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If the body is spinning as well, then the force may act with/without generating a
torque. In such a case of torque-free, accelerated motion of a small spinning body,
we write dSµ

dτ
= ξvµ since in the rest frame, the spin should not change its direction.

Preservation of S · v = 0 then determines, ξ = S · F/m0 and we get,

vν∇νS
µ = (Sαv · ∇vα) vµ =

(

S · F
m0

)

vµ . (3.4)

Thus under torque-free, accelerated motion, the spin vector satisfies an equation (the
first equality) known as the Fermi Transport Equation. For geodesic motion, (Fµ = 0)
it reduces to the parallel transport equation for the spin vector.

For a small spinning body or an idealised point spin, we may have only torque-free
motion.

Even for the free fall motion, we should appreciate that the spin vector will ‘precess’ in
general even though it is non-precessing in the rest frame. This precession - or change
of direction of the spin - is defined relative to some fixed direction defined by a distant
star or quasar. This can be computed by solving the parallel transport equation for Sµ

[2] and is sensitive to the curvature2 (‘geodetic precession/De Sitter precession’) as well
as the spin of the rotating body (‘frame dragging effect/Lense-Thirring effect’) warping
the space-time geometry. An experiment to detect these precessions in the near earth
geometry, thereby testing general relativity was proposed by Pugh and Schiff in 1959
[9] and was realised some 45 years later by the Gravity Probe B mission [10].

For an extended body though, a torque will in general be induced due to the differential
forces on parts of the extended body and these can be obtained from the deviation
equation (15.11). For instance, even though earth’s motion around the sun may be well
approximated as a free fall (geodesic), there is a torque induced on the earth’s spin by
the tidal forces causing precession of the equinoxes [8]. For analysis of general motion
of an extended body, please see [11, 12, 13, 14, 15].

3.2 Wave motion

Electromagnetic waves, especially light, forms an important means of probing and learn-
ing about nature. In Minkowski space-time, their propagation is governed by the wave
equation, ηµν∂µ∂νFαβ = 0 which follows from the Bianchi identity and vacuum equation.
The generalization of source free Maxwell equations to general space-time is obtained
by replacing the coordinate derivatives by covariant derivatives:

∇µF
µν = 0 , ∇λFµν +∇µFνλ +∇νFλµ = 0 (3.5)

2Even in the absence of curvature i.e. in special relativity, the spin does precess relative to the

distant stars and is know as the Thomas precession.
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In the second equation, the Bianchi identity, the covariant derivative is redundant in
our space-times with zero torsion. It can be solved identically by Fµν := ∇µAν −∇νAµ,
with Aµ defined to within an addition of a term ∇µΛ for an arbitrary scalar Λ. This is
the usual gauge freedom of electromagnetism. Substitution in the first equation leads
to,

�Aµ −RµαA
α −∇µ(∇ · A) = 0 , � := gµν∇µ∇ν (3.6)

and we have used the Ricci identity in getting the last two terms. Fixing the gauge by
imposing ∇ ·A = 0, the equation reduces to an inhomogeneous wave equation with the
Ricci tensor of the background space-time serving as a non-electromagnetic source.

We can also derive a wave equation directly for the gauge invariant Fµν by operating on
the Bianchi identity by ∇µ and using the first equation together with the Ricci identity
to get,

�Fµν −RµαF
α
ν +RναF

α
µ +RµναβF

αβ = 0 . (3.7)

For typical applications in observational astronomy, one uses the geometrical optics

approximation which is developed assuming a form of solution whose amplitude varies
very slowly compared to the variation of its phase. The scale of variation of the geom-
etry eg inverse of square root of non-zero curvature components, is also assumed large
compared to the scale of variation of the phase. Thus, if λ denotes the scale of variation
of the phase and L denotes the smaller of the scales of variations of the geometry, the
amplitude and polarization, then λ ≪ L. The approximation is developed as a formal
expansion in the parameter ǫ := λ/L assuming that the phase Φ(x) has no ‘correction
terms’ while the amplitude has an expansion in power series in ǫ. Thus, we consider
solution of the form,

Fµν(x) =
{

ǫ0µν(x) + ǫ ǫ1µν(x) + o(ǫ2)
}

sin(ǫ−1Φ(x)) := ǫµνsin(ǫ
−1Φ) (3.8)

It is more common to take the ansatz as a (complex amplitude)× exp(iΦ) and then
take real parts. We have taken a real form directly and choice of sine vs the cosine form
does not matter. Substituting in the (3.5, 3.7) and denoting kµ := ∇µΦ, we get,

0 = ǫ−1cos(ǫ−1Φ)(
∑

(λµν)

kλǫµν) + sin(ǫ−1Φ)(
∑

(λµν)

∇λǫµν) (3.9)

0 = ǫ−1cos(ǫ−1Φ)(kµǫµν) + sin(ǫ−1Φ)(∇µǫµν) (3.10)

0 = −ǫ−2sin(ǫ−1Φ)((k · k)ǫµν (3.11)

+ ǫ−1cos(ǫ−1Φ)(2k·∇ǫµν + ǫµν∇ · k ) (3.12)

+ sin(ǫ−1Φ)( �ǫµν − Rµαǫ
α
ν +Rναǫ

α
µ +Rµναβǫ

αβ ) (3.13)

Equating terms singular as ǫ → 0 and noting that the sine and cosine dependences have
to vanish separately, we get the defining equations of the geometrical optics approxi-
mation:

∑

(λµν)

kλǫ
0
µν = 0 , kµǫ0µν = 0 , k · k = 0 (3.14)
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2k·∇ǫ0µν + ǫ0µν∇ · k = 0 . (3.15)

The first of these equations can be solved identically by taking ǫ0µν := kµǫν−kνǫµ with ǫµ
being defined to within kµζ. The second equation then gives k·ǫ = 0 (transversality) and
this is preserved under the ζkµ addition. The transversality implies that ǫµ cannot be
time-like and must be space-like modulo addition of ζkµ. Evidently, the norm ǫ · ǫ =: a2

is preserved under the shift and is positive for a non-trivial solution. It is called the
scalar amplitude [8]. Substituting ǫ0µν in the last equation leads to,

{(2k · ∇kµ)ǫν + kµ(2k · ∇ǫν + ǫν∇ · k)} − {(µ ↔ ν)} = 0 (3.16)

The first term is zero because k · ∇kµ = kν∇ν∇µΦ = kν∇µ∇νΦ = 1
2
∇µ(k · k) = 0.

Hence kµ is tangent to a null geodesic. Putting ǫµ := aEµ, E · E = 1 and substituting
in (3.16) leads to,

2k · ∇a+ a∇ · k = 0 , k · ∇Eµ = 0 . (3.17)

In getting the second equation we observe that kµk · ∇Eν − µ ↔ ν = 0 implies that
k · ∇Eν = ηkν and exploiting the freedom to change Eµ → Eµ + ζ

a
kµ, we can arrange

η = 0. The resultant Eµ is called the polarization vector.

To summarise, the geometrical optics approximation applied to Maxwell equations and
the wave equation imply that the wave propagates along a null geodesic with its scalar

amplitude satisfying the transport equation and its polarization vector parallelly trans-

ported along the geodesic. This forms a basic ingredient in astronomical observations.
One of the main applications is the computation of red-shifts.

Application to frequency shifts: Consider a source following a time-like trajectory, emits
light at a point P which propagates along a null geodesic. It is received by an detector,
following its own time-like trajectory, at a point Q. The frequencies at the emission
and reception points are in general different and we would like to know the relation
between them.

Let Sµ, Dµ and kµ denote the 4-velocities of the source, detector and the light respec-
tively. We have S2 = −1, D2 = −1, k2 = 0. Furthermore the frequencies of the light,
measured at P,Q are given by, ωP := k · S and ωQ := k ·D. The light vector satisfies
k · ∇kµ = 0.

We have have already noted while discussing local speed, for time-like world-lines, that
the local (physical) velocity βi and the coordinate velocity V i are related by V i =
βi/

√

−g00 − g0i/(−g00). Defining γ := 1/
√

1− β2, β2 := gijβ
iβj, we can express a

normalized, time-like 4-vector as: vµ = γ
√

−g00(1, V i). In a similar manner, for a light-

like world-line, we define Ki := ki/k0 and introduce k̂i :=
√

−g00Ki + g0i/
√

−g00 ↔
Ki = k̂i/

√

−g00− g0i/(−g00). It follows that k ·k = 0 ⇒ k̂2 := k̂ik̂jgij = 1. This allows
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us to write: kµ = k0(1, Ki). It is straight forward to obtain, ω := k · v = − γk0√
−g00

(1 −

βcosθ) where, β :=
√

β2 and cosθ is defined through gij k̂
iβj := βk̂cosθ, k̂ :=

√

k̂2.
With these, we now write,

ω(P ) := k · S = −k0 γS(1− βScosθkS)
√

−g00

∣

∣

∣

∣

∣

P

(3.18)

ω(Q) := k ·D = −k0 γD(1− βDcosθkD)
√

−g00

∣

∣

∣

∣

∣

Q

(3.19)

ω(Q)

ω(P )
=

(

k0(Q)

k0(P )

)[

γD(1− βDcosθkD)(Q)

γS(1− βScosθkS)(P )

]

[

√

−g00(P )
√

−g00(Q)

]

(3.20)

The first factor is the ratio of the k0 which are defined up to a constant scaling due to
the affine parametrization of the null geodesic. This constant drops out in the ratio.
It is the geodesic equation satisfied by the light ray that will determine this ratio.
The second factor involves the direction of the light ray as well as the physical local
speed of the source and the detector and corresponds in the special relativistic context,
to the Doppler shifts due to motions of the source and the detector relative to their
local coordinates. The last factor is the ratio of the metric coefficients and denotes the
contribution of the gravitational shift.

We will consider three specific types of space-times and obtain the general frequency
shifts. These are (i) static space-times, relevant for stellar scale red-shifts, (ii) cosmo-
logical space-times which are spatially homogeneous, isotropic and non-stationary, and
(iii) stationary but non-static space-times, specifically the Kerr black hole. For these,
we will obtain the first factor by using the geodesic equation: k · ∂k0 + Γ0

µνk
µkν = 0.

Special case of Minkowski space-time will reproduce the special relativistic frequency
shifts.

Static space-times: These have ∂0gµν and g0i = 0. This immediately gives Γ0
00 = 0 =

Γ0
ij and Γ0

0i =
1
2
∂i ln |g00|. We have used g00 = 1/g00 when g0i = 0. Therefore,

0 = k · ∂k0 + k0ki∂i ln |g00|
= k · ∂

{

ln k0 + ln |g00|
}

, ∵ ki∂i = k · ∂ − k0∂0 (3.21)

∴
k0(Q)

k0(P )
=

g00(P )

g00(Q)
and

ω(Q)

ω(P )
=

[

γD(1− βDcosθkD)(Q)

γS(1− βScosθkS)(P )

]

[

√

−g00(P )
√

−g00(Q)

]

(3.22)

Cosmological Space-times: We choose the form of the metric as, ∆s2 = −∆t2 +
a2(t)ḡij∆xi∆xj where the 3-metric ḡ is independent of t and is homogeneous. a(t) is
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