
N
ot
fo
r
C
ir
cu
la
ti
on

range of values, we have a Reissner-Nordstrom Black Hole. For M2 = Q2, it is known
as an extremal black hole while for M2 < Q2 (r± is complex), one has what is known
as a naked singularity. As before, the Riemann curvature components blow up only as
r → 0 and since there is no one way surface cutting it off from the region of large r, it
is called a naked singularity. We will concentrate on the black hole case.

A kruskal like extension is carried out in a similar manner. The tortoise coordinate r∗
is now given by,

r∗(r) = r +
r2+

r+ − r−
ℓn

∣

∣

∣

∣

r − r+
r+

∣

∣

∣

∣

− r2
−

r+ − r−
ℓn

∣

∣

∣

∣

r − r−
r−

∣

∣

∣

∣

. (5.109)

There are now three regions to be considered:

A : 0 < r < r− ↔ 0 < r∗ <∞ (Stationary)

B : r− < r < r+ ↔ −∞ < r∗ <∞ (Homogeneous)

C : r+ < r <∞ ↔ −∞ < r∗ <∞ (Stationary)

The Kruskal-like coordinates, U, V are to be defined in each of these regions such that
the metric has the same form and then “join” them at the chart boundaries r±. The
corresponding Penrose Diagram, can be obtained by specializing the figure 8.1 and is
discussed in section (8.1).

5.4.2 The Stationary (non-static) Black Holes

The Kerr-Newman Black Holes

It turns out that for the Einstein-Maxwell system, the most general stationary black
hole solution – the Kerr-Newman family – is characterized by just three parameters:
mass, M, angular momentum, J and charge, Q. For J = 0 one has spherically symmetric
(static) two parameter family of solutions known as the Reissner-Nordstrom solution.
The J 6= 0 solution is axisymmetric and non-static. This result goes under the title of
‘uniqueness theorems’ and is also referred to as black holes have no hair. The significance
of this result is that even if a black hole is produced by any complicated, non- symmetric
collapse it settles to one of these solutions. All memory of the collapse is radiated away.
This happens only for black holes!

The black hole Kerr-Newman space-time can be expressed by the following line element
[17, 29]:

ds2 = − η2∆

Σ2
dt2 +

Σ2sin2θ

η2
(dφ− ωdt)2 +

η2

∆
dr2 + η2dθ2 where, (5.110)
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∆ := r2 + a2 − 2Mr +Q2 ; Σ2 := (r2 + a2)
2 − a2sin2θ∆

ω := a(2Mr−Q2)
Σ2 ; η2 := r2 + a2cos2θ

a = 0 , Q = 0 : Schwarzschild solution
a = 0 , Q 6= 0 : Reissner-Nordstrom solution
a 6= 0 , Q = 0 : Kerr solution

These solutions have a true curvature singularity when η2 = 0 while the coordi-
nate singularities occur when ∆ = 0. This has in general two real roots, r± =
M ±

√

M2 − a2 −Q2, provided M2 − a2 − Q2 ≥ 0. The outer root, r+ locates the
event horizon while the inner root, r− locates what is called the Cauchy horizon. When
these two roots coincide, the solution is called an extremal black hole.

When ∆ = 0 has no real root, one has a naked singularity instead of a black hole.
A simple example would be negative mass Schwarzschild solution. The name naked

signifies that the true curvature singularity at η2 = 0 can be seen from far away.
While mathematically such solutions exist, it is generally believed, but not conclusively
proved, that in any realistic collapse a physical singularity will always be covered by
a horizon. This belief is formulated as the “cosmic censorship conjecture”. There
are examples of collapse models with both the possibilities. The more interesting and
explored possibility is the black hole possibility that we continue to explore.

We can compute some quantities associated with an event horizon. For instance, its
area is obtained as:

Ar+ :=

∫

r+

√

det(gind)dθdφ =
√
Σ2

∫

sinθdθdφ = 4π(r2+ + a2) (5.111)

For Schwarzschild or Reissner-Nordstrom static space-time we can identify (−gtt −
1)/2 with the Newtonian gravitational potential and compute the ‘acceleration due to
gravity’ at the horizon by taking its radial gradient. Thus, for a = 0,

Surface Gravity, κ := − 1

2

dgtt
dr

|r=r+ =
r+ −M

r2+
=

r+ −M

2Mr+ −Q2
(5.112)

Although for rotating black holes ‘surface gravity’ can not be defined so simply, it
turns out that when appropriately defined (see equation (8.8) it is still given by the last
equality in the above expression.

There is one more quantity associated with the event horizon of a rotating black hole –
the angular velocity of the horizon, Ω. For the rotating black holes we have two Killing
vectors: ξ := ∂t (the Killing vector of stationarity) and ψ := ∂φ (the Killing vector of
axisymmetry). Their (norms)2’s are given by gtt, gφφ respectively. Both are space-like
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