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depends on the curvature. Notice that solution of (6.6) is a solution of (6.7), but not
conversely. To emphasize this distinction, we will denote solutions of the first order
equation by zi(τ) and those of the Jacobi equation by ηi(τ). Both equations being
linear, their solutions can be constructed from corresponding matrix equations.

Define Ai
j(τ) by, Ȧ = B(τ)A(τ) , A(0) = 1. Then any non-trivial solution of

the defining equation can be constructed from an initial deviation vector z(0) 6= 0 as,
zi(τ) = Ai

j(τ)z
j(0). For the Jacobi equation, we have two initial conditions and to

allow arbitrary choices of these, we define two matrices, I(τ), J(τ) by the equations,

Ï ij(τ) = Ri
00k(τ)I

k
j(τ) , I(0) = 1 , İ(0) = 0

J̈ i
j(τ) = Ri

00k(τ)J
k
j(τ) , J(0) = 0 , J̇(0) = 1

A general Jacobi field is then given by, ηi(τ) = I ij(τ)η
j(0) + J i

j(τ)η̇
j(0).

Clearly, if ~z(0) = 0 then the deviation vector is identically zero. However, it may happen
that a non-trivial deviation vector can still vanish at some points along the geodesic.
For this to happen, we must have detA vanish at these points. When is this possible?
The defining equation gives, B(τ) = ȦA−1 which implies θ(τ) = Tr(B) = Tr(ȦA−1) =
dτ (Tr lnA) = (detA)−1dτ (detA). Therefore, if detA is to vanish as (τ − τ∗) → 0−,
then we must have θ → −∞. Thus, a non-trivial deviation vector can vanish at some
point in the future, provided the expansion of the congruence diverges as that point
is approached. That such a choice of initial deviation vector exists is seen from the
example discussed above.

Next, suppose we are given a non-trivial Jacobi field vanishing at some point p, when
can we find a deviation vector which matches with the Jacobi field at least when both
are non-zero? Since deviation vectors depend on a congruence, it is enough to find some
congruence with at least one deviation vector matching.

Let p = γ(0) be a point at which a Jacobi field η(0) = 0. For ǫ > 0, η(ǫ) ≈ η(0) +
ǫη̇(0)+(ǫ2/2)η̈(0) . . .. The first and the last terms vanish because of the initial condition
and the Jacobi equation. Let if possible, z(τ) be a deviation vector which matches η(τ)
for all τ ≥ ǫ. Let ẑ := η(ǫ) = ǫη̇(0). Define z(τ) as a solution of (6.6) with ẑ as
initial condition. This will be identical to η(τ) if at some point, say γ(ǫ), we have
z(ǫ) = η(ǫ) and ż(ǫ) = η̇(ǫ). We have already matched the values. Requiring that the
derivatives match, gives: żi(ǫ) = η̇(ǫ) ⇒ B i

j (ǫ)ẑ
j ≈ η̇i(0) + ǫη̈i(0) = η̇i(0), since the

Jacobi equation implies that the η̈(0) vanishes. Hence, η̇i(0) = B i
j ẑ

j = B i
j ǫη̇

j(0) which

implies, [ǫB j
i (ǫ)− δ j

i ]η̇j(0) = 0. Thus, a Jacobi field vanishing at p will match with a
deviation vector for all τ ≥ ǫ provided det(B− ǫ−1

1) = 0. Note that this is a condition
on the congruence and the particular Jacobi field. We could have a matching deviation
vector for every Jacobi field vanishing at p, by choosing a congruence with B = ǫ−1

1.
And we can choose such congruences as shown by the example above. We conclude
that,
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Theorem 6.4.3

If η is a non-trivial Jacobi field vanishing at a point p = γ(0), then there exists a
deviation vector z such that z(τ) = η(τ), ∀ τ ≥ ǫ. Such a deviation vector can be
chosen for the congruence of geodesics emanating from (focusing into) p.

Thus, if along any given a geodesic, there are several points at which a Jacobi field van-
ishes, that at each of these, we can find hypersurface orthogonal geodesic congruences
with a non-trivial deviation vector matching with the Jacobi field. Given that ‘gravity
is attractive’, does it follow that there will be another point on the given geodesic at
which the Jacobi field will vanish?

Definition 6.4.2 (Conjugate Points:)

p and q on a geodesic γ are said to be conjugate points if there is a Jacobi field vanishing
at both the points.

We have a theorem:

Theorem 6.4.4 (Existence of Conjugate Points:)

Let (M, g), be a space-time such that Rµνξ
µξν ≥ 0 ∀ time-like vectors ξµ. For a time-

like geodesic γ and a point p on it, consider a Jacobi field vanishing at p and the geodesic
congruence emanating from p. Let r ∈ γ be such that the expansion is negative at r.
Then within ∆τ ≤ 3/|θ|r from r, there exist a point q ∈ γ conjugate to p, assuming
that the geodesic extends that far.

The congruence of emanating geodesics is hypersurface orthogonal and hence twist free.
Each term on the right hand side of the Raychaudhuri equation, (6.3), is negative and
hence implies that there exists a q at which the expansion goes to −∞. To show that
this implies that q is conjugate to p, we have to show a Jacobi field vanishing at both
the points.

Consider the matrix equation, J̈ i
j(τ) = Ri

00k(τ)J
k
j(τ) , J(0) = 0, J̇(0) = 1. Then

η(τ) := J(τ)η̇(0) is a Jacobi field vanishing at p = γ(0), for every choice of η̇(0). By
the previous theorem, every such Jacobi field matches with a deviation vector z(τ)
satisfying ż(τ) = B(τ)z(τ) ∀ τ ≥ ǫ. It follows that J̇(τ) = B(τ)J(τ). Now θ =
Tr(B) = dτ (ln det(J)) → −∞ at q = γ(τ∗), implies detJ → 0. Hence, there is a choice
of η̇(0) such that η(τ∗) = 0 (namely the eigenvector of J with zero eigenvalue). We
have thus found a Jacobi field vanishing at p and q i.e. q is conjugate to p.

Note that existence of a conjugate point q is conditional on existence of point r after p
at which expansion of the emanating congruence is negative. There is a stronger version
of the theorem regarding existence of conjugate points, namely,
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Theorem 6.4.5 (Existence of Conjugate points:)

Let γ be a geodesic. Let p1 := γ(τ1) be such that Rµνξ
µξν(τ1) 6= 0. Let Rµνξ

µξν ≥ 0
all along the geodesic, then ∃ τ0 < τ1 < τ2 such that p := γ(τ0) and q := γ(τ2) are
conjugate points provided the geodesic extends that far.

One also has a notion of a point conjugate to a spatial hypersurface.

Let Σ be a spatial hypersurface and ξ be a geodesic congruence orthogonal to Σ. Let
p be a point on a geodesic γ in this congruence. p is said to be conjugate to Σ along γ
if ∃ a non-trivial deviation vector z 6= 0 on Σ and vanishing at p.

The corresponding existence theorem states that If the space-time satisfies the condition
Rµνξ

µξν ≥ 0 and θ|Σ < 0, then there exists a point p conjugate to Σ along a geodesic.

Conjugate points are important because they invalidate the property of geodesics being
curves of (locally) maximum ‘length’ among the time-like curves connecting two given
points. This is sharpened as follow.

Fix p and a q ∈ I+(p) in M . Let λ(α, t) denote a smooth family of time-like curves so
that for each α, we have a time-like curve from p to q with the parameter t ∈ [a, b].
Smoothness means that λ(α, t) constitute an embedded two dimensional surface in M ,
[∂t, ∂α] = 0. Denote T µ∂µ := ∂t , Xµ∂µ := ∂α. This T is a time-like vector (not
normalized to −1) and X is called a deviation vector (not a geodesic deviation vector)
which vanishes at the endpoints. Define,

τ(α) :=

∫ b

a

dtf(α, t) , f(α, t) :=
√

−T µT νgµν(t). (6.8)

Clearly τ(α) is positive and is called the length function. The following results hold
[17]:

dτ(α)

dα
=

∫ b

a

dt [XµT ν∇ν (Tµ/f)]

∴

dτ(α)

dα

∣

∣

∣

∣

α0

= 0 ∀ X ⇒ λ(α0, t) is a geodesic. (6.9)

d2τ(α)

dα2

∣

∣

∣

∣

α0

=

∫ b

a

dt Xµ
{

gµν(T · ∇)2 −RµρσνT
ρT σ

}

Xν . (6.10)

In getting the final simplified expression for the second variation, the extremal curve
is taken to be a geodesic which is affinely parametrised (f = 1 along the geodesic)
and the deviation vector is taken to be orthogonal to the geodesic (thus X is space-
like). The expression in the braces is just the operator appearing in the geodesic
deviation equation. If it is negative definite, then the second variation is negative and
the geodesic, λ(α0) is a local maximum of the length function. It also means that there
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