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can compute the precession to first order in RS. Using the Robertson parameterization
(γ = 1, β = 1 for Schwarzschild) ,

g(r) = 1 + γ
RS

r
+ · · ·

f(r) = 1−
RS

r
+

(β − γ)

2

(

RS

r

)2

+ · · · ⇒

f−1(r) = 1 +
RS

r
+

(2− β + γ)

2

(

RS

r

)2

+ · · · , (5.28)

leads to the formula [2],

∆φ = (2 + 2γ − β)πRS

[

1

2

(

1

r+
+

1

r−

)]

(5.29)

The quantity in the square brackets is called the semi-latus-rectum. Usually astronomers
specify an orbit in terms of the semi-major axis a, and the eccentricity e, defined by
r± = (1 ± e)a. The semi-latus rectum, ℓ, is then obtained as ℓ = a(1 − e2) and the
precession per revolution is given by,

∆φ = 3π
2GM

c2
1

ℓ
(5.30)

The precession will be largest for largest RS and smallest ℓ and in our solar system the
obvious candidates are Sun and Mercury. For Mercury ℓ ≈ 5.53 × 107 km while RS

for the Sun is about 3 km. Mercury makes about 415 revolutions per century. These
lead to general relativistic precession of Mercury per century to be about 43′′. This has
also been confirmed. Observationally, determining the precession is tricky since many
effects such as perturbation due to other planets, non-sphericity (quadrupole moment)
of Sun also cause precession. Further discussion may be seen in Weinberg’s book [2].

5.2 Relativistic Cosmology

Let us now leave the context of compact, isolated bodies and the space-times in their
vicinity and turn our attention to the space-time appropriate to the whole universe. We
can make no progress by piecing together space-times of individual compact objects such
as stars, galaxies etc, since we will have to know all of them! Instead we want to look
at the universe at the largest scale. Since our observations are necessarily finite (that
there are other galaxies was discovered only about 90 years ago!), we have to make
certain assumptions and explore their implications. These assumptions go under the
lofty names of ‘cosmological principles’.
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One fact that we do know with reasonable assurance is that the universe is ‘isotropic
on a large scale’. What this means is the following. If we observe our solar system
from any planet, then we do notice its structure, namely other planets. If we observe
the same from the nearest star (alpha centauri, about 4 light years), we will just notice
the Sun. Likewise is we observe distant galaxies, they appear as structure less point
sources (which is why it took so long to discover them). If we look still farther away
then even clusters of galaxies appear as points. We can plot such sources at distances
in excess of about a couple of hundred mega-parsecs on the celestial sphere. What one
observes is that the sources are to a great extent distributed uniformly in all directions.
We summarize this by saying that the universe on the large scale is isotropic about
us. We appear to occupy a special vantage point! One may accept this as a fact and
ponder about what is special about our position and why we occupy it. An alternative
is to reject the idea that there is anything special about our location in the universe
and propose instead that the universe must look isotropic from all locations (clusters of
galaxies). Since universe appears isotropic to us at present, we assume that the same
must be true for other observers elsewhere i.e. there is a common ‘present’ at which
isotropic picture hold for all observers. Denial of privileged position also amounts to
assuming that the universe is spatially homogeneous i.e. at each instant there is a spatial
hypersurface (space at time t) on which all points are equivalent. Isotropy about each
point means that there must be observers (time-like world line) who will not be able to
detect any distinguished direction. The statement that on large scale the universe is
spatially homogeneous and isotropic is called the cosmological principle1. The so-called
standard cosmology is based on spatial homogeneity and isotropy and this is what is
discussed below.

In order to arrive at a suitable form of the metric, we need to characterise precisely
what is meant by spatially homogeneous and isotropic in the context of geometry. The
first task is to be able to identify a spatial slicing of the space-time. This is achieved
by stipulating that there exist a one parameter family of space-like hypersurfaces, Στ ,
foliating the space-time. A space-time is said to be spatially homogeneous if there is a
transitive action of a group of isometries on each of the spatial slices. Here, transitive
action means that given any two points on a Στ , there is a diffeomorphism of Στ on to
itself. This being an isometry means that the metric remains the same. There can be
more than one such isometries connecting two points.

Isotropy is a stipulation associated with observers. Let xµ(t) be a time-like curve
representing worldline of an observer. The observer is said to be an isotropic observer

if at any point p ∈ xµ(t) and for a pair of space-like tangent vectors in the tangent
space at p, there exists an isometry which leaves p and the tangent vector uµ := dxµ

dt
|p

unchanged but maps one direction to the other. A space-time is said to be isotropic

1There is a stronger version, the so-called perfect cosmological principle that asserts that not only
we do not have special position, we are also not in any special epoch. Universe is homogeneous in
time as well. It is eternal and unchanging. This principle leads to the steady state cosmologies. For a
discussion of alternative cosmologies, see [2].
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at every point if there exist a space-time filling congruence of isotropic observers i.e. a
time-like vector field, uµ, whose integral curves represent isotropic observers, variously
called as cosmic observers or fundamental observers.

Isotropy implies that the vector field must be orthogonal to surfaces of homogeneity. For
if it were not, its projection on the tangent space to Στ will give a distinguished direction
which is disallowed by isotropy. If there are more than one family of hypersurfaces
of homogeneity, then isotropy implies that at least one of these must be orthogonal
to the vector field. Note that, isotropy at each point does not imply/require spatial
homogeneity. Nor does spatial homogeneity imply isotropy. However, if we have both
of these, then the isotropy vector field is orthogonal with the surfaces for homogeneity.
We can choose the label τ of the family of hypersurfaces as a time coordinate and given
any choice of spatial coordinates, xi, on a Στ0 carry them along the world lines of the
isotropic observers. This immediately gives a block diagonal form of the matric with
gτi = 0. We can also relabel the surfaces so that the metric coefficient gττ = −1.

Isotropy restricts the form of the spatial metric severely. The Riemann tensor Rijkl of
the spatial metric can be regarded as a symmetric 6× 6 matrix in the antisymmetrized
pairs of indices [ij] and [kl]. If it has distinct eigenvalues, then the corresponding
eigenvectors can be uniquely distinguished and these will be 2-forms. From these, we
can uniquely obtain a distinguished dual 1-form or equivalently, a tangent vector. This
would contradict isotropy. Hence all eigenvalues must be equal i.e. the spatial Riemann
tensor must have constant curvature: Rijkl = λ(gikgjl − gilgjk). As noted in section 2.5,
such constant curvature space are completely classified and lead to the line-elements
given in (2.28).

Computation of the Einstein tensor, proceeds as in the case of the Schwarzschild metric,
and leads to the non-vanishing components,

Γτ
ij =

ȧ

a
gij , Γi

τj =
ȧ

a
δij , Γi

jk = Γ̂i
jk (5.31)

Rττ = −3
ä

a
, Rij = gij

(

ä

a
+ 2

ȧ2

a2
+ 2

k

a2

)

(5.32)

Here the hatted Γ denotes the connection corresponding to the comoving metric which
is normalized so that the Ricci scalar, R̂ = 6k , k = ±1, 0.

5.2.1 Friedmann-Lamaitre-Robertson-Walker Cosmologies

Universe is of course not empty. The stress tensor must also be consistent with the
assumptions of homogeneity and isotropy. This turns out to be of the form of a perfect
fluid:

Tµν = ρ(τ)uµuν + P (τ)(uµuν + gµν), (5.33)
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