
N
ot
fo
r
C
ir
cu
la
ti
on

away via gravitational waves.

This established that gravitational radiation does exist with all the physically expected
attributes.

How does this help in the detection of gravitational waves? The above analysis estab-
lishes that general relativity does make a physically sustainable prediction of gravita-
tional waves and puts the quadrupole formula, which is used for estimation of expected
amplitudes of gravitational waves, on a conceptually reliable footing. The analysis
also provides analytical checks on numerical simulations involving strong field regimes
(eg merger and ring down phases), for instance, by computing the news function for
correlating energy loss with back reaction on source motions.

Finally, the observation of orbital decay of the Hulse-Taylor binary pulsar has estab-
lished that the decay is fully consistent with the energy radiated as per the quadrupole
formula. This constitutes an evidence for gravitational radiation and also empirically
shows that binary systems, even though only under gravitational forces, can be a source
of gravitational radiation.

10.2 Observational issues

Unlike the indirect conformation of gravitational waves, which is based on the loss of
energy due to gravitational radiation, the approach for direct detection of gravitational
waves is based on the time varying tidal effects caused by a passing gravitational wave.
Consequently, the primary issues are: (i) the types of sources together with the char-
acteristic amplitude and time dependence of their signal and (ii) the choice of test
body/detector system and their sensitivity parameter. The secondary issues involve the
identification of a signal and an estimate of expected detection rate. We will briefly
describe these aspects. For a recent review and an excellent textbook please see [28, 27].

Sources: As seen in the section (5.3), any matter distribution which is at least quadrupo-
lar and has an accelerated motion is a potential source of generation of gravitational
waves. Cataclysmic short duration events such as a supernova and other gravitational
collapse produce a burst signal while long duration binary systems of compact objects
produce periodic signals during their in-spiral phase. There are many individually
sub-detection level sources which could produce a stochastic background. A cosmic
gravitational background is also expected from the very early universe.

Amplitude and frequency estimates: These are based on the quadrupole formula, hTT
ij (t) =

G
c6

2

r
d2

dt2

∫

source
ρxixj which gives the amplitude at the detector when the source is at a

distance r. Here ρ = T00 is the energy density and we have restored the factors of
G, c. The amplitude hij is dimensionless. There are three parameters associated with
a localised (as distinct from a stochastic background) source - mass M of the source, a
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length scale, L associated with the quadrupole and a time scale, T characteristic of the
time variation. Hence on dimensional grounds, we can write for a typical component
of the amplitude,

h ∼
G

c4
ML2T−2

r
∼ 10−44

ML2T−2

r
Here r is the distance to the source and we have used the mks units. The M, L, T are
not always the total mass or the ‘radius’ or a period but are some fractions of these.
Such geometry dependent numerical factors are absorbed in the M, L, T parameters.
For short duration sources such as gravitational collapse, it is easier to estimate the
total energy released E, the frequency of the gravitational waves, f , the duration over
which the source is observed, T . Then using ḣ ∼ hf and average power ∼ E/T , leads

to an estimate of the amplitude as, h ∼ 1

πrf

√

E
T

√

G
c3

∼ 10
−18

πrf

√

E
T
in MKS units [28].

The supernovae sources are at distances in the Kpc ∼ 1019m (in our galaxy) to Mpc
(in other galaxies) range. Their estimated event rate is quite low - roughly once in fifty
years or so for a Milky Way type galaxy. The properties of supernovae with regards to
frequency of the gravitational waves and the energy carried by them, is estimated from
simulation which indicate the typical numbers to be E

c2
∼ 10−7M⊙ ∼ 1023 Kg, f ∼ kHz,

T ∼ millisecond. This leads to an amplitude of about h ∼ 10−21.

For isolated pulsars as well as binaries of stars and stellar mass black holes, the distance
is again in the 10 Kpc - Mpc range. For pulsars, the effective mass parameter would
be about 10−3M⊙ ∼ 1027kg, L ∼ 104m and T ∼ 10−3s leading to h ∼ 10−23. For long
duration, sources of periodic signal, the effective amplitude is actually larger thanks to
matched filtering method of signal extraction. If n is the number of cycles of the signal
contained in the observation period of T , then the effective amplitude is heff ∼

√
nh.

For a signal of frequency f , observed for time T , the number of cycles is n = fT .

The most promising and studied candidates are binary systems. For a massM spherical
object, the radius of last stable circular orbit is about 3 times the Schwarzschild radius.
For binaries made up of neutron stars or black holes, the binaries could be quite tight
with L closer to the radius of the last stable circular orbit. These are called coalescing

binaries. For binaries involving white dwarfs or normal stars, the L would be quite
large and are called in-spiraling binaries. We can eliminate the binary radius by the
angular frequency using Kepler’s law to get h ∼ 10

−55

r
M5/3Ω2/3. For M ∼ M⊙ and

Ω ∼ 10−4, we get h ∼ 10−28. For the last stable orbit, the angular frequency for a solar
mass object would be about Ω ∼ 104 leading to h ∼ 10−22. Although the amplitude
for white dwarf binaries is quite small, they are nearer and amenable to enhancement
through matched filtering. Coalescing binaries of super-massive black holes too are
candidates at frequencies of the order of mHz. For coalescing binaries, there is also the
possibility of merger into a black hole which then rings down to its stationary state.
These ringing frequencies, called quasi-normal modes, are characteristic of the black
hole parameters. The amplitudes during this phase turn out to be sizable and vary
between about 10−21 − 10−17 even over several hundred mega-parsec distances.
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Finally, there are the stochastic gravitational waves which are made up of incoherent
superposition of a large number of sources as well an expected isotropic component as
a relic from the very early universe. Here the study is not by measuring an amplitude,
but rather by studying the frequency spectrum of the gravitational energy density or

more precisely the quantity, Ωgw(f) := ρ−1

c
dρgw
dlogf

where ρc :=
3c2H2

0

8πG
is the cosmological

critical energy density. The expected frequencies range over 10−18 − 109 Hz [27].

The upshot is that the expected amplitude or effective amplitude from various sources
is about h ∼ 10−21 or smaller while the frequencies vary between mHz to kHz for
individual sources but over a vast range for stochastic background.

Detection methodology: Since the detection method is based on tidal distortions of
bodies, the earliest method proposed by Weber, was to use a Resonant bar. The idea is
that a strain produced in a system will make the system vibrate with its fundamental
frequency. For an aluminium cylinder of length ∼ 3 meters and mass of 1000 kg has its
resonant frequency in the range of 500 - 1500 Hz. The amplitude of this vibration will
be set by the gravitational wave to be ∼ 10−21 × 103 meters. This is very tiny and is
smaller than or comparable to three main sources of triggers - thermal excitations, noise
in the amplification process and the quantum uncertainty. Even at low temperatures
of tenth of a Kelvin, the rms amplitude of thermal fluctuations is about 6 × 10−18

meters. With a very narrow bandwidth around the fundamental frequency (Q factor of
∼ 106), it is possible to have the duration of the signal to be short (10−3 sec.) enough
so that the noise amplitude reaches only about a thousandth of its rms value, thereby
permitting a signal detection of h ∼ 10−20. The noise in the amplification process
can also be managed for lower frequencies ∼ 102 Hz. The quantum mechanical zero
point fluctuation ∼

√

~/(2Mω) ∼ 10−21 meters. So as thermal noise is reduced, the
quantum noise begins to challenge. Squeezing of uncertainty in a different observational
procedure is a possible option. Apart from the standard bar configuration, spherical
resonant bodies have also been used which can have more mass in a smaller volume
and also have sensitivity in all directions.

Another type of detector uses light beams between a transmitter and a receiver at
different locations and attempts to detect the slight fluctuations in the arrival rates due
to the distortion in the physical path length1. A passing gravitational wave causes the
proper length traversed by the light beam to change and hence its arrival time. The rate
of light pulses received therefore changes from the rate of emitted pulses. Measuring
this rate gives a detection of a gravitational wave [28, 88].

Clearly, this depends on availability of very precise time-stamping. The best clocks
with stability of few parts in 1016 can detect an amplitude of about 10−15. Pulsars

1The form of the gravitational wave is the simplest in the TT-gauge. This gauge corresponds to
a freely falling coordinate frame with the coordinate time being the proper time of the freely falling
observer. In this gauge, the spatial coordinates of a particles initially at rest, do not change as can be
seen from the geodesic equation. The physical lengths however do change [27].
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themselves are comparably stable and hence can be used for time-stamping for the
emitted pulses. Simultaneous observations of several pulsars over long periods can
detect very low frequency (∼ nano Hertz) gravitational waves.

Essentially the same logic holds in interferometric detectors whose two arms change
their physical lengths by different amounts producing interference fringes. Many col-
laborative efforts are built around Michelson-Morley type interferometer using lasers.
Since the expected highest frequency is about kHz, the wavelengths are larger than 300
kms. It is impossible to build an interferometer with comparable arm length. The arms
of the current earth based interferometers are in the range of 300 meters (TAMA) and
600 meters (GEO) meters to 4 kilometers (LIGO). It is possible to effectively increase
the arm length a hundred fold by making the laser beam make a 100 traversals in a
Fabry-Parot cavity before producing fringes. A longer arm length has the advantage
that length determination needs to be within about 10−16 meters which is smaller than
the size of a nucleus! No mirror can be ground to this degree of smoothness. Here the
fact that the laser beam has a width means that individual rays reflect from different
irregularities on the mirror surface. Averaging the lengths over the beam cross-section,
measures the coherent movement and tiny changes in these averages averages can be
determined. Being fixed to the earth, there are many sources of noise eg fluctuations
in the gravitational field due to seismic shifts and other movements of mass. These are
controlled with suspensions and filtered out selecting frequency windows. As mentioned
above for the resonant bars, thermal noise is reduced by keeping the mirrors at cryo-
genic temperatures or by choosing material for suspension fibres. The quantum noise
due to Poisson statistics obeyed by the laser photons, called the photon shot noise is
a limiting noise which is sought to be minimised by using squeezing. For an extensive
discussion of possible noise sources and their control or avoidance, please see [27].

Suffice it to say that extracting an unambiguous signal of gravitational waves from
some astronomical source from a variety of noises larger than the signal, is a daunting
task requiring sophisticated data analysis techniques as well as a ‘bank of templets’ of
expected waveforms for use of matched filtering. The requirements are being met and
there is talk of gravitational wave astronomy using data from multiple detectors.
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