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vacuum (and usually disappear again) can get separated by the horizon and thus cannot
recombine. The left over particle can be thought of as constituting black hole radiation.
He in fact demonstrated that a black hole indeed radiates with the radiation having a
black body distribution at a temperature given by kBT = ~κ

2π
! This provides the propor-

tionality factor between surface gravity and temperature. Consequently, the entropy
is identified as S = kB

~

A
4
. How much is this temperature? Restoring all dimensional

constants the expression is [17]:

T =
~c3

8πGkBM⊙

(

M⊙

M

)

0K

= 6× 10−8

(

M⊙

M

)

(8.9)

Notice that heavier black hole is cooler, so as it radiates it gets hotter and radiates
stronger in a run-away process. A rough estimate of total evaporation time is about
1071(M/M⊙)

3. The end point of evaporation is however controversial because the semi-
classical method used in computations cannot be trusted in that regime. This is also
the cause of the tension between general relativity which allows for black hole horizons
and quantum theory which suggests evaporation thereby raising the possibility of pure
quantum state evolving into a thermal density matrix - the information loss problem.

If the thermodynamic analogy is true, the statistical mechanics cannot be far behind
and one way to ascribe micro-states to black hole horizons is to look for a quantum
theory of gravity. A simple way to see that entropy can be proportional to the area is
to use the Wheeler’s ‘it from bit’ picture. Divide up the area in small area elements of
size about the Planck area (ℓ2p ∼ 10−66cm2). The number of such cells is n ∼ A/(ℓ2p).
Assume there is spin-like variable in each cell that can exist in two states. The total
number of possible such states on the horizon is then 2n. So its logarithm, which is
just the entropy, is clearly proportional to the area. Of course same calculation can be
done for volume as well to get entropy proportional to volume. What the picture shows
is that the entropy being proportional to the area is suggestive of associating finitely

many states to an elementary area of a black hole.

There are very many ways in which one obtains the Bekenstein-Hawking entropy for-
mula. Needless to say, it requires making theories about quantum states of a black hole
(horizon). Consequently everybody attempting any theory of quantum gravity wants
to verify the formula. Indeed in the non-perturbative quantum geometry approach
the Bekenstein-Hawking formula has been derived using the ‘isolated horizon’ frame-
work (modulo the value of the ‘Barbero-Immirzi’ parameter being chosen for one black
hole), for the so-called non-rotating horizons. String theorists too have reproduced the
formula although only for black holes near extremality.

Recall that extremal solutions are those which have r+ = r− which implies that the
surface gravity vanishes. For more general black holes this is taken to be the definition
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of extremality. For un-charged, rotating extremal black holesM = |a| while for charged,
non-rotating ones M = |Q|. Since vanishing surface gravity corresponds to vanishing
temperature one looks for the third law analogy. It has been shown that the version of
third law, which asserts that it is impossible to reach zero temperature in finitely many
steps, is verified for the black holes -it is impossible to push a black hole to extremality
(say by throwing suitably charged particles) in finitely many steps. There is however
another version of the third law that asserts that the entropy vanishes as temperature
vanishes. This version is not valid for black holes since extremal black holes have zero
temperature but finite area.

Black holes which began as peculiar solutions of Einstein equations have revealed an
arena where general relativity, statistical mechanics and quantum theory are all called
in for an understanding.

8.4 Quasi-local definitions of horizons

The various results on black hole mechanics/thermodynamics used event horizon as the
definition of the black hole. This is unsatisfactory for two reasons. The event horizon
definition refers to infinity and also needs the entire space-time to be known to identify
it. At any spatial slice, an observer would not know if he/she is being engulfed by a
surface which will be part of the event horizon! It is much more desirable, both from
a conceptual and a practical angle eg in a numerical evolution, to characterise a black
hole in a more local manner. Indeed such a characterization of black holes is available.
For the stationary black holes it is captured by the notion of an isolated horizon [66, 67]
while for a evolving black hole, it is captured by the notion of a dynamical horizon

[68, 69]. Both these notions arose from the notion of trapping horizons [70] which are
generalizations of the apparent horizon [18, 17]. Let us get a glimpse of these and note
important results.

We have already defined trapped surfaces (6.5.1) as two dimensional, space-like sub-
manifolds such that the expansions of both the orthogonally in-going and out-going null
geodesics is negative. These played a role in establishing singularity theorems (6.5.5,
6.5.6). These surfaces are also related to the event horizon in a strongly asymptotically

predictable space-times with Rµνk
µkν ≥ 0 ∀ k · k = 0, namely, any marginally trapped

surface is contained in the black hole region B. This property also extends to certain
three dimensional space-like submanifolds [17].

Let Σ be a any asymptotically flat Cauchy surface for Ṽ - the region of the unphysical
space-time (M̃, g̃) which is globally hyperbolic - containing the spatial infinity and being
space-like there. Let C be a closed, three dimensional submanifold of Σ ∩M , with its
two dimensional boundary Ċ. If the out-going null geodesics orthogonal to Ċ have
their expansion non-negative, then Ċ is called outer marginally trapped surface (θ ≤ 0)
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