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sticking pieces of graph paper on the surface of some balloon (a topological space). But,
clearly there are infinitely many ways of doing this and there is no way to make any
natural choice. We can live with this freedom provided we can ensure that whatever we
really want to do (define a derivative) does not depend on the choice of the labelling.
This is done as follows. In anticipation, we denote a topological space as M from now
on.

We first define an n−dimensional Chart around a point p ∈ M . This consists of an
open set uα containing p i.e. a neighbourhood of p, together with a homeomorphism
φα : uα → Oα ⊂ R

n i.e. φα(q) ↔ (x1(q), x2(q), . . . , xn(q)). Recall that homeomorphism
is a one-to-one, on-to, open and continuous assignment. The xi(q) are called local

coordinates of point q ∈ uα.

Introduce such charts around each point ofM and choose a collection of charts covering
all of M . Some of the charts may overlap: uα ∩ uβ 6= Φ. The common point then have
two different coordinates, say xi(q) and yi(q) and due to the on-to-one assignments,
we can use this to define a coordinate transformation xi ↔ yi. Clearly these are one-
to-one, on-to (with respective domains and ranges) and continuous since the defining
homeomorphisms are. We now require that yi(x1, x2, . . . , xn) and xi(y1, y2, . . . , yn) are
both infinitely many times differentiable functions. The two conditions namely the
collection of charts covering all ofM and the smoothness of coordinate transformations
in the overlap, implies that all charts must be of the same dimension, say, n. Such a
collection of charts is called a Smooth, n−dimensional Atlas1.

We can construct several different smooth atlases. Let us define a relation on the set of
all atlases. We will say that two atlases, {(uα, φα)}, {(va, ψa)}, are compatible if their
union is also an atlas. This requires that even for overlapping neighbourhoods from
different atlases, the corresponding coordinate transformations are also smooth. This is
an equivalence relation and the equivalence classes are called differential structures on
the topological space. A topological space together with a given differential structure
is called a differentiable manifold or manifold for short.

To appreciate the need for the smoothness of coordinate transformation consider a
possible definition of differentiability of a real valued function f :M → R. The function
itself can be defined independent of any atlas eg temperature on the surface of earth
which does not need (longitude, latitude) to be chosen. Referring to a chart around
some p, we convert the function to a function of xi. We can now define f to be
differentiable at p if f(xi) is differentiable at x(p) (and we know what this means). But
now the differentiability of a function seems to be tied with the particular chart chosen.
If we choose a different chart, does the function still remain differentiable? Well, let us

1Functions which are k-times differentiable (partial derivatives in case of several variables) are said
to be of class Ck. C0 refers to continuous functions while C∞ are termed smooth. One can also have
real analyticity, complex analyticity classes etc. The atlases involving coordinate transformations of a
given class are given the same adjective.
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assume that ∂f/∂xi exist. Let yj denote another set of coordinates. By the chain rule,

we expect that ∂f

∂yi
= ∂xj

∂yi
∂f

∂xj . Evidently, the left hand side will be well defined iff ∂xj

∂yi
is

well defined i.e. the coordinate transformation is differentiable. Furthermore, f being
smooth will be meaningless, unless the coordinate transformation is smooth. But this
is precisely what is guaranteed by the condition on the atlas! So, although we need
to use arbitrary coordinates to make sense of differentiability, the additional structure
introduced, ensure that the property of differentiability is independent of the choice
of coordinate. Our primary goal of importing notions of differentiation to topological
spaces is achieved. The price to pay is the introduction of a differential structure and
an implicit restriction to only those topological spaces which are locally R

n.

Just as there are different topologies on a given set, there can be several different
differential structures on the same topological space eg. S7 has 28 differential structure
while R

4 has infinitely many differential structures. For R
n with the usual topology

and an atlas consisting of a just a single chart - the chart defined by the identity map,
defines the “usual” differential structure. The analogue of homeomorphism in this
case is called a diffeomorphism. Let M,N be two differential manifolds of the same
dimension and let f : M → N be a map which is a homeomorphism of the underlying
topological spaces. Under this, open sets of M go to open sets of N and this induces
a corresponding coordinate transformation of local coordinates xi on M going to local
coordinates yi on N . If these coordinate transformations (xi ↔ yi) are smooth, then f
is called diffeomorphism and M,N are said to be diffeomorphic to each other. Again
this is an equivalence relation and partitions the set of all differential manifolds into
classes of mutually diffeomorphic manifolds.

On a manifold, several types of quantities can be defined in a natural manner. These can
be defined in a manifestly coordinate independent manner or through use of coordinates
such that the choice of coordinates does not matter. We have already seen the example
of one such quantity, namely smooth, real valued functions f : M → R. Our next
quantity is a smooth curve on a manifold.

A curve γ on M is a map γ : (a, b) ⊂ R → M from an open interval into the manifold
i.e. t ∈ (a, b) → γ(t) ∈ M . Referring to local coordinates, this is represented by n
functions of a single variable, xi(t), t ∈ (a, b). The curve is smooth, if these functions
are smooth functions of t. Again, smoothness of γ is independent of the choice of local
coordinates.

Let us assume for definiteness that 0 ∈ (a, b) and denote p = γ(0). Every curve on a
manifold gives rise to a tangent vector as follows. For any function f :M → R,

d

dt
f

∣

∣

∣

∣

γ

:= lim
ǫ→0

f(γ(ǫ))− f(γ(0))

ǫ
(15.1)

Using a chart, (uα, φα), gives the function f as a function of the local coordinates as
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fα(x
i(p)) := f( φ−1

α (xi) ). In terms of this, we get,

d

dt
f

∣

∣

∣

∣

γ

= lim
ǫ→0

fα(x
i(γ(ǫ)))− fα(x

i(γ(0)))

ǫ
But,

xi(γ(ǫ))− xi(γ(0)) ≈ ǫ
dxi

dt

∣

∣

∣

∣

t=0

∴

d

dt
f

∣

∣

∣

∣

γ

:= lim
ǫ→0

fα(x
i(γ(0)) + ǫdx

i

dt
)− fα(x

i(γ(0)))

ǫ

= lim
ǫ→0

ǫdx
i

dt

∂fα
∂xi

ǫ

=
dxi

dt

∣

∣

∣

∣

γ

∂

∂xi
fα ∀ f :M → R (15.2)

The (15.1) gives a manifestly coordinate independent definition while the subsequent
equations gives expression involving local coordinates. Since the function is arbitrary,
one can think of the d

dt
|γ as an operator which takes function to numbers. There is one

such operator for each curve γ and it is called a tangent vector to the manifold at the
point p = γ(0). One can collect all such tangent vectors at the same p and define a
vector space in an obvious manner. This is called the Tangent Space to M at p and is
denoted as Tp(M). What is its dimension?

Consider eqn.(15.2). Stripping off the function, the tangent vectors are parametrized

by the n numbers dxi

dt
|γ while

∂
∂xi are linearly independent elements of the tangent space.

This implies that the dimension of the tangent space is precisely n. The { ∂
∂xi}, form

a basis, called a coordinate basis, for the Tangent Space. A general tangent vector is
therefore expressible as X := X i ∂

∂xi .

If we refer to another local coordinates yi, then any given tangent vector is expressed
as

{

dxi

dt

}

∂

∂xi
=

{

dxi

dt

}{

∂yj

∂xi

}

∂

∂yj
=

{

dyj

dt

}

∂

∂yj
or,

X i ∂

∂xi
= X i

{

∂yj

∂xi

}

∂

∂yj
= Y j ∂

∂yj

We notice that if we have a set of quantities X i which transform under coordinate
transformation as X i → Y i = ∂yi

∂xjX
j, then the combination X := X i ∂

∂xi is independent
of the coordinates.

Such quantities, X i, are called components of a contravariant vector which is an element
of the tangent space, which is a vector space of dimension n.

Now, it is a general construction that given a vector space V , one defines another vector
space, called its Dual, V ∗, as the collection of linear functions on V . That is, consider
f : V → R such that f(a~u+b~v) = af(~u)+bf(~v). The set of all such linear functions can
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