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Chapter 1

From Newton to Einstein:

Synthesis of General Relativity

1.1 Space, Time, Observers

We all have an intuitive sense of what space is and what time is. Space is something in
which ‘bodies move’ and time is something that sequences these movements. To make
these notions quantitative we need to adopt a procedure to assign numbers to ‘locations’
and put time stamps on events. It is in terms of these assignments or coordinates that
we make the space time explicit and it is this explicit model that is used in physics. All
the tourist maps we use and the scheduling we struggle to achieve are based on precisely
such ‘made explicit’ space and time. There is no unique way to assign coordinates and

time stamps. Herein enters an observer (= adopted procedure).

With such a procedure at hand, it is possible to formulate the phenomenon of motion
of bodies in terms of kinematics - description of motion and dynamics - laws of motion.
The key point to note is that there is always an observer implicit directly in kinematics
and indirectly in dynamics.

Einstein now observes several examples of relationships between classes of observers
and the phenomena being described. Consider the problem of determining the distance
between two points say by laying down meter sticks. The answer will evidently depend
on how the meter sticks are laid. Drawing on the experience of measuring distances
along short straight lines and using the procedure of assigning the Cartesian coordinates

an observer can determine the distance between two points with Cartesian coordinates
(x1, y1, z1) and (x2, y2, z2) to be given by

Distance2 = (x2
− x1)2 + (y2 − y1)2 + (z2 − z1)2 .

Now the interesting observation is that all observers assigning Cartesian coordinates will
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verify that the distance between two given points is numerically the same (assuming the
same units are used!). Hence, as far as the problem of determining distance between
points is concerned, any of this class of observers will do fine. Mathematically, the
coordinates assigned by any two observers are related by the transformation law:

(x′)i =
3

∑

j=1

Ai
jx

j +Bi , where Ai
j is a 3-by-3 orthogonal matrix.

These leave the Cartesian nature of coordinates unchanged as well as the expression
for distance invariant. For Bi = 0, Einstein calls this relativity of orientation.

The next example he considers is the phenomenon of motion of particles, governed by
Newton’s laws formulated in the so-called inertial frames. The class of observers whose
descriptions are equivalent are those who are in uniform relative motion, possibly dif-
fering in the orientation of the axes of the Cartesian frames and possibly with difference
in the ‘zero’ of their clocks. This is of course Galilean relativity. What is left invariant
is the mass× accelaration.

When phenomenon of motion is extended to include electromagnetic field and the mo-
tion of charges under their influence, a contradiction arises. Analysis of the famous
moving magnet and conductor problem in the magnet’s rest frame and the conductor’s
rest frame presents two alternatives. Either have Galilean transformations among the
electric and magnetic fields so as to get the same force in both the frames or, allow a new
transformation law for the force so as to be consistent with the Lorentz transformations
which leave the Maxwell’s equation invariant. Which one of these is ‘correct’?

On the one hand, confirmation of constancy of speed of light puts Lorentz transfor-
mations on a firmer ground and on the other hand Galilean transformations contain
an unwarranted assumption of observer independence of simultaneity. Einstein chooses
Lorentz transformations and we have the theory of special theory. What two observers
in uniform relative motion must agree on is the same value of the speed of light in

vacuum.

This affects the kinematics in a profound manner. We will discuss the derivations a
little later but let us note at this stage that length of a stick measured by a moving
observer is a little less than that measured by an observer at rest with respect to the
stick. Likewise when an observer compares the successive ticks of a moving clock with
a stationary clock, the moving clock always ticks slower. These consequences of the
demand of invariance of the speed of light go by the names length contraction and time

dilation respectively.

The new kinematics does not leave invariant the other Newtonian law, namely the law
of gravitational force. Once again we face a similar dilemma as before: Do we limit the
applicability of the new kinematics or do we modify the law of gravitational force?

There is a peculiarity with the law of gravitation. The ‘charge’ that enters in the force
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law, the gravitational mass, happens to be numerically equal to the measure of the
inertia of a body, its inertial mass. This makes different bodies of varied compositions,
weights fall to the ground with the same acceleration. There is no ‘reason’ for such
conceptually widely different quantities to be numerically equal, except perhaps it is a
clue to the nature of gravitational interaction.

All bodies fall at the same rate also means that an observer does so too and therefore,
relative to the observer, the bodies continue to maintain their state of uniform motion.
In the absence of any force of any other origin, this just means that the freely falling
observer is the Newtonian inertial observer! The clue of equality of the two masses
provides us with a definition of inertial frames as precisely those in which gravitational
field cannot be detected. Furthermore, an observer who detects gravitational field, is
accelerated relative to an inertial frame. Thus we can trade-off a gravitational field,
for an observer accelerated relative to an inertial observer. Since relatively accelerated
observers are involved, Lorentzian kinematics is not immediately applicable. Rotating
platforms provide a convenient ‘laboratory’ for a thought experiment.

Imagine determining the circumference and the radius of a rotating platform. The
measuring sticks tangential to the circumference will undergo Lorentz contraction while
those along the radial direction will not be contracted. Thus the ratio of the circum-
ference to radius of the rotating platform, obtained by taking the ratio of the number
of measuring sticks along the circumference and the number along the radius, will be
greater than 2π [1] while that of a non-rotating platform will be 2π. Hence, the ge-

ometry on a rotating platform will be non-Euclidean. But by equivalence principle,
acceleration is equivalent to a gravitational field (locally) and therefore one must infer
that gravity affects the geometry. This gravitational field is of course inferred by the
observer who is co-rotating with the platform. We will return to the rotating platform
later again.

Thus the response (motion) of bodies to a gravitational field is independent of their
masses and the gravitational field also changes the geometry of space. Since a gravita-
tional field is produced by masses, the spatial geometry is also influenced by the masses.
Thus, geometry of space is changeable. This is quite a novel inference! Does space-time

geometry also change with distribution of masses?

This could be so if clocks tick at different rates in a gravitational field. Consider an
observer stationed at a height of h from the ground and another observer freely falling.
The freely falling observer will have a speed v = gt relative to the stationary observer
after a time t and will have a fallen through a distance of s = 1

2
gt2. As per Lorentzian

kinematics, the rate of freely falling clock will be,

∆τfalling = ∆τfixed
√

1− g2t2 = ∆τfixed
√

1− 2gs = ∆τfixed
√

1− 2∆Φgrav

The final expression is depends only on the gravitational potential difference between
the stationary observer and instantaneous position of the freely falling observer.
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It is clear from this argument that the gravitational potential affects the rates of clocks
and since gravitational potential changes with the distribution of masses, so does the
clock rates and hence the space-time geometry too is affected by distribution of masses.

Thus, replacing gravitational field by an accelerated observer and the Lorentzian kine-
matics leads us to a space-time geometry which is affected by presence of gravitational
field which in turn depends on distribution of masses. One puzzle still remains. If
gravitational field can be ‘gotten rid off’ as in a freely falling lift, is gravity ‘fictitious’?
It can’t be. After all earth is freely falling in the gravitational field of the sun and real
tides - which are effects of Newtonian gravity - do exist! So, while metrical property
within a freely falling lift will be that in the absence of gravitational field, something
else must remain encoded in the geometry that will account for the tides.

From the examples of two dimensional surfaces, we know that the non-Euclidean ge-
ometries have non-zero curvature. This is most easily seen on the surface of a sphere.
Consider a triangle made up of sides which are portions of great circles on the sphere.
If a triangle is ‘large’, with two points on the equator and the third one the north pole
(say), then the sum of angles is greater than 1800 degrees. Now bring the two equato-
rial points closer to the pole. Note that the generic latitude is not a great circle (the
longitudes always are). So the small triangle will look more and more ‘distorted’, but
the sum of its angles will get closer and closer to 1800. In short, non-zero curvature is
detectable as deviation from Euclidean geometry, only for larger triangles. The same
is true for tidal forces in Newtonian gravity. The differential forces on two extremes
of a body are larger when the separation of the two extremes is larger. Thus we see a
parallel between the effects of curvature in geometry and the tidal forces of gravity.

At a qualitative level then, we see that effects of gravitational field can be mimicked
by a space-time geometry which has curvature which in turn must depend on the
distribution of masses since Newtonian gravitational potential does. The observed
equality of gravitational mass and inertial mass, combined with Lorentzian kinematics
leads to replacing gravitational interaction as revealing a space-time geometry which is
curved in general and is changeable. Space-time is a dynamical entity. In the process,
the principle of relativity also gets extended to all observers regardless of their state of
motion. As Einstein says[1]: “Theory of relativity is intimately connected with a theory

of space and time ...” In the subsequent chapters we will formalise and make these
arguments precise and quantitative.

1.2 General Relativity and Space-Time Arenas

We will proceed somewhat informally and heuristically to arrive at the mathematical
model for space-time. The precise details are given in chapter 15.

We have already alluded to the assignment of coordinates (and time stamps) as the a
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