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Chapter 5

Elementary Phenomenology

General relativity brought in a huge conceptual change regarding the nature of gravi-
tation. It introduced a sophisticated model for possible space-times, required it to be
dynamical and provided a specific equation determining space-times appropriate in var-
ious physical contexts. Within this model, the motion of test bodies under Newtonian
gravitational force is understood as geodesics of corresponding space-time. This forms
the basis for the solar system tests of general relativity. As we saw in the discussion
of wave motion in geometrical optics approximation, light too responds to gravity fol-
lowing light-like geodesics. Apart from these test bodies implications, general relativity
impacts compact stars and their stability, strongly suggests new types of objects called
black holes, points to the possibility of a ‘singular’ beginning for an expanding universe
and makes a brand new prediction of gravitational waves. This chapter is arranged
according to these different implications of the theory.

In the following, we use the geometrized units: c = 1, G = 1 and the Einstein equation
is taken in the form,

Rµν −
1

2
Rgµν + Λgµν = 8πTµν . (5.1)

5.1 Geodesics and the classic tests

The first set of predictions were in the context of solar system where the Newtonian
theory was applied and tested extensively. To make new predictions based on the idea
of planetary motions being geodesics, we have to first choose a space-time appropri-
ate for our solar system. In the section 2.4 we have already introduced the idealized
solar system. We noted that the appropriate space-time should be time independent,
spherically symmetric and should satisfy the source-free Einstein equation in the region
exterior to the Sun.
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Since the coordinates are arbitrary and have no particular physical interpretation, the
notion of a symmetry cannot be based on specific coordinate transformation unless
suitable coordinates can be singled out. It is convenient to consider first infinitesimal
symmetries.

Consider a vector field ξµ(x) which enables us to make an infinitesimal coordinate
transformation, xµ → x′µ(x) := xµ + ǫξµ(x). Under this, the metric transforms as

g′µν(x+ ǫξ) =
∂xα

∂x′µ

∂xβ

∂x′ν
gαβ(x)

∴ δgµν := g′µν(x)− gµν(x) ≈ −ǫ(ξα∂αgµν + ∂µξ
α gαν + ∂νξ

α gαµ)

= −ǫ(∇µξν +∇νξµ) =: − ǫLξgµν (5.2)

If it so happens that δgµν = 0 under the infinitesimal transformation, then we say that
the vector field is aKilling vector field and satisfies the Killing equation∇µξν+∇νξµ = 0.
The infinitesimal transformation is said to be an infinitesimal isometry. The calculation
says that if we move along an infinitesimal curve from a point p, in the direction
given by ξµ(p), then the metric does not change. It also means that the metric is
independent of the parameter, s, labelling points on the integral curve of ξ, defined by
dxµ(s)

ds
= ξµ(x(s)). This equation being an ordinary differential equation, it always has a

local solution and thus integral curves always exist for smooth vector fields. It however
is not always possible to find a hypersurface Σ (a surface of n - 1 dimension in an n
dimensional manifold), to which a given vector field is orthogonal. The condition for
a vector field ξµ to be hypersurface orthogonal is that 0 = ξλ(∇µξν − ∇νξµ) + cyclic
permutations of (λµν). This is a form of the Frobinius theorem [17]. We note that
linear combinations of Killing vectors is a Killing vector and the commutator of two
Killing vectors [ξµ∂µ , ην∂ν ] = (ξ · ∇ηα − η · ∇ξα)∂α, is also a Killing vector. We are
now ready to characterize static, spherically symmetric space-times.

A space-time is said to be stationary if there exists a time-like Killing vector, ξ. It
is static, if the vector field is hypersurface orthogonal. It is said to be spherically

symmetric if there exist three space-like Killing vectors, ξa such that [ξa , ξb] = ǫ c
ab ξc

and the set of points reached from a given point by all possible shifts along the Killing
vectors ξa (i.e. an orbit of SO(3)) is a 2-sphere.

Let t be the parameter along the stationary Killing vector. Staticity implies there is
a Σ which is orthogonal to ξ and therefore Σ is space-like. For an arbitrary choice of
coordinates xi on Σ, label integral curve of ξ passing through p ∈ Σ, by the spatial
coordinates of p and assign the same value, t to all points of Σ. For points q on the
integral curve through p, assign the coordinates (t′, xi) where t′ is the value of the
Killing parameter and xi are the same spatial coordinates of p. ξ being a Killing vector
implies the metric gµν is independent of t. The staticity implies that gti(x

j) = 0. The
metric is now invariant also under t → −t.

The orbit spheres of spherical isometries lie within Σ and each sphere has an induced
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metric on it which much be proportional to the standard metric on an S2. Label an
orbit sphere by its areal radial coordinate, r :=

√

area/(4π). Choose an orbit sphere
and introduce the standard spherical polar coordinates (θ, φ) on it. On this, the metric
takes the form ∆s22 = r2(∆θ2 + sin2θ∆φ2). Consider space-like geodesics emanating
orthogonally from this sphere and and carry the angular coordinates of the point along
the geodesics. This introduces the spatial coordinates r, θ, φ throughout Σ. The spatial
metric then takes the form ∆s23 = g(r)∆r2 + ∆s22. The orthogonality of geodesics
implies that grθ = 0 = grφ. This procedure of setting up a coordinate system using the
availability of the Killing vectors restricts the form of the metric to [17],

∆s2 = − f(r)∆t2 + g(r)∆r2 + r2(∆θ2 + sin2θ∆φ2) .

The coordinates themselves are called the Schwarzschild coordinates. Note that there
is freedom to scale the time coordinate by a constant which may be absorbed in f .
This freedom will be used below. The two unknown functions f, g are determined by
the Einstein equation, Rµν = 0 since exterior to the Sun, there is no matter.

Straight forward application of the definitions (see section 15.5) leads to (′ denotes d
dr
)

:

Γα
βγ t r θ φ

tt 0 1
2
g−1f ′ 0 0

tr 1
2
f−1f ′ 0 0 0

tθ 0 0 0 0
tφ 0 0 0 0
rr 0 1

2
g−1g′ 0 0

rθ 0 0 r−1 0
rφ 0 0 0 r−1

θθ 0 −rg−1 0 0
θφ 0 0 0 cotθ
φφ 0 −g−1rsin2θ −sinθcosθ 0

Rtt =
f ′′

2g
−

1

4

(

f ′

g

)(

g′

g
+

f ′

f

)

+
f ′

rg
;

Rrr = −
f ′′

2f
+

1

4

(

f ′

f

)(

g′

g
+

f ′

f

)

+
g′

rg
;

Rθθ = 1−
r

2g

(

−
g′

g
+

f ′

f

)

− g−1 ;

Rφφ = sin2θ Rθθ; all other components are zero. (5.3)
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