g � f�cg ����

It is only the set of �nite limits fcg that represents the observable content of the continuum theory�
It is quite clear now that the "statistical continuum limit# provides much richer possibilities

than the process of naive continuum limit� For one thing the classical statistical system equivalent
to the quantum �eld theory could have many critical points and at each of those critical points one
could de�ne a continuum theory� Even at the same critical point in principle one could have several
distinct sets of correlation lengths such that all correlation lengths belonging to a given set have
the same scaling behaviour� In such a case each of the distinct sets can de�ne a continuum limit
resulting in inequivalent continuum limits at the same critical point� This would be a statistical
mechanical realisation of inequivalent quantisations� That such a possibility can indeed happen is
evidenced in the case of the three dimensional compact quantum electrodynamics on the lattice
where three distinct continuum limits can be de�ned at the same critical point corresponding to
�xed string tension �xed mass gap or the free massless photon phase�

� Numerical Simulation of Statistical Systems

There are many techniques for numerical simulation of statistical systems chief among them being i�
microcanonical simulations and ii� canonical simulations� Simulations are some times also based on
the grand canonical ensemble� The essence of the numerical simulations is to generate an ensemble
of con�gurations and perform the so called �importance sampling� according to which a suitable
selection procedure is adopted such that con�gurations that dominate the partition function are
randomly generated�

The Monte Carlo simulation of this system consists of choosing an initial con�guration and a
so called move �update�
 that yields another con�guration for each initial con�guration� Denoting
a move that takes the con�guration c� to c� by W �c� � c�� there are various restrictions on
W �c� � c�� if the Monte Carlo simulation is to be reliable�

i� given a con�guration c� all con�gurations of the system must be eventually reachable by a
sequence of moves� This property is called "ergodicity#� If this property is not satis�ed parts of
the con�guration space are never sampled�

ii� since W �c� � c�� represents the probability of getting the con�guration c� starting from the
con�guration c� the following must hold �X

c�

W �c� � c�� � � ����

X
c�

W �c� � c�� � � ����

Given the above two properties it follows from an application of the Frobenius
Perron theorem
thatW viewed as a matrix has maximum eigenvalue of unity and the eigenfunction corresponding
to this largest eigenvalue is the equilibrium distribution Peq�C�� That isX

c�

W �c� � c��Peq�c�� � Peq�c�� ����

It then follows that any initial ensemble of con�gurations eventually evolves into the equilib

rium ensemble distribution Peq�c�� How quickly the initial ensemble evolves into the equilibrium
ensemble distribution depends inversely on the gap between the largest eigenvalue of unity and the
next largest eigenvalue�
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In principle any W �c� � c�� that satis�es these requirements should result in a reliable Monte
Carlo simulation of the system� In practice however an additional requirement is made onW �c� �
c�� called the property of "detailed balance#� This requirement is

Peq�c�W �c� c�� � Peq�c
�� W �c� � c� ����

There are two obvious solutions to the requirement of detailed balance � i� heat bath � W �c�
c�� � Peq�c

�� irrespective of c� ii� Metropolis � if we write Peq�c� as e�S�c� the metropolis algorithm
for going from a con�guration c to c� is as follows � Pick the con�guration c� randomly at �rst � if
S�c�� is less than S�c� accept the con�guration c� as the �nal con�guration� If on the other hand
if S�c�� is greater than S�c� accept c� with the probability P e�S�c

���
Thus a practical implementation of the Monte Carlo simulation starts with an initial con�gu


ration on which one applies a sequence of moves� Two extremes for the initial con�guration are
the so called cold and hot starts� In the cold start the dynamical degree of freedom takes the same
value at each lattice site while in the hot start the dynamical degree of freedom takes completely
random values at the lattice sites� After applying the moves a number of times one monitors the
approach to thermal equilibrium by measuring some observable� The onset of thermal equilibrium
is heralded by the constancy of the average �local� of the observable with �uctuations following
the characteristics of thermal �uctuations� The constant average value should be independent of
the initial con�guration one started with�

Once thermal equilibrium has been reached one again generates a sequence of con�gurations
by making sweeps of moves throughout the lattice and computes the average values of various
observables� The estimation of the statistical errors is subtle as there is no a priori guarantee that
the sequence of con�gurations used for making measurements are statistically independent� The
degree of statistical independence of subsequent con�gurations is estimated by the "autocorrelation
time# � � Essentially � is also the time scale that governs the speed with which the system reaches
equilibrium �time in Monte Carlo simulations is simply the total number of sweeps carried out on
the initial con�guration�� A practical way of estimating the autocorrelation time is by measuring
the so called "integrated autocorrelation time#� First one measures the autocorrelation function
for some observable O

A�T � �
 O�t�O�t � T � � �  O�t� ��

 O��t� � �  O�t� ��
��	�

The integrated autocorrelation time is given by

�int �
�

�
� �

�X
T ���

A�T �� ����

In practice a lot of care has to be exercised in employing this method� Because of inherent
noise A�T � for large T only goes to a constant rather than vanishing exponentially� Because of
this a naive application of the method yields diverging �int� Experience has shown that cutting
o� T � � ��int gives reliable estimates� It is fair to say that understanding autocorrelation times is
more an art than a science� If the autocorrelation time is �  then in a sequence of N sweeps only
N�� are statistically independent�

Since the continuum limit resides only at the critical point where the correlation lengths
diverge autocorrelation times register dramatic increase� This is quanti�ed by so called �dynamic
critical exponent� � � Lzwhere L is the system size� O� criticality z � � while at criticality z � ��
Thus as we go to larger and larger systems to avoid �nite size e�ects the autocorrelation times
at criticality become L� times autocorrelation times o� criticality which are of order unity� Thus
to improve statistical accuracy one would need unrealistically large computer resources� Special
algorithms are needed that drastically reduce the dynamic critical exponent z� Examples of such
algorithms are the cluster algorithm multigrid algorithm etc� In terms of the eigenvalue spectrum
associated with W ��c � c�� what happens as we approach criticality is that the second largest
eigenvalue begins to approach the largest eigenvalue ���� This means that the thermalisation times
also become very large�
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In addition to the autocorrelation e�ects e�ects of �nite size often have a critical bearing on
the reliability of the results�

� Quantum gravity

The dynamical degrees of freedom for the gravitational system are the metric components with the
restriction that two metrics that are related to each other by a general coordinate transformation
are to be identi�ed as the same metric� Of course when Fermionic matter is coupled to gravity the
appropriate degrees of freedom are the Vierbeins �in d � �� or tetrads now with the restriction that
two tetrads related by either general coordinate transformation or local Lorentz transformation are
to be regarded as being physically equivalent� In the present discussion we shall restrict attention
to gravitational systems with utmost bosonic matter�

The relevant functional integral is

Z �

Z
Dge�S�g� ����

where S�g� is some general coordinate invariant action and has the form

S�g� � �

Z
dv � �

Z
REdv � �

Z
R�vR

�vdv � � � � ����

dv being the scalar volume element �
p
gdnx�� The Einstein
Hilbert action corresponds to only

having the second term� Thus quantising general relativity would correspond to dealing with

Z �

Z
Dge��

R
dvRE ����

Unlike the �at space quantum �eld theories discussed earlier the euclideanised action now
is not positive de�nite because even for euclidean manifolds the scalar curvature can have any
sign� There has been a variety of responses to this situation� Some of these are motivated by the
observation that this instability can essentially be attributed to the so called conformal mode� To
understand this consider some �ducial metric g such that the scalar curvature is positive� Then
a metric g can be found that is related to g by a conformal factor g

� � eg such that the scalar
curvature corresponding to g� is negative� In this manner the lack of positive semi
de�niteness of
the Einstein
Hilbert action can be seen to be solely due to the action of the conformal mode whose
kinetic term has the wrong sign�

Some of the suggestions made to overcome this situation are � i� throw away the conformal
mode altogether ii� rotate the conformal mode into purely imaginary values thereby making the
kinetic term of the rotated mode of the right sign� But both these change the theory so it is not
clear that it is general relativity that one is quantising� Another tantalising suggestion made by
Greensite is to "stabilise# the action� In e�ect this amounts to a non perturbative modi�cation
of the theory whose perturbative content is exactly the same as that of the original theory� But
here too one is changing the theory�

Whether the unboundedness of the action is really a sickness that ought to be cured by mod

ifying the theory or a feature essential to the physics of quantum gravity is something that we
are yet to �nd out� Some have argued that though the action is bounded the entropy factor
could overcome this� For this to happen the entropy of con�gurations with large negative scalar
curvature has to become very small� I do not see how this is possible as one can always �nd a
conformal factor for every positive scalar curvature con�guration that would map it to a negative
scalar curvature con�guration� In d � � the unboundedness problem does not exist as

R p
gR is

the Euler characteristic of the manifold�
With these provisos we de�ne the problem of quantum gravity to be eqn����� To carry out

numerical simulations of this problem we need a discretisation that still keeps the geometrical
essence of the problem�
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In analogy with QFT on �at spacetime one could attempt a discretisation that would consider
g�
 at discrete lattice points as the basic variables� Already in the case of non
Abelian gauge
theories on �at space
time such a naive discretisation is incompatible with any discrete version
of the non
Abelian gauge transformation� It is well known that gravity theory has many essential
features of a non
Abelian gauge theory and consequently one expects the same kind of di�culties in
implementing any discrete version of general covariance� In the case of �at spacetime non
Abelian
gauge theories discretisation compatible with gauge invariance is achieved by constructing the
action out of elements of the holonomy of the Yang
Mills connection around closed loops of the
discretised manifold� Often the holonomy group elements are composed of elementary group
elements called "Link# variables� Such a formulation of discretised quantum gravity is certainly
possible� But here we shall follow a path to discretisation that is very elegant and intrinsically
geometric� Further there is a whole body of very powerful analytical work related to it that
would be indispensable to both the implementation and the subsequent interpretation of numerical
simulations�

��� Geometric discretisation 
 Simplicial decomposition

The spirit behind this approach is that any manifold can be approximated with "arbitrary accu

racy# by a so called simplicial manifold� A d
dimensional simplicial manifold is a collection of
d
simplices glued along the d� � dimensional boundary simplices�

Some simplices are shown in the next �gure �

1 - Simplex0 - Simplex

2 - Simplex 3 - Simplex

Figure �� Some d 
 Simplices

A d
dimensional simplex has as its boundary �d � �� sub simplices of dimensionality d � ��
As David has pointed out there are certain subtleties about gluing simplices to get a simplicial
manifold� This is illustrated by the following example �

Consider the tetrahedron UNWSED and join EW� Then make the following �
simplicial identi

�cations � UWS � UEN UNW � UES DNW � DES DWS � DEN� What one gets this way is
a two dimensional simplicial complex where �
simplices are glued to each other along �
simplices
�edges�� Nevertheless this simplicial complex is not a simplicial manifold because the neighbour

hood of every vertex does not have the same topology� In fact the boundary of the neighbourhood
of U and D is T� and not S�� Thus one has to subject the simplicial complex to a "manifold test#�

An example of a two dimensional simplicial manifold is given in the next �gure� The simplicial
decomposition of manifolds can be used to two rather di�erent approaches to discretised quantum
gravity� These are � i� Regge calculus and ii� dynamical triangulation �DTR��
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Figure �� A simplicial complex which is not a simplicial manifold

Figure �� A simplicial complex which is a simplicial manifold

����� Regge calculus

In this approach one �xes the incidence number for each vertex �which for the two
dimensional
example considered in �gure � is simply the number of neighbours of each vertex�� The length of
each edge is considered as a dynamical variable and curvature is measured via de�cit angles�

L1

L2

L3

L4

L5
L6 L7

L8

L9

Figure �� A Regge calculus con�guration

The quantum gravity functional integral is now replaced byZ
Dg �

Z �
dli
f�li�


����

f�li� is the measure� As is well known the issue of the functional measure in quantum gravity
is still not very well understood� In quantum Regge calculus this issue of the measure is further
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complicated by the fact that �in�nitely� many di�erent edge length con�gurations correspond to the
same physical manifold� This is most easily demonstrated by the example of the two dimensional
�at manifold for which in�nitely many Regge discretisations are possible� Starting with any given
edge length con�guration one can generate all the rest by simply moving the vertices around while
maintaining the various triangle
like identities� In fact this example can be generalised to the case
of any maximally symmetric space�

Numerical simulations based on Regge calculus in the case of two dimensional quantum gravity
has recently been criticised for its inability to reproduce known analytical results for the so called
"string susceptibility# �see discussions later in the text� for quantum gravity coupled to conformal
matter� On the other hand Kawai and his coworkers have shown that some of the universal features
like loop length distributions are correctly reproduced by Regge calculus method� As remarked
earlier the correct measure has not been identi�ed and this could be at the heart of the matter�
Resolution of these issues is clearly an important task for the future� For the rest of the talk I
shall mainly emphasise the DTR approach�

����� Dynamical Triangulation 
DTR�

In this approach all simplices are taken to be equilateral i�e� the edge lengths are all the same� The
interior and the boundaries of all simplices and sub simplices as in the case of Regge calculus are
considered to be �at� The manifold one gets is so called "piecewise linear#� Nontrivial curvature
is produced by letting the incidence number �uctuate dynamically� The functional integral over
metrics is replaced by a summation over triangulations with some measure �Z

Dg �
X
T

�

cT
����

Again there is no guiding principle to determine the measure CT � nevertheless results have not
shown any sensitive dependence on CT � Also the DTR simulations in d � � case have reproduced
many of the exact analytical results�

��� Sum over topologies

In both these approaches the issue of the topology of the manifold has to be addressed� Here
again there does not appear to be any guiding principle at present� In the case of string theory
represented as two dimensional quantum gravity coupled to matter a sum over all topologies is
mandatory� If on the other hand one wishes to investigate some statistical mechanical system on
a manifold with �xed topology but �uctuating metric then one would not sum over topologies�
With this in mind the relevant functional integral will be taken to be either with a �xed topology
or summed over di�erent topologies with appropriate weight factors as the case may be�

��� Alexander Moves �updates�

With the understanding that the quantum gravity functional integral is to be replaced by a sum
over all possible simplicial decompositions �also called "triangulation# from now onwards� we
need to specify a move or an update that would take one triangulation to another� The so called
"Alexander moves# provide the answer� The issue of ergodicity will be discussed shortly�

The Alexander move �ij� x� is de�ned as follows� take any link �ij� of the complex� Insert
a new site x in the interior of �ij� and divide up the simplexes which contain �ij� into twice as
many simplices half of which replace i by x and half of which replace j by x� The inverse of this
Alexander move is de�ned accordingly� We illustrate the Alexander move in two dimensions in the
next �gure�

A related concept is that of �k� l�d moves which are de�ned as follows� consider a �d��� 
 simplex
Sd� whose boundary is the collection

P
d of d
simplices� Now partition

P
d into collections

P
��
P

�

such that
P

� �
P

� �
P

d and
P

� �
P

� � �� Since
P

d is the boundary of Sd��
P

d � �Sd��

���



Figure �� An Alexander move in two dimensions

the boundaries of
P

� and
P

� are the same but with opposite orientation� This follows from the
deeper result that the "boundary of a boundary is zero# ��

P
d � ��Sd� � �� �

P
� � ��

P
���

If
P

� has k d
simplices and
P

� has l d
simplices k � � � d � �� The move �k� ��d amounts to
replacing k simplices of

P
� by l simplices of

P
�� The volume of the d
dimensional simplicial

manifold is the total number of d
simplices in it � thus the �k� l�d move leads to the volume change
�V � l � k� The maximum possible change of volume is d�

Let us illustrate the �k� l�d moves by a �
dimensional example� So we need to start with a
�
simplex which is a tetrahedron�

A

B C

D

Figure ��

The boundary of the tetrahedron ABCD is spanned by the triangles ��
simplices� ABD BDC
DCA ABC� thus X

d

� fABD�BDC�DCA�ABCg ����

The inequivalent partitions of
P

d we should consider are a� into ��� b� into ���� In the
latter case the move leads to no change in volume�
a� �� � �
Let

P
� � ABD �

P
� � fBDC�DCA�ABCg

�
P

� � loop �A�B�D�� �
P

� � loop �A�B�D� with opposite orientation�
Move � � � is to start with ABD erect the �
simplex ABCD on ABD as base and remove

ABD leading to a �
manifold �nally� This move corresponds to �V � � and an increase in the
number of vertices by ��

The inverse of this move is to locate a vertex with coordination number � �say D� remove the
� triangles incident at D leaving a gap which is �lled by adding the triangle ABD�

b� �� � �
This can be accomplished by say the partition

&� � fABD�ABCg � &� � fBDC�ADCg ����

�&� � fAD�DB�BC�CAg � �&� � ��&� ����
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Figure �� � � � move in two dimensions

� The Dual Picture

It is often useful to introduce the dual of a simplicial manifold� Suppose we are working in D
dimensions and have a simplicial manifold approximating the manifold� The simplicial manifold is
obtained by gluing together D
simplices along the �D
��
dimensional boundary simplices� Each of
the �D
��
dimensional boundary simplices has �D
��
dimensional simplices as its boundary and so
on� The �
simplices are the vertices or sites of the discretised manifold�

The manifold dual to this is constructed as follows � to each p 
simplex of the original manifold
a �D
p�
simplex of the Dual manifold is associated� If in the original manifold two D
simplices
V �
D and V �

D are connected along the �D
��
simplex V ��
D�� in the dual manifold the �
simplices

�Vertices� corresponding to them will be connected by a �
simplex �edge� that is dual to V ��
D���

This is illustrated below by a �
dimensional example where the original edges are shown by bold
lines and the dual edges in dotted lines �

Figure 	�

It is clear that the incidence number of the dual graph is exactly �D����
The �k� l�d moves get increasingly more complex as we go to higher and higher dimensions� For

���



example in d � � the possible moves are �

Figure ��

Figure ���

These moves can be represented in a transparent manner in terms of the change in the connec

tivity of the dual graph� For example the ���� move in �
dimensions �the triangles are numbered�

1 2

3

5

4

6

1
2

3 4

5 6

Figure ���

has the dual representation�
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1 3

2 4

5

6

Figure ���

Likewise the ���� move

Figure ���

has the dual representation�

Figure ���

The advantage of representing the �k� l�d moves by their dual representation becomes noticeable
in higher dimensions� For example in d�� the ���� move which is quite clumsy to be represented
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in terms of the original simplices has the dual representation�

1
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Figure ���

� Ergodicity

For the �k� l�d moves to be useful in the Monte Carlo simulations of Quantum Gravity through the
simplicial decompositions it is necessary that they are ergodic i�e starting with some triangulation
it should be possible to reach any arbitrary triangulation through a sequence of �k� l�d moves�

For this purpose one introduces the ideas of "Alexander equivalence # and "Combinatorial
equivalence# of simplicial manifolds� Two simplicial manifolds are said to be Alexander equivalent
if one can go from one of them to the other through a sequence of Alexander moves� On the
other hand two simplicial decompositions are said to be combinatorially equivalent if they have a
common subdivision� Now two important theorems will be stated without proof�

a� Alexander moves and �k� l�d moves are equivalent for d � �� for d � � the proof requires
some additional technical assumptions�"d� �
spheres are local constructive#�

b� two simplicial complexes are Alexander equivalent i� they are combinatorially equivalent�
One of the corollaries of the last statement is that any complex combinatorially equivalent to

a simplicial manifold is itself a simplicial manifold�
Combining these two theorems one concludes that in d � � the �k� l�d moves are ergodic in the

space of combinatorially equivalent simplicial manifolds�

��� Computational Ergodicity

There are a class of so called "computationally non
recognisable# simplicial manifolds in the sense
that there is no algorithm to recognise them� For triangulations of such manifolds it can be shown
that if the number of four simplices N	 of two triangulations T� and T� are bounded by N the
number of steps in a �nite algorithm to get from T� to T� cannot be bounded by a recursive
de�nable function �examples of recursive de�nable functions are N �N �N ����� This for all practical
purposes is a breakdown of ergodicity� But in simulations performed so far this has not caused any
problems but is potentially worrisome�

� Action

Now that we have introduced a discretisation and a set of moves to go from one discretisation to
another we have to introduce the discrete analog of actions� Some typical actions that are general
coordinate invariant are�
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S �

Z p
g��R� �R� � ��R�

�R �/� �������� ��	�

In two dimensions
R p

gR is a topological invariant the Euler characteristic and its only e�ect is to
give a weight factor depending on topology� Also

R p
g is the volume of the manifold and in the

context of DTR is simply the number of triangles� Therefore for microcanonical simulations��xed
area� neither of the two terms is relevant for �xed topology simulations of random surfaces with no
matter couplings� This means every con�guration is equally weighted� The other terms in eqn��	�
can also serve as invariant observables� To construct the discrete analogs of these terms one uses
for example

R � �

��� qi�

qi

p
g � qi�� ����

In more than two dimensions all these terms are important as candidate actions� One can also
think of the number of various p
simplices Np as dynamical variables� However not all these are
independent� For example in two dimensions N� � �N���� In four dimensions one can choose N�

and N	 as independent and a candidate action for discretised quantum gravity is

S � ��N� � ��N	 ����

��� Two dimensional case

We shall give a very detailed account of the simulations in two dimensions as this is a very important
testing ground by virtue of the availability of many di�erent formulations as well as of exact
analytical results� Before that it is instructive to consider some important aspects of the di�erent
analytical approaches available� First let us consider the formulation according to Polyakov as
well as some of the exact analytical results due to Polyakov Knizhnik and Zamolodchikov�KPZ�
on the one hand and due to David Distler and Kawai �DDK� on the other� The object of interest
is

Z �

Z
DgXDge�

R
��X��X

p
gg�� ����

In the above equation �� � take values �����d where d is the dimensionality of the Euclidean space
in which the two dimensional surface is embedded� d has also the interpretation of the total central
charge of the matter coupled to d � � quantum gravity�

This model was solved exactly by Polyakov in the so called light
cone gauge and these exact
results were subsequently extended by KPZ to essentially derive all correlation functions and hence
various critical exponents� It was found that the model was well de�ned only for d � � or d � ���

Of particular interest is the so called "�xed area partition function# Z�A� de�ned as

Z�A� �

Z
DgX Dg e�Sg�X� ��

Z p
g �A� ����

This is essentially the number of con�gurations with �xed Area A� In DTR this is studied by
keeping the number of triangles �xed� The large area behaviour of Z�A� for c  � is expected to
be

Z�A� � e�AA�b ����

The "string susceptibility# is de�ned to be

� � �� b � ����

According to KPZ and DDK for pure surfaces �c � ��

� � �� � ���
�

����
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More generally for the central charge of the matter equal to C

��c� � �� ��� c�p
���� c���� c�

��
� ����

where � is the Eular character�
The analysis of DDK also showed that in the conformal gauge the partition function ���� is

the same as that of the quantum Liouville theory �

Z �

Z
D�e�

R
�����a

R
ev� ����

where a and b depend on the central charge c� For c  � all correlation functions of the quantum
Liouville theory are known�

� Matrix Models

As has already been remarked upon the graph dual to the DTR graph in d � � has �xed incidence
number of �� Therefore the dual graphs are Feynman graphs of �� theory� The topology �Euler
characteristic� of the dual graph is the same as that of the original DTR manifold� The important
observation is that the generator of the �� graphs with arbitrary topology can be identi�ed with
the partition function of the Hermitian N �N 
 Matrix Model �

ZM �

Z
dMe�tr�

�
�
M� g

N
M�� � e�F ��	�

dM is the Haar measure� The asymptotic behaviour of F for large N is of the form

F � N�F� � F� �N��F� � � � � ����

All Fi are singular at some g � gc in the sense that some derivatives of Fi w�r�t� g blow up at
g � gc� A Taylor expansion of F �g� around g � � has the form

Fi �
X
n��

�
g

gc

�n

a�i�n ����

Now the connection between this matrix model free energy and the �xed area partition function
Z��A� for manifolds with Euler characteristic � is

Z��n� � a�i� � a�i�n g�nc ����

with � � �� i� It is clear that Fi can also be thought of as either the free energy for a canonical
ensemble of random surfaces with the area A playing the role of energy and � log g playing the role
of �

kT  or as a grand canonical ensemble with the number of vertices playing the role of member of
particles and g playing the role of fugacity�

The mapping of the DTR problem onto that of the matrix model can be done for central charges
c � �� Let us illustrate this with the example of the Ising model �c � �����

Let us consider the case where at each dual graph vertex we attach an Ising variable � taking
the values ��� The Hamiltonian for the Ising system can be taken to be

H � �J&�ij��i�j ����

where  ij � represents the sum over all the edges of the dual
graph� It should be kept in mind
that as the surfaces are updated the set of edges of the dual graph also changes dynamically� As
shown by Boulatov and Kazakov this model even in the presence of an external magnetic �eld is
mapped onto

Z �

Z
dM�dM�e

�tr�M
�
�
�

M�
�
�
�cM�M�g�M

�
�g�M

�
� � ����
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The temperature and the magnetic �eld of the Ising system are given respectively by c � e��J and
g��g� � e��H � Both the matrix models represented above are exactly solvable for Fi�

Before we give the results of DTR for various observables of interest it is instructive to recall
a few features of two dimensional geometry� any metric can locally be brought to the form ����	
�at metric with the help of general coordinate transformations� Naively one would expect that if
the classical action is also Weyl invariant i�e invariant under the transformation g � ��x� 	 g the
metric can everywhere be brought to the �at form� However this is not true as it is impossible
to �nd measures DgX and Dg which are invariant under both general coordinate transformations
as well as Weyl transformations� Also on purely geometric grounds it can be shown that there
are "conformal classes# of metrics so that a metric belonging to one class can not be transformed
into a metric of another class by a globally well
de�ned Weyl transformation� When the genus g
is greater than two there are �g � � complex parameters describing the conformal classes� For
genus one �Euler characteristic zero� case the conformal class is parametrised by a single complex
parameter called moduli and the partition function takes the form

Z �

Z
d�f��� ����

The function f��� is calculable�

	 Observables

There are several observables of interest that can be studied under DTR� Let us start with the
String Susceptibility �� It has already been de�ned in eqn����� Both the continuum theory as
well as the matrix model predict that �� � ���� for the pure surface theory �c � �� and that
� � ���� for the Ising model coupled to random surfaces at the critical point of the Ising system
�these results are for the zero genus case�� As the Ising model coupling is varied what one �nds in
DTR are� for J � Jc and J  Jc � stays at ���� and at J � Jc it reaches ����� Of course there
is a well de�ned cross
over region�

It is interesting that the Ising model coupled to random surfaces is exactly solvable in the
presence of an external magnetic �eld also while the analogous problem in �at space remains
unsolved�

In addition to the string susceptibility one can study various critical exponents �� �� �� � for
the Ising system� One can also study the magnetic susceptibility and exponents associated with it�
the precise manner the magnetic susceptibility diverges with the system size at the critical point
for example�� In �at space it is well known that there are scaling relations among these various
exponents that are dimension dependent� It is also known that the dependence on dimensionality
appears only through the combination �d� The exact results based both on the continuum theory
and the Matrix models predict the exponents � � ���� � � and � � � while the Onsager values
are � � ��	� � ��� and � � ��� DTR has indeed con�rmed these predictions and the validity
of the scaling relations� While for the �at
space case �d � � with � � � for random surface
case �d � �� However� is not known for the random surface case� It appears as if the relevant
dimensionality is the "Hausdor� dimensionality#�

It is puzzling that simulations based on Regge calculus do not seem to be reproducing the exact
results of the continuum and Matrix models�

��� Hausdor� Dimension

This is another quantity of interest and perhaps one of the most important lessons one has learnt
from numerical simulations is that quantum �uctuations can drastically alter the scaling dimension
of space
time� In �at two dimensional space through the relation area � 
 	 R� for a circle one
identi�es the scaling dimension to be �� For the case of �uctuating geometry one expects A � 
RdH

where dH is the Hausdor� dimension� The way to measure dH in DTR is best illustrated with the
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dual graph� One starts at some site of the dual graph which is marked �zero� to denote the �origin��
Then one marks all the neighbouring sites of the origin as ��� and all the distinct neighbours of
the �
sites as ��� and so on� The marking on the sites is analogous to �radius� and the total number
of sites with markings � R is taken as a measure of the area� One has to make sure that it is a
connected domain� The typical results for the measurement of fractal dimensions are shown in the
next �gure�

Figure ��� The numerical results of fractal dimensions measured in the real and dual spaces
consisting ������ triangles� r represents an averaged geodesic distance�

The fractal dimension starts o� at some low value reaches a peak and starts falling o�� This
fall o� to zero is a purely �nite size e�ect as eventually all the triangles�dual sites � get visited�
It is expected that as the system size increases the measured fractal dimension approaches dH �
From the present simulations it appears that dH � � for all c � ��

��� Spectral Dimension

Another intrinsically geometric quantity of interest is the so called "spectral dimension#� This is
de�ned through the return time for a random walk� One essentially computes the kernelK� �X� T �

�� �X� T � T � and study it in the limit T � �

 TrK�T � �
�� T�ds�� as T � � ����

Simulations indicate that ds � ��

��� Loop Length Distributions

Recall the introduction of the �radial �distance in connection with the de�nition of the Hausdor�
dimension� What one �nds typically at a given radial distance is not just one connected domain
but many as shown in the �gure below� Kawai and coworkers have shown for the pure surface
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Figure ���

case that the number of loops N�D� of perimeter L�D� at radial distance D have a universal
distribution

N�D�D� � f�L�D��D� ����

they were also able to compute the function f � Next �gure shows the agreement between theory and
simulations� Though the Regge calculus simulations have not been successful in reproducing the

Figure �	� Loop
length distributions with Double
Log scales� The total number of triangles is
����� and is averaged over ��� con�gurations� X � ��D��D� is a scaling variable where D rep

resents the geodesic distance �it was measured at steps D � ������ and ��� and L�D� represents
each loop length at step D� The small circles triangles and quadrangles indicate the results of the
numerical simulations and the solid line indicates that of string �eld theory�

critical exponents they have been reasonably successful in reproducing the loop length distributions
for small loops� Thus Regge calculus is perhaps not all together on the wrong track� There is also
perhaps a connection between the failure of the Regge calculus in reproducing the critical exponents
and its inability to capture the correct loop length distribution for large loops�
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��� Baby Universes

A typical con�guration produced in DTR simulations looks nothing like a smooth surface� in fact
what one �nds often are various surfaces connected to each other through "necks# as illustrated
in the next �gure� The minimum neck size in DTR is of course a triangle and it is in fact just

Figure ���

a matter of counting as shown by Jain and Mathur to estimate the number of "minimum neck
baby universes#�MINBU� once the �xed area partition sum Z�A� is known

n�B�A� �
��A�B � �� Z�A�B � �� �B � �� Z�B � ��

Z�A�
����

where n�B�A� is the probability of �nding a MINBU of area B in a surface of total area A� This
follows from the fact that a triangle can be located on a surface of area �B � �� �� represents the
neck � in Z�B��� ways and this can be glued at any of the �A � B � �� locations of the surface
with area �A�B � �� along with � ways of gluing a triangle onto a triangle�

It is clear that counting the MINBU distribution is a very practical way of measuring the string
susceptibility �� However one has to be careful about the in�uence of �nite size corrections� From
the de�nition of � �eqns� �� ��� it is clear that when � � � the average MINBU size goes to a
constant as the area of the con�guration becomes larger and larger whereas for � � � the average
MINBU size grows with A�

As was mentioned earlier update algorithms should be able to e�ectively overcome critical
slowing down� In simulations of spin systems on �xed geometry this is achieved through cluster
algorithms and the like� In random surface simulations this problem of large autocorrelation lengths
is quite serious� Ambjorn and coworkers have suggested "MINBU surgery# as a way of overcoming
this� This amounts to cutting away the MINBU�s and stitching them onto the surface in arbitrary
ways�

Among other observables of interest one could think of various powers of the incidence number
qi� Of course it follows rather trivially that the average coordination number is � in other words
the average curvature �scalar� is zero�

��� Resistivity

Kawai and coworkers have proposed the use of resistivity measurements as a probe of both the
smoothness of a surface as well as for determining its complex structure� For the sphere topology
for which the complex structure is trivial consider the arrangement shown in the �gure� Each
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P

Q

Figure ��� A resistive network

edge of the dual graph is treated as a resistor of some given resistance say � ohm� At the point P
a current of � Amp �ows into the surface and at the point Q a current of � Amp �ows out� The
action is modi�ed through the addition of

S� �
Z p

gg�
��V �
V ��	�

V can be thought of as an external �non dynamical� scalar �eld� Now one solves the discrete
version of Poisson�s equation for the values of V at the sites of the dual graph� One compares this
with what is expected of a continuous surface

V �z� � const log
�z � zP �

�z � zQ�
����

the constant being a measure of the resistivity� This enables one to attach complex coordinates
z also� Since

p
gg�
 is independent of the conformal factor this method is sensitive only to the

complex structure�
If the surface is a smooth surface one expects a peaking in the observed resistivity whereas for

a structure like a branched polymer�to which the surface is conjectured to degenerate into when
c � �� the distribution in resistivity is expected to be broad� In the next �gure some typical
DTR data for resistivity is shown� �The vertical axis is the number of con�gurations with average
resistivity r��

Figure ���

��� Complex Structure

Kawai has also proposed a way of determining complex structure through resistivity measurements�
First let us brie�y discuss what complex structure means in the case of genus � topology�torii��
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In the continuum picture the torus is equipped with a �homology basis� of a
cycles and b
cycles as
shown in the �gure�

a

b

Figure ���

Now there exists a so called Abelian di�erential satisfying

��z� � � ����

where � is a one form� The complex moduli � is de�ned as the ratio

� �

H
b
�H

a �
����

The proposal for determining � through DTR is as follows� �rst locate the a and b cycles on the
con�guration� This is done by starting at t � � with a triangle and evolving it in �radial time�
as described in the context of the Hausdor� dimension� As D increases this elementary loop will
split into other loops or stays as a single loop� If the topology is that of a sphere all the loops
will eventually shrink to their minimum size�triangle� and there will never be an instance of two
loops merging into a single loop as shown in �gure ���

Figure ���

On the other hand in the case of torus topology two loops will merge� This is shown in the
�gure ���

Figure ���

���



The point where two loops merge will be a point on the say a
cycle� One of the two loops
merging there can then be identi�ed with the other�b� cycle� The entire a
cycle can now be
reconstructed by following the history of the two loops that merged�

After locating the a b
cycles now apply a potential di�erence across the a
cycle and solve for
the voltage distribution� On identifying

j� � ��V ����

then I
a

j � �V ����

Now the dual of the one form j is given by

-j� � 	�
j

 ����

The holomorphic one
form j�-j is seen to be an Abelian di�erential�care should be taken to include
some resistivity dependent factors�� Now the moduli � can be measured and the function f���
determined� This way Kawai Tsuda and Yukawa have determined the bosonic string partition
function for the c � � case and it is reproducing the expected features�

��� Other Results

There are too many interesting results to report on here for lack of time so I will just include a few
examples� For example Tsuda and Yukawa have studied the phase diagram for two dimensional
gravity in the coupling constant space �� � where

S�g� � �

Z
d�x

p
gR� � �

Z
d�x

p
gg�
��R�
R ����

The phase diagram obtained is shown in the next �gure�

α

β

Flat

Branched Polymer

Rough

Fractal

Figure ��� A phase diagram for �d gravity

There are also some preliminary results that have been obtained by Bakker and Smit for four
dimensional gravity�There is also some recent interesting work on the meaning of �xed geodesic
distance in d � � quantum gravity by H� Aoki et al�
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