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One of the Killing vector expressing stationarity of the metric is ξ = ∂t and its (norm)2

is just gtt which vanishes at r = RS. Since the metric is of Lorentzian signature, zero
norm does not mean the vector vanishes. But it does mean that the vector ceases to
be time-like which is needed to interpret t as time (as opposed to one of the spatial
coordinate). In the case of the plane, the coordinate failure is cured by using Cartesian
coordinates which are perfectly well defined everywhere. Likewise, one has to look
for a different set of coordinates which are well behaved around r = RS. These are
usually (for effectively two dimensional space-time) discovered by looking at radial
null geodesics crossing the r = RS sphere and choosing the affine parameters of these
geodesics as new coordinates.

To arrive at these new coordinates, write the metric in the form,

ds2 =

(

1−
RS

r

)

{

−dt2 +

(

1−
RS

r

)

−2

dr2

}

+ r2dΩ2

:=

(

1−
RS

r

)

{

−dt2 + dr2
∗

}

− r2dΩ2 (5.95)

Solving for r∗(r) and choosing r∗(0) = 0 without loss of generality gives,

r∗(r) = r +RSℓn

∣

∣

∣

∣

r −RS

RS

∣

∣

∣

∣

(5.96)

Notice that r∗ ranges monotonically from −∞ to ∞ as r ranges from RS to ∞. This
new radial coordinate r∗ is called the tortoise coordinate. The (t, r∗) part of the metric
is clearly conformal to the Minkowskian metric whose null geodesics are along the light
cone t = ±r∗. Introducing new coordinates (u, v) via

t :=
1

2
(ǫuu+ ǫvv) , r∗ :=

1

2
(−ǫuu+ ǫvv) , ǫu, ǫv = ±1,

u = ǫu(t− r∗) , v = ǫv(t+ r∗) (5.97)

implies −dt2 + dr2
∗
= −ǫuǫvdudv and ds2 = −(1−RS/r)ǫuǫvdudv+ r2dΩ2. So to retain

the signature of the metric and noting that the pre-factor is positive for r > RS requires
ǫu = ǫv = ±1.

As r∗ varies from −∞ to ∞ (r ∈ (RS,∞)), u ∈ (∞,−∞), v ∈ (−∞,∞) for ǫu = +1
(and oppositely for ǫu = −1). Taking ǫu = 1 for definiteness and substituting for r∗ one
sees that,

(

1−
RS

r

)

=
RS

r
e−r/RSe(v−u)/(2RS) (5.98)

ds2 = −
RS

r
e−r/RS

(

e−u/(2RS)du
) (

ev/(2RS)dv
)

+ r2dΩ2
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= −
4R3

S

r
e−r/RSdUdV + r2dΩ2 , with (5.99)

U := −e−u/(2RS) := T −X

V := ev/(2RS) := T +X (5.100)

−UV =

(

r

RS

− 1

)

er/RS = X2 − T 2 (5.101)

The coordinates T,X defined in (5.100) are known as the Kruskal coordinates. Their
relation to the Schwarzschild coordinates (t, r) is summarised below.

F (r) = X2 − T 2 :=

(

r

RS

− 1

)

er/RS

t

RS

= 2 tanh−1

(

T

X

)

(5.102)

X = ±
√

|F (r)| cosh

(

t

RS

)

T = ±
√

|F (r)| sinh

(

t

RS

)

(5.103)

ds2 =
4 R3

S e−r/RS

r

(

−dT 2 + dX2
)

+ r2(T,X) dΩ2 (5.104)

Looking at the figure (5.3) representing the space-time (“extended”) we can understand
the r = RS singularity. The Schwarzschild time is ill defined at Rs since the stationary
Killing vector becomes null. The full line segments at 450 are labelled by r = RS, t =
±∞. The Schwarzschild coordinates provide a chart only for the right (and the left)
wedge. To ‘see’ the top and the bottom wedges one has to use the Kruskal coordinates.
Since the form of the T − X metric is conformal to the Minkowski metric, the light
cones are the familiar ones. one can see immediately that while we can have time-like
and null trajectories entering the top wedge, we can’t have any leaving it. Likewise we
can have such ‘causal’ trajectories leaving the bottom wedge, there can be none entering
it. We have here examples of one-way surfaces. The top wedge is called the black hole

region while the bottom wedge is called the white hole region. The line r = RS (×S2),
separating the top and the right wedges is called the event horizon. In fact the existence
of an event horizon is the distinguishing and (defining) property of a black hole. For
the corresponding Penrose Diagram, see the figure 8.2.

Incidentally, what would be the gravitational red shift for light emitted from the hori-
zon? Well, the observed frequency at infinity would be zero but any way no light will
be received at infinity! For a light source very, very close to the horizon (but on the
out side), the red shift factor will be extremely large. Consequently the horizon is also
a surface of infinite red shift (strictly true for static black hole horizons). Imagine the
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Figure 5.3: Kruskal Diagram for the Schwarzschild space-time

converse now. Place an observer very near the horizon and shine light of some frequency
at him/her from far away. The frequency he/she will see will be ω∞(1 − RS

robs
)−1/2. If

the light shining is the cosmic microwave background radiation with frequency of about
4× 1011Hz, to see it as yellow color light of frequency of about 3× 1015Hz, the observer
must be within a fraction of 10−8 from the horizon. For a Solar mass black hole this is
about a hundredth of a millimeter from the horizon! At such locations the tidal forces
will tear apart the observer before he/she can see any light.

The first, simplest solution of Einstein’s theory shows a crazy space-time! How much
of this should be taken seriously?

What we have above is an ‘eternal black hole’, which is nothing but the (mathematical)
maximally extended spherically symmetric vacuum solution. From astrophysics of stars
and study of the interior solutions it appears that if a star with mass in excess of about
3 solar masses undergoes a complete gravitational collapse, then a black hole will be
formed (i.e. radius of the collapsing star will be less that the RS. The space-time
describing such a situation is not the eternal black hole but will have the analogues of
the right and the top wedges. It will have event horizon and black hole regions. Are
there other solutions that exhibit similar properties? The answer is yes but again these
too are mathematically peculiar.
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