
N
ot
fo
r
C
ir
cu
la
ti
on

Using these the canonical Hamiltonian density, H := πij ḡij − L becomes,

H =
√
ḡ

[

N

{

−R̄ +
πijπij − π2

2

ḡ

}

+Ni

{

−2∇̄j(
πij

√
ḡ

}

]

, (11.17)

where we have suppressed the total derivative term, 2
√
ḡ∇̄i(π

ijNj/
√
ḡ). As expected,

the lapse and shift appear as Lagrange multipliers whose equations of motion - the
coefficients - give the primary constraints in Dirac’s terminology and the Hamiltonian
density is a linear combination of the constraints. The Hamilton’s equations of motion
are of course equivalent to the Euler-Lagrange equations of motion i.e. to the Einstein
equation. For completeness we note the equation for π̇ij (boundary terms are ignored)
[17]:

π̇ij = −N
√
ḡ

{(

R̄ij − 1

2
R̄ḡij

)

− ḡij

2ḡ

(

πklπ
kl − 1

2
π2

)

(11.18)

+
2

ḡ

(

πikπ j
k − 1

2
ππij

)}

+
√
ḡ
(

∇̄i∇̄j − ḡij∇̄k∇̄k

)

N

+
√
ḡ∇̄k

(

Nkπij

√
ḡ

)

−
(

πik∇̄kN
j − πjk∇̄kN

i
)

The coefficient of the Lapse N is called the Scalar (or Hamiltonian) constraint while
the coefficient of Ni is called the vector (or the diffeomorphism) constraint. The matter-
free gravity is thus a Hamiltonian system with phase space coordinatised by a 3-metric
(Euclidean signature), gij and a symmetric tensor field, Kij defined on a three manifold
Σ satisfying the scalar and the vector constraints which are first class constraints in
Dirac’s terminology [90]. The space-time description of the initial value formulation
has been cast in a phase space formulation, potentially ready for a passage to canonical
quantization. This is known as the Arnowitt-Deser-Misner (ADM) formulation [91].
The hall mark of general relativity, the space-time covariance, has apparently disap-
peared. It is not so, the space-time covariance is encoded in the algebra of constraints,
known as the Dirac Algebra:

H(N) :=

∫

Σ

d3x N

(

−√
ḡR̄ +

πijπij − π2/2√
ḡ

)

(11.19)

H( ~N) :=

∫

Σ

d3x Ni

(

−2∇̄jπ
ij
)

(11.20)

{H( ~N), H( ~M)} = −H(~L) , Li := N j∇̄jM
i −M j∇̄jN

i (11.21)

{H( ~N), H(M)} = −H(K) , K := N i · ∇̄iM (11.22)

{H(N), H(M)} = H( ~K) , Ki := ḡij(N∂jM −M∂jN) (11.23)

The detailed demonstration of these facts may be seen in [92, 93].
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Suffice it to say that not only Einstein equation admit a dynamical view of space-time
as an evolving 3-geometry, this dynamics is a Hamiltonian dynamics making general
relativity amenable to canonical quantization.

We return to the surface terms now. If we just want to get the equation of motion,
then the surface terms could be ignored as they do not affect local equations of motion.
However, the idea of a variational principle is to vary over ‘all possible fields in a
neighbourhood of a path’. For this we have to specify what ‘all possible’ means i.e.
specify the space of fields over which the variation is to be considered. The space of
fields for the action formulation are suitably smooth space-time fields subject to their
specification on the space-time boundary. So to begin with the action should be a
well defined function on such a space and it should be stationary with respect to all
infinitesimal variations in the vicinity of a potential solution. To ensure that ‘all partial
derivatives’ vanish at the extremum, the variation of the action should depend only on
δgµν and all other dependences should cancel, if necessary, by addition of further terms.

Consider the surface terms in the variation of the action under the stipulation δgµν = 0
on the boundary ∂M .

The surface term in the Einstein-Hilbert action is explicitly given in (11.10). Taking
the boundary of the 4-dimensional region on which the action is defined, to be made
up of space-like or time-like hypersurfaces, it is easy to see that Jλn

λ = (nλhµν −
nµhνλ)∇µ(δgνλ), where n

λ is the normal to the boundary hypersurface and hµ
ν = δµν ±

nµnν is the corresponding projection operator. The ± relates to the space-like/time-like
segments. For the variation δgµν = 0 on the boundary, hνλ∇λδgαβ = 0 as well on the
hypersurface and the surviving term is J · n = −hαβn · ∇δgαβ. This is nothing but
−2δKµ

µ or the variation of the trace of the extrinsic curvature of the hypersurface.

It follows that S ′[g] := S[g]+2
∫

∂M
K, under the variation δgµν vanishing at the bound-

ary, has no boundary contributions and its variation vanishes iff the metric satisfies the
Einstein equation.

The Hamiltonian formulation uses the 3 + 1 decomposition and proceeds to identify a
phase space. The identification of canonical variables is sensitive to the total divergence
terms in the action and can lead to quite different canonical formulations2 giving the
same classical equations of motion. Once the symplectic structure (canonical variables)
is identified, the phase space is defined in terms of appropriately smooth fields on the 3-
manifold together with appropriate stipulation of boundary condition. In order to define
the Hamilton’s equations of motion, the variation of the Hamiltonian H :=

∫

Σ
H, over

paths in the phase space, should not contain any other contributions from the boundary
of the 3-manifold.

2This is especially so in the tetrad formulation allowing for non-zero torsion. The connection
formulation discovered by Ashtekar [94] by a canonical transformation on the ADM phase space, can
be obtained from addition of such terms [95].
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