8.1 Examples of extended Black Hole solutions

Let us recall the metric of the Kerr-Newman solution in two different forms (a # 0, Q #
0,M? > a®+ Q?),
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As mentioned before, there are coordinate singularities at the zeros of the A(r) function
while at r = 0 there is a curvature singularity. The two roots of A(r) = 0 are:
ry =M + /M — a? — Q?> which split the range of r into three segments

(A): —oo<r<r_ , (B): r—<r<ry , (O): rp<r<oo.

Note that for the Kerr-Newman family, r is not the areal radial coordinate and is not
required to be positive. The curvature singularity occurs when n? = 0 which in turn
happens at » = 0 and § = ©/2. Since r = 0 is a curvature singularity, one may
suspect that negative r is excluded. This is not the case since the curvature blows
up along a ‘ring’ in the equatorial plane § = /2. This is most readily seen in the
so-called Kerr-Schild form of the metric. It is therefore possible to continue through
the ‘r = 0’ singular space-time cylinder[17, 29]. For contrast, the ‘r = 0’ singularity in
the spherically symmetric Schwarzschild and Reissner-Nordstrom solutions is a sphere
of radius zero (or a line in the space-time).

Observe that along # = 0, 7 submanifolds, the metric is same as that of the spherically
symmetric Reissner-Nordstrom solution (a = 0). Hence the extension across the three

regions can be done in the same manner. We have already given the tortoise coordinate
2 .
r, defined by dr, := ———~——dr which leads to,
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Here we have chosen r,(0) = 0 arbitrarily. In terms of this coordinate, the two dimen-
sional metric is conformal to the two dimensional Minkowski metric: ds* = %(—dt2 +
dr?). The radial null geodesics are given by ¢t = +r,. In the three regions we have
(ry,00) > 1y € (—00,00) , (r_,74) <> 1y € (00,—00) and (—o0,7_) ¢ 1, € (—00,00).
Introduce u := €,(t —7,) ,v = €,(t+7.) , €4, = £1 s0 that dt? = —(A/r?)e,e,dudv. In
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regions C' and A, A > 0 hence the signature of the metric requires that ¢, = ¢, = +1
while in region B, A being negative requires ¢, = —e, = £1. We have thus 6 possible
choices labelled as Ay, By and Cy which are detailed in the equation (8.5) below. In
each of the six blocks, the u, v coordinates range over (—oo,00). These ranges can be
brought to (—7/2,0) ,(0,7/2) by introducing new coordinates U(u),V (v) suitably in
each of the blocks. These are to be chosen so that the metric takes the same form and
an extension is obtained by matching the individual chart boundaries. The following
definitions — which are little different from [29] — achieve this. Following [29], the di-
agram is first constructed for § = 0,7 and then extended to other values of #. Across
different chart boundaries, different definitions of ¢ are needed. The final resulting
Penrose diagram is shown in figure (8.1).

Al @ u=t—r, , tanU = e~

o v=t+r, , tanV = e
A o u=—t+r, , tanU = e

o v=—t—r, , tanV :=e ™
By : u=t—r, , tanU = —e

o v=—-t—r, , tanV = —e*
B_ : u=—-t+r, , tanU:=e* (8.5)

v =t+r, , tanV = e
Cy © u=t—r, , tanU = —e™

Dv =147, ,tanV = e
C. : u=—-t+r, , tanU :=e*

o v=—t—r, , tanV = —e

For the special case of Reissner-Nordstrom, the » = 0 is a curvature singularity and the
portions B’ and B in the right portion of figure (8.1) are absent. For the special case
of Schwarzschild, the two roots of A(r) coincide and the entire portions Ay are absent.
Furthermore, the r, reaches a finite value, say zero when the curvature singularity at
r = 0 is reached. This is space-like and therefore the top half of B_ and bottom half
of B, are also absent leading to the maximally extended Schwarzschild space-time in
figure (8.2).

The various null surfaces such as the event horizon (r = r;) and the Cauchy horizon
(r = r_) are also identified together with the portions of the asymptotic infinities,
J* , ig. These will be defined in the more general context of black holes in asymptot-
ically flat space-times in the next section.

The Kerr-Newman family presents another novel feature apart from the two horizons of
the Reissner-Nordstrom and the ‘ring singularity’ when the rotation parameter a # 0 -
the ergospheres .

The stationary Killing vector has its norm given by, (see equation 8.2),

A — a’sin*0 r? —2Mr + a® + Q* — a*sin?0
§-& = gu(r,0) = 5 = 5
n n
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