
Is there a faster method?

Venkatesh Raman

Theoretical Computer Science group
The Institute of Mathematical Sciences

Chennai

November 6, 2014



Outline

Introduction

Find my number

Finding the GCD of two numbers

Finding the maximum

Sorting

Matrix Multiplication

Multiplying two n digit numbers

Testing whether a number is prime

Traveling Salesperson Problem (TSP) and others

Conclusions



Computers, Computing, Science

I What do we use Computers for?
I see mails, videos
I connect with friends (facebook, ...)
I search for something
I buy/sell/pay
I solve our computational problems

I We want it to solve our problems fast

I How fast is good enough? Is there a limit?

I Clearly the time is a function of the size and the complexity of
the problem (apart from the operating system, processor
speed, the internet speed, the compiler speed etc)

I How fast (as a function of the size of the input) is feasible?

I How do we measure the time as a function of the size?

If we can’t measure, we can’t compare, we can’t improve
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What this talk is about?

I Discuss ONE way to measure problem complexity through
Algorithms in a way independent of computers, systems,
processor, compiler, ...

I Measure the time for some well known problems/algorithms
(a quick tour)

I Discuss limitations to get faster solutions
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Find my number

I I think of a number between 1 and 1024, can you find it by
asking me at most 10 questions?
at most 10 questions requiring YES or NO answers

I What if the number is between 1 and N? log2N questions.

I Can we do with fewer questions? — NO
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Find my number and Computing – What is the connection?

I Much of our computer usage is about searching

I Searching a database (google, train reservation, ....)

I Searching for a solution among many possible solutions

I logN is a very slow growing function. For example, for
N = 1030, log2N < 120, and so logarithmic solutions are very
efficient
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Algorithm 1 for finding GCD of two numbers:

GCD of m and n is the greatest common divisor of m and n.

1. List out the divisors of both numbers

2. Identify the common ones and pick the largest one.

Example: GCD(63, 105)
Divisors of 63 = 1, 3, 7, 9, 21, 63
Divisors of 105 = 1, 3, 5, 7, 15, 21, 35, 105
GCD = 21

I How many operations does this algorithm perform?

I How many divisions?

I 63 + 105? 61 + 103? 7 + 10?

I If the numbers are m and n, then roughly
√
m +

√
n.

I Is there a faster method? – YES.
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Euclid’s Algorithm (300 BC): given m, n,m ≤ n

I While m does not divide n {
r = n mod m
n = m
m = r }

I Output m.

Example: 63, 105

I r = 42,m = 42, n = 63

I r = 21,m = 21, n = 42

Output 21.
How many divisions?
Three (recall method 1 did about 17 divisions)
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Another example comparing the two algorithms

GCD(1071, 17850)
I Method 1

I Divisors of 1071 = 1, 3, 7, 9, 17, 21, 51, 63, 119, 357, 1071
I Divisors of 17850 = 1, 2, 3, 5, 6, 7, 10, 14, 15, 17, 21, 30, 35,

........ 119, ... 357, .... 17850
I GCD = 357

Makes more than 130 divisions.
I Euclid’s Algorithms execution:

I m = 1071, n = 17850
I m = 714, n = 1071
I m = 357, n = 714
I Output 357.

Makes 4 divisions

Questions: Why is Euclid’s algorithm correct? Will it always
terminate? Why is it fast? How fast?



Another example comparing the two algorithms

GCD(1071, 17850)
I Method 1

I Divisors of 1071 = 1, 3, 7, 9, 17, 21, 51, 63, 119, 357, 1071

I Divisors of 17850 = 1, 2, 3, 5, 6, 7, 10, 14, 15, 17, 21, 30, 35,
........ 119, ... 357, .... 17850

I GCD = 357

Makes more than 130 divisions.
I Euclid’s Algorithms execution:

I m = 1071, n = 17850
I m = 714, n = 1071
I m = 357, n = 714
I Output 357.

Makes 4 divisions

Questions: Why is Euclid’s algorithm correct? Will it always
terminate? Why is it fast? How fast?



Another example comparing the two algorithms

GCD(1071, 17850)
I Method 1

I Divisors of 1071 = 1, 3, 7, 9, 17, 21, 51, 63, 119, 357, 1071
I Divisors of 17850 = 1, 2, 3, 5, 6, 7, 10, 14, 15, 17, 21, 30, 35,

........ 119, ... 357, .... 17850

I GCD = 357

Makes more than 130 divisions.
I Euclid’s Algorithms execution:

I m = 1071, n = 17850
I m = 714, n = 1071
I m = 357, n = 714
I Output 357.

Makes 4 divisions

Questions: Why is Euclid’s algorithm correct? Will it always
terminate? Why is it fast? How fast?



Another example comparing the two algorithms

GCD(1071, 17850)
I Method 1

I Divisors of 1071 = 1, 3, 7, 9, 17, 21, 51, 63, 119, 357, 1071
I Divisors of 17850 = 1, 2, 3, 5, 6, 7, 10, 14, 15, 17, 21, 30, 35,

........ 119, ... 357, .... 17850
I GCD = 357

Makes more than 130 divisions.
I Euclid’s Algorithms execution:

I m = 1071, n = 17850
I m = 714, n = 1071
I m = 357, n = 714
I Output 357.

Makes 4 divisions

Questions: Why is Euclid’s algorithm correct? Will it always
terminate? Why is it fast? How fast?



Another example comparing the two algorithms

GCD(1071, 17850)
I Method 1

I Divisors of 1071 = 1, 3, 7, 9, 17, 21, 51, 63, 119, 357, 1071
I Divisors of 17850 = 1, 2, 3, 5, 6, 7, 10, 14, 15, 17, 21, 30, 35,

........ 119, ... 357, .... 17850
I GCD = 357

Makes more than 130 divisions.

I Euclid’s Algorithms execution:
I m = 1071, n = 17850
I m = 714, n = 1071
I m = 357, n = 714
I Output 357.

Makes 4 divisions

Questions: Why is Euclid’s algorithm correct? Will it always
terminate? Why is it fast? How fast?



Another example comparing the two algorithms

GCD(1071, 17850)
I Method 1

I Divisors of 1071 = 1, 3, 7, 9, 17, 21, 51, 63, 119, 357, 1071
I Divisors of 17850 = 1, 2, 3, 5, 6, 7, 10, 14, 15, 17, 21, 30, 35,

........ 119, ... 357, .... 17850
I GCD = 357

Makes more than 130 divisions.
I Euclid’s Algorithms execution:

I m = 1071, n = 17850

I m = 714, n = 1071
I m = 357, n = 714
I Output 357.

Makes 4 divisions

Questions: Why is Euclid’s algorithm correct? Will it always
terminate? Why is it fast? How fast?



Another example comparing the two algorithms

GCD(1071, 17850)
I Method 1

I Divisors of 1071 = 1, 3, 7, 9, 17, 21, 51, 63, 119, 357, 1071
I Divisors of 17850 = 1, 2, 3, 5, 6, 7, 10, 14, 15, 17, 21, 30, 35,

........ 119, ... 357, .... 17850
I GCD = 357

Makes more than 130 divisions.
I Euclid’s Algorithms execution:

I m = 1071, n = 17850
I m = 714, n = 1071

I m = 357, n = 714
I Output 357.

Makes 4 divisions

Questions: Why is Euclid’s algorithm correct? Will it always
terminate? Why is it fast? How fast?



Another example comparing the two algorithms

GCD(1071, 17850)
I Method 1

I Divisors of 1071 = 1, 3, 7, 9, 17, 21, 51, 63, 119, 357, 1071
I Divisors of 17850 = 1, 2, 3, 5, 6, 7, 10, 14, 15, 17, 21, 30, 35,

........ 119, ... 357, .... 17850
I GCD = 357

Makes more than 130 divisions.
I Euclid’s Algorithms execution:

I m = 1071, n = 17850
I m = 714, n = 1071
I m = 357, n = 714

I Output 357.
Makes 4 divisions

Questions: Why is Euclid’s algorithm correct? Will it always
terminate? Why is it fast? How fast?



Another example comparing the two algorithms

GCD(1071, 17850)
I Method 1

I Divisors of 1071 = 1, 3, 7, 9, 17, 21, 51, 63, 119, 357, 1071
I Divisors of 17850 = 1, 2, 3, 5, 6, 7, 10, 14, 15, 17, 21, 30, 35,

........ 119, ... 357, .... 17850
I GCD = 357

Makes more than 130 divisions.
I Euclid’s Algorithms execution:

I m = 1071, n = 17850
I m = 714, n = 1071
I m = 357, n = 714
I Output 357.

Makes 4 divisions

Questions: Why is Euclid’s algorithm correct? Will it always
terminate? Why is it fast? How fast?



Another example comparing the two algorithms

GCD(1071, 17850)
I Method 1

I Divisors of 1071 = 1, 3, 7, 9, 17, 21, 51, 63, 119, 357, 1071
I Divisors of 17850 = 1, 2, 3, 5, 6, 7, 10, 14, 15, 17, 21, 30, 35,

........ 119, ... 357, .... 17850
I GCD = 357

Makes more than 130 divisions.
I Euclid’s Algorithms execution:

I m = 1071, n = 17850
I m = 714, n = 1071
I m = 357, n = 714
I Output 357.

Makes 4 divisions

Questions: Why is Euclid’s algorithm correct? Will it always
terminate? Why is it fast? How fast?



Another example comparing the two algorithms

GCD(1071, 17850)
I Method 1

I Divisors of 1071 = 1, 3, 7, 9, 17, 21, 51, 63, 119, 357, 1071
I Divisors of 17850 = 1, 2, 3, 5, 6, 7, 10, 14, 15, 17, 21, 30, 35,

........ 119, ... 357, .... 17850
I GCD = 357

Makes more than 130 divisions.
I Euclid’s Algorithms execution:

I m = 1071, n = 17850
I m = 714, n = 1071
I m = 357, n = 714
I Output 357.

Makes 4 divisions

Questions: Why is Euclid’s algorithm correct? Will it always
terminate? Why is it fast? How fast?



Analysis of Euclid’s Algorithm

Algorithm:
While m does not divide n { r = n mod m; n = m;m = r }
Output m.

I Correctness: GCD(m, n) = GCD(n mod m,m)
Proof: If d divides m and n, d divides n −m.

I Termination: After the first step, the new m, let’s call it
I m′ becomes n mod m < m and the new n, let’s call it
I n′ = m < n

and so the pair of numbers progressively decrease.

I Time (# of divisions): How much do these numbers
decrease by?.
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Analysis of Euclid’s Algorithm continued

I One can show that m′ + n′ ≤ 2(m + n)/3. So, after the first
step,

(m′ + n′) ≤ (2/3)(m + n).

After the second step,

(m′ + n′) ≤ (2/3)2(m + n)

and so after the k-th step

(m′ + n′) ≤ (2/3)k(m + n)

and so after the (log3/2(m + n))-th step (m′ + n′) become less
than 1 if the loop hasn’t terminated already.

I So Euclid’s algorithm performs (log3/2(m + n)) divisions while
the naive algorithm makes

√
m +

√
n divisions.

I For 10 digit numbers, i .e. when m + n is about 1010, Method
1 makes 105 divisions while Euclid makes about 60 divisions.
which can make a difference between 0.5 second and
0.000000006 second in modern computers.
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NOT really because logm + log n is actually the SIZE of the input
(integers m and n).

Any algorithm must at least see its entire input.
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Find maximum

Given a list L of n items, find the maximum using comparisons.

I Max = L[1]
for i = 2 to n
if L[i ] > Max , Max := L[i ]
Output Max

I Makes n − 1 comparisons.

I Can we do better? No
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Arrange in increasing order

Given a list of n iterms, arrange them in increasing order.

I By repeatedly finding the maximum, one can sort in about n2

comparisons.

I Can be improved to O(n log n) – a number of methods
(Mergesort, Heapsort, ...)

I Using a decision tree, one can show that this can not be
(asymptotically) improved.
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Multiplying two nxn matrices

Given two matrices A and B, each of dimension nxn, compute AB.

I Standard multiplication algorithm takes n3 (scalar)
multiplications.
(C [i , j ] =

∑n
k=1 A[i , k] ∗ B[k , j ], there are n2 product values,

each requires about n multiplications)

I Using Divide and Conquer and algebraic techniques, one can
improve this to n2.236.

I Can we solve it faster? We don’t know, the search is on.
Improving the bound is an open problem.
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Multiplying two n digit numbers

I Given two n digit numbers a and b, compute ab.

I Standard multiplication algorithm takes n2 (single digit)
multiplications.

I Example:
435876 x
275683

I Using Divide and Conquer and algebraic techniques, this can
be further improved to O(n log n log log n). Improving this
further is an open problem.
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Divide and Conquer algorithm for integer multiplication

I An idea for a better method:
435876 = 435x103 + 876
275683 = 275x103 + 683
The product =
(435x275)106 + (876x683) + 103(435x683 + 876x275).

I In general, multiplying a pair of n digit numbers is broken into
4 multiplications of pairs of n/2 digit numbers. I.e.
T (n) = 4T (n/2) + O(n)

I which unfortunately solves again to T (n) = O(n2).
Here is an improved idea.

I The product = (435x275)x106 + (876x683) +
103((435 + 876)(275 + 683)− (435x275)− (876x683))

I I.e. T (n) = 3T (n/2) + O(n)

I which results in a HUGE improvement (O(n1.7)).
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Here is an improved idea.

I The product = (435x275)x106 + (876x683) +
103((435 + 876)(275 + 683)− (435x275)− (876x683))
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I which results in a HUGE improvement (O(n1.7)).
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Checking whether a number is prime

I For i = 2 to
√
n

check if i divides n, if so, it is not prime,
else (no factor till

√
n), it is prime.

I Takes
√
n divisions.

I Recently (about 10 years ago), this has been improved to
O(log5 n) divisions using techniques from algebraic number
theory. Major recent contribution from India (Agrawal, Kayal,
Saxena, IITKanpur)

I Manindra Agrawal won several awards including Bhatnagar
award, Goedel prize, Infosys award
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Graph Algorithms

I A number of real world optimization problems can be modeled
as a graph theoretic problem such as

I Traveling Salesperson Problem, Graph Coloring
I Shortest/Longest Paths, Games and Puzzles

I and hence Graph Algorithms form a huge area in the study of
algorithms.

For many of them, the best known method takes exponential time
(2n steps) and whether they have polynomial time (say n5)
algorithms is a million dollar open problem.
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Summary

Problem Time Can we do better?

Find number log n NO
GCD O(log n) NO
Find max n − 1 NO
Integer Multiplication O(n log n log log n) OPEN
Sorting O(n log n) NO
Matrix Multiplication O(n2.236) OPEN
Primality O(log5 n) OPEN
TSP cn (for some c < 2) OPEN
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Conclusions

I Efficient algorithms form the fundamental core behind a
software (For example, Google, Airline scheduling –
Makemytrip, ....).

I Either by understanding the problem or by using sophisticated
algorithmic techniques, one can design better algorithms.

I Better algorithms can make a difference between a software
running in seconds versus minutes or hours or months or years.

I There is a theory of non existence of efficient algorithms for
some problems – and even this is useful in areas like
cryptography (for password protection etc).

I Deep and interesting mathematics are behind designing and
analysing efficient algorithms.
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Thank you
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