Is there a faster method?

Venkatesh Raman

Theoretical Computer Science group The Institute of Mathematical Sciences Chennai

November 6, 2014

Outline

Introduction

- Find my number
- Finding the GCD of two numbers
- Finding the maximum
- Sorting
- Matrix Multiplication
- Multiplying two *n* digit numbers
- Testing whether a number is prime
- Traveling Salesperson Problem (TSP) and others
- Conclusions

What do we use Computers for?

- What do we use Computers for?
 - see mails, videos

- What do we use Computers for?
 - see mails, videos
 - connect with friends (facebook, ...)

- What do we use Computers for?
 - see mails, videos
 - connect with friends (facebook, ...)
 - search for something

- What do we use Computers for?
 - see mails, videos
 - connect with friends (facebook, ...)
 - search for something
 - buy/sell/pay

- What do we use Computers for?
 - see mails, videos
 - connect with friends (facebook, ...)
 - search for something
 - buy/sell/pay
 - solve our computational problems

- What do we use Computers for?
 - see mails, videos
 - connect with friends (facebook, ...)
 - search for something
 - buy/sell/pay
 - solve our computational problems
- We want it to solve our problems

- What do we use Computers for?
 - see mails, videos
 - connect with friends (facebook, ...)
 - search for something
 - buy/sell/pay
 - solve our computational problems
- We want it to solve our problems fast

- What do we use Computers for?
 - see mails, videos
 - connect with friends (facebook, ...)
 - search for something
 - buy/sell/pay
 - solve our computational problems
- We want it to solve our problems fast
- How fast is good enough? Is there a limit?

- What do we use Computers for?
 - see mails, videos
 - connect with friends (facebook, ...)
 - search for something
 - buy/sell/pay
 - solve our computational problems
- We want it to solve our problems fast
- How fast is good enough? Is there a limit?
- Clearly the time is a function of the *size* and the *complexity* of the problem (apart from the operating system, processor speed, the internet speed, the compiler speed etc)

- What do we use Computers for?
 - see mails, videos
 - connect with friends (facebook, ...)
 - search for something
 - buy/sell/pay
 - solve our computational problems
- We want it to solve our problems fast
- How fast is good enough? Is there a limit?
- Clearly the time is a function of the *size* and the *complexity* of the problem (apart from the operating system, processor speed, the internet speed, the compiler speed etc)
- ▶ How fast (as a function of the size of the input) is *feasible*?

- What do we use Computers for?
 - see mails, videos
 - connect with friends (facebook, ...)
 - search for something
 - buy/sell/pay
 - solve our computational problems
- We want it to solve our problems fast
- How fast is good enough? Is there a limit?
- Clearly the time is a function of the *size* and the *complexity* of the problem (apart from the operating system, processor speed, the internet speed, the compiler speed etc)
- ▶ How fast (as a function of the size of the input) is *feasible*?
- How do we measure the time as a function of the size?

- What do we use Computers for?
 - see mails, videos
 - connect with friends (facebook, ...)
 - search for something
 - buy/sell/pay
 - solve our computational problems
- We want it to solve our problems fast
- How fast is good enough? Is there a limit?
- Clearly the time is a function of the *size* and the *complexity* of the problem (apart from the operating system, processor speed, the internet speed, the compiler speed etc)
- ▶ How fast (as a function of the size of the input) is *feasible*?
- How do we measure the time as a function of the size?

If we can't measure, we can't compare, we can't improve

 Discuss ONE way to measure problem complexity through Algorithms in a way independent of computers, systems, processor, compiler, ...

- Discuss ONE way to measure problem complexity through Algorithms in a way independent of computers, systems, processor, compiler, ...
- Measure the time for some well known problems/algorithms (a quick tour)

- Discuss ONE way to measure problem complexity through Algorithms in a way independent of computers, systems, processor, compiler, ...
- Measure the time for some well known problems/algorithms (a quick tour)
- Discuss limitations to get faster solutions

Outline

Introduction

Find my number

Finding the GCD of two numbers

- Finding the maximum
- Sorting
- Matrix Multiplication
- Multiplying two *n* digit numbers
- Testing whether a number is prime
- Traveling Salesperson Problem (TSP) and others
- Conclusions

▶ I think of a number between 1 and 1024, can you find it

I think of a number between 1 and 1024, can you find it by asking me at most 10 questions?

I think of a number between 1 and 1024, can you find it by asking me at most 10 questions? at most 10 questions requiring YES or NO answers

I think of a number between 1 and 1024, can you find it by asking me at most 10 questions? at most 10 questions requiring YES or NO answers

I think of a number between 1 and 1024, can you find it by asking me at most 10 questions? at most 10 questions requiring YES or NO answers

What if the number is between 1 and N?

I think of a number between 1 and 1024, can you find it by asking me at most 10 questions? at most 10 questions requiring YES or NO answers

• What if the number is between 1 and N? $\log_2 N$ questions.

I think of a number between 1 and 1024, can you find it by asking me at most 10 questions? at most 10 questions requiring YES or NO answers

- ▶ What if the number is between 1 and N? log₂ N questions.
- Can we do with fewer questions? —

I think of a number between 1 and 1024, can you find it by asking me at most 10 questions? at most 10 questions requiring YES or NO answers

- ▶ What if the number is between 1 and N? log₂ N questions.
- ► Can we do with fewer questions? NO

Much of our computer usage is about searching

- Much of our computer usage is about searching
- Searching a database (google, train reservation,)

- Much of our computer usage is about searching
- Searching a database (google, train reservation,)
- Searching for a solution among many possible solutions

- Much of our computer usage is about searching
- Searching a database (google, train reservation,)
- Searching for a solution among many possible solutions
- ▶ log *N* is a very slow growing function.

- Much of our computer usage is about searching
- Searching a database (google, train reservation,)
- Searching for a solution among many possible solutions
- ▶ log N is a very slow growing function. For example, for $N = 10^{30}$, log₂ N < 120, and so logarithmic solutions are very efficient

Outline

Introduction

- Find my number
- Finding the GCD of two numbers
- Finding the maximum
- Sorting
- Matrix Multiplication
- Multiplying two n digit numbers
- Testing whether a number is prime
- Traveling Salesperson Problem (TSP) and others
- Conclusions

GCD of m and n is the greatest common divisor of m and n.

GCD of m and n is the greatest common divisor of m and n.

1. List out the divisors of both numbers

GCD of m and n is the greatest common divisor of m and n.

- 1. List out the divisors of both numbers
- 2. Identify the common ones and pick the largest one.

GCD of m and n is the greatest common divisor of m and n.

- 1. List out the divisors of both numbers
- 2. Identify the common ones and pick the largest one.

Example: GCD(63, 105)

Divisors of 63 = 1, 3, 7, 9, 21, 63

GCD of m and n is the greatest common divisor of m and n.

- 1. List out the divisors of both numbers
- 2. Identify the common ones and pick the largest one.

Example: GCD(63, 105)

Divisors of 63 = 1, 3, 7, 9, 21, 63Divisors of 105 = 1, 3, 5, 7, 15, 21, 35, 105

GCD of m and n is the greatest common divisor of m and n.

- 1. List out the divisors of both numbers
- 2. Identify the common ones and pick the largest one.

Example: GCD(63, 105)

 $\begin{array}{l} \mbox{Divisors of } 63=1,3,7,9,21,63 \\ \mbox{Divisors of } 105=1,3,5,7,15,21,35,105 \\ \mbox{GCD}=21 \end{array}$

GCD of m and n is the greatest common divisor of m and n.

- 1. List out the divisors of both numbers
- 2. Identify the common ones and pick the largest one.

Example: GCD(63, 105)

 $\begin{array}{l} \mbox{Divisors of } 63=1,3,7,9,21,63 \\ \mbox{Divisors of } 105=1,3,5,7,15,21,35,105 \\ \mbox{GCD}=21 \end{array}$

How many operations does this algorithm perform?

GCD of m and n is the greatest common divisor of m and n.

- 1. List out the divisors of both numbers
- 2. Identify the common ones and pick the largest one.

```
\begin{array}{l} \mbox{Divisors of } 63=1,3,7,9,21,63 \\ \mbox{Divisors of } 105=1,3,5,7,15,21,35,105 \\ \mbox{GCD}=21 \end{array}
```

- How many operations does this algorithm perform?
- How many divisions?

GCD of m and n is the greatest common divisor of m and n.

- 1. List out the divisors of both numbers
- 2. Identify the common ones and pick the largest one.

```
\begin{array}{l} \mbox{Divisors of } 63=1,3,7,9,21,63 \\ \mbox{Divisors of } 105=1,3,5,7,15,21,35,105 \\ \mbox{GCD}=21 \end{array}
```

- How many operations does this algorithm perform?
- How many divisions?
- ▶ 63 + 105?

GCD of m and n is the greatest common divisor of m and n.

- 1. List out the divisors of both numbers
- 2. Identify the common ones and pick the largest one.

```
\begin{array}{l} \mbox{Divisors of } 63=1,3,7,9,21,63 \\ \mbox{Divisors of } 105=1,3,5,7,15,21,35,105 \\ \mbox{GCD}=21 \end{array}
```

- How many operations does this algorithm perform?
- How many divisions?
- ▶ 63 + 105? 61 + 103?

GCD of m and n is the greatest common divisor of m and n.

- 1. List out the divisors of both numbers
- 2. Identify the common ones and pick the largest one.

```
\begin{array}{l} \mbox{Divisors of } 63=1,3,7,9,21,63 \\ \mbox{Divisors of } 105=1,3,5,7,15,21,35,105 \\ \mbox{GCD}=21 \end{array}
```

- How many operations does this algorithm perform?
- How many divisions?
- ► 63 + 105? 61 + 103? 7 + 10?

GCD of m and n is the greatest common divisor of m and n.

- 1. List out the divisors of both numbers
- 2. Identify the common ones and pick the largest one.

```
\begin{array}{l} \mbox{Divisors of } 63=1,3,7,9,21,63 \\ \mbox{Divisors of } 105=1,3,5,7,15,21,35,105 \\ \mbox{GCD}=21 \end{array}
```

- How many operations does this algorithm perform?
- How many divisions?
- ► 63 + 105? 61 + 103? 7 + 10?
- If the numbers are *m* and *n*, then roughly $\sqrt{m} + \sqrt{n}$.

GCD of m and n is the greatest common divisor of m and n.

- 1. List out the divisors of both numbers
- 2. Identify the common ones and pick the largest one.

```
\begin{array}{l} \mbox{Divisors of } 63=1,3,7,9,21,63 \\ \mbox{Divisors of } 105=1,3,5,7,15,21,35,105 \\ \mbox{GCD}=21 \end{array}
```

- How many operations does this algorithm perform?
- How many divisions?
- ► 63 + 105? 61 + 103? 7 + 10?
- If the numbers are *m* and *n*, then roughly $\sqrt{m} + \sqrt{n}$.
- Is there a faster method? –

GCD of m and n is the greatest common divisor of m and n.

- 1. List out the divisors of both numbers
- 2. Identify the common ones and pick the largest one.

```
\begin{array}{l} \mbox{Divisors of } 63=1,3,7,9,21,63 \\ \mbox{Divisors of } 105=1,3,5,7,15,21,35,105 \\ \mbox{GCD}=21 \end{array}
```

- How many operations does this algorithm perform?
- How many divisions?
- ► 63 + 105? 61 + 103? 7 + 10?
- If the numbers are *m* and *n*, then roughly $\sqrt{m} + \sqrt{n}$.
- ► Is there a faster method? YES.

- While m does not divide n {
 r = n mod m
 n = m
 m = r }
- Output m.

While m does not divide n {
 r = n mod m
 n = m
 m = r }
Output m.

Example: 63, 105

- While m does not divide n {
 r = n mod m
 n = m
 m = r }
 Output m.
- output m

Example: 63, 105

- While m does not divide n {
 r = n mod m
 n = m
 m = r }
- Output *m*.

Example: 63, 105

▶
$$r = 21, m = 21, n = 42$$

- While m does not divide n {
 r = n mod m
 n = m
 m = r }
- Output *m*.

Example: 63, 105

▶
$$r = 21, m = 21, n = 42$$

Output 21.

- While m does not divide n {
 r = n mod m
 n = m
 m = r }
- Output m.

Example: 63, 105

▶
$$r = 21, m = 21, n = 42$$

Output 21. How many divisions?

- While m does not divide n {
 r = n mod m
 n = m
 m = r }
- Output m.

Example: 63, 105

▶
$$r = 42, m = 42, n = 63$$

▶
$$r = 21, m = 21, n = 42$$

Output 21. How many divisions? Three (recall method 1 did about 17 divisions)

GCD(1071, 17850)

► Method 1

GCD(1071, 17850)

- ► Method 1
 - Divisors of 1071 = 1, 3, 7, 9, 17, 21, 51, 63, 119, 357, 1071

GCD(1071, 17850)

Method 1

- ▶ Divisors of 1071 = 1, 3, 7, 9, 17, 21, 51, 63, 119, 357, 1071
- Divisors of 17850 = 1, 2, 3, 5, 6, 7, 10, 14, 15, 17, 21, 30, 35, 119, ... 357, 17850

GCD(1071, 17850)

- ► Method 1
 - ▶ Divisors of 1071 = 1, 3, 7, 9, 17, 21, 51, 63, 119, 357, 1071
 - Divisors of 17850 = 1, 2, 3, 5, 6, 7, 10, 14, 15, 17, 21, 30, 35, 119, ... 357, 17850
 - ▶ GCD = 357

GCD(1071, 17850)

- ► Method 1
 - Divisors of 1071 = 1, 3, 7, 9, 17, 21, 51, 63, 119, 357, 1071
 - Divisors of 17850 = 1, 2, 3, 5, 6, 7, 10, 14, 15, 17, 21, 30, 35, 119, ... 357, 17850
 - ▶ GCD = 357

Makes more than 130 divisions.

GCD(1071, 17850)

- ► Method 1
 - ▶ Divisors of 1071 = 1, 3, 7, 9, 17, 21, 51, 63, 119, 357, 1071
 - Divisors of 17850 = 1, 2, 3, 5, 6, 7, 10, 14, 15, 17, 21, 30, 35, 119, ... 357, 17850
 - ▶ GCD = 357

Makes more than 130 divisions.

Euclid's Algorithms execution:

•
$$m = 1071, n = 17850$$

GCD(1071, 17850)

- Method 1
 - ▶ Divisors of 1071 = 1, 3, 7, 9, 17, 21, 51, 63, 119, 357, 1071
 - Divisors of 17850 = 1, 2, 3, 5, 6, 7, 10, 14, 15, 17, 21, 30, 35, 119, ... 357, 17850
 - ▶ GCD = 357

Makes more than 130 divisions.

Euclid's Algorithms execution:

GCD(1071, 17850)

- Method 1
 - ▶ Divisors of 1071 = 1, 3, 7, 9, 17, 21, 51, 63, 119, 357, 1071
 - Divisors of 17850 = 1, 2, 3, 5, 6, 7, 10, 14, 15, 17, 21, 30, 35, 119, ... 357, 17850
 - ▶ GCD = 357

Makes more than 130 divisions.

Euclid's Algorithms execution:

▶ *m* = 357, *n* = 714

GCD(1071, 17850)

- Method 1
 - ▶ Divisors of 1071 = 1, 3, 7, 9, 17, 21, 51, 63, 119, 357, 1071
 - Divisors of 17850 = 1, 2, 3, 5, 6, 7, 10, 14, 15, 17, 21, 30, 35, 119, ... 357, 17850
 - ▶ GCD = 357

Makes more than 130 divisions.

- Euclid's Algorithms execution:
 - ▶ *m* = 1071, *n* = 17850
 - ▶ *m* = 714, *n* = 1071
 - ▶ *m* = 357, *n* = 714
 - Output 357.

GCD(1071, 17850)

- Method 1
 - ▶ Divisors of 1071 = 1, 3, 7, 9, 17, 21, 51, 63, 119, 357, 1071
 - Divisors of 17850 = 1, 2, 3, 5, 6, 7, 10, 14, 15, 17, 21, 30, 35, 119, ... 357, 17850
 - ▶ GCD = 357

Makes more than 130 divisions.

- Euclid's Algorithms execution:
 - ▶ *m* = 1071, *n* = 17850
 - ▶ *m* = 714, *n* = 1071
 - ▶ *m* = 357, *n* = 714
 - Output 357.

Makes 4 divisions

GCD(1071, 17850)

- Method 1
 - ▶ Divisors of 1071 = 1, 3, 7, 9, 17, 21, 51, 63, 119, 357, 1071
 - Divisors of 17850 = 1, 2, 3, 5, 6, 7, 10, 14, 15, 17, 21, 30, 35, 119, ... 357, 17850
 - ▶ GCD = 357

Makes more than 130 divisions.

- Euclid's Algorithms execution:
 - ▶ *m* = 1071, *n* = 17850
 - ▶ *m* = 714, *n* = 1071
 - ▶ *m* = 357, *n* = 714
 - Output 357.
 Makes 4 divisions

Questions: Why is Euclid's algorithm correct? Will it always terminate? Why is it fast? How fast?

Analysis of Euclid's Algorithm

Algorithm:

While m does not divide $n \{ r = n \mod m; n = m; m = r \}$ Output m.

Analysis of Euclid's Algorithm

Algorithm:

While *m* does not divide $n \{ r = n \mod m; n = m; m = r \}$ Output *m*.

• Correctness: $GCD(m, n) = GCD(n \mod m, m)$

Analysis of Euclid's Algorithm

Algorithm:

While *m* does not divide $n \{ r = n \mod m; n = m; m = r \}$ Output *m*.

► Correctness: GCD(m, n) = GCD(n mod m, m) Proof: If d divides m and n, d divides n - m.

Analysis of Euclid's Algorithm

Algorithm:

While *m* does not divide $n \{ r = n \mod m; n = m; m = r \}$ Output *m*.

- ► Correctness: GCD(m, n) = GCD(n mod m, m) Proof: If d divides m and n, d divides n - m.
- ▶ **Termination**: After the first step, the new *m*, let's call it
 - m' becomes $n \mod m < m$ and the new n, let's call it

and so the pair of numbers progressively decrease.

Analysis of Euclid's Algorithm

Algorithm:

While *m* does not divide $n \{ r = n \mod m; n = m; m = r \}$ Output *m*.

- ► Correctness: GCD(m, n) = GCD(n mod m, m) Proof: If d divides m and n, d divides n - m.
- ▶ **Termination**: After the first step, the new *m*, let's call it
 - m' becomes $n \mod m < m$ and the new n, let's call it

and so the pair of numbers progressively decrease.

Time (# of divisions): How much do these numbers decrease by?.

One can show that m' + n' ≤ 2(m + n)/3. So, after the first step,

$$(m'+n') \leq (2/3)(m+n).$$

After the second step,

• One can show that $m' + n' \leq 2(m + n)/3$. So, after the first step,

$$(m'+n') \leq (2/3)(m+n).$$

After the second step,

$$(m'+n') \leq (2/3)^2(m+n)$$

and so after the k-th step

One can show that m' + n' ≤ 2(m + n)/3. So, after the first step,

$$(m'+n') \leq (2/3)(m+n).$$

After the second step,

$$(m'+n') \leq (2/3)^2(m+n)$$

and so after the k-th step

$$(m'+n') \leq (2/3)^k(m+n)$$

and so after the $(\log_{3/2}(m+n))$ -th step (m'+n') become less than 1 if the loop hasn't terminated already.

• One can show that $m' + n' \leq 2(m + n)/3$. So, after the first step,

$$(m'+n') \leq (2/3)(m+n).$$

After the second step,

$$(m'+n') \leq (2/3)^2(m+n)$$

and so after the k-th step

$$(m'+n') \leq (2/3)^k(m+n)$$

and so after the $(\log_{3/2}(m+n))$ -th step (m'+n') become less than 1 if the loop hasn't terminated already.

► So Euclid's algorithm performs $(\log_{3/2}(m+n))$ divisions while the naive algorithm makes $\sqrt{m} + \sqrt{n}$ divisions.

• One can show that $m' + n' \leq 2(m + n)/3$. So, after the first step,

$$(m'+n') \leq (2/3)(m+n).$$

After the second step,

$$(m'+n') \leq (2/3)^2(m+n)$$

and so after the k-th step

$$(m'+n') \leq (2/3)^k(m+n)$$

and so after the $(\log_{3/2}(m+n))$ -th step (m'+n') become less than 1 if the loop hasn't terminated already.

- ► So Euclid's algorithm performs $(\log_{3/2}(m+n))$ divisions while the naive algorithm makes $\sqrt{m} + \sqrt{n}$ divisions.
- For 10 digit numbers, *i.e.* when m + n is about 10¹⁰, Method 1 makes 10⁵ divisions while Euclid makes about 60 divisions.

One can show that m' + n' ≤ 2(m + n)/3. So, after the first step,

$$(m'+n') \leq (2/3)(m+n).$$

After the second step,

$$(m'+n') \leq (2/3)^2(m+n)$$

and so after the k-th step

$$(m'+n') \leq (2/3)^k(m+n)$$

and so after the $(\log_{3/2}(m+n))$ -th step (m'+n') become less than 1 if the loop hasn't terminated already.

- ► So Euclid's algorithm performs $(\log_{3/2}(m+n))$ divisions while the naive algorithm makes $\sqrt{m} + \sqrt{n}$ divisions.
- ► For 10 digit numbers, *i.e.* when m + n is about 10¹⁰, Method 1 makes 10⁵ divisions while Euclid makes about 60 divisions. which can make a difference between 0.5 second and 0.000000006 second in modern computers.

Can we solve it faster?

NOT really because $\log m + \log n$ is actually the SIZE of the input (integers m and n).

Can we solve it faster?

NOT really because $\log m + \log n$ is actually the SIZE of the input (integers m and n).

Any algorithm must at least see its entire input.

Outline

Introduction

- Find my number
- Finding the GCD of two numbers
- Finding the maximum
- Sorting
- Matrix Multiplication
- Multiplying two n digit numbers
- Testing whether a number is prime
- Traveling Salesperson Problem (TSP) and others
- Conclusions

Given a list L of n items, find the maximum using comparisons.

Given a list L of n items, find the maximum using comparisons.

Given a list L of n items, find the maximum using comparisons.

• Makes n-1 comparisons.

Given a list L of n items, find the maximum using comparisons.

- Makes n-1 comparisons.
- Can we do better?

Given a list L of n items, find the maximum using comparisons.

- Makes n-1 comparisons.
- Can we do better? No

Outline

Introduction

Find my number

Finding the GCD of two numbers

Finding the maximum

Sorting

Matrix Multiplication

Multiplying two n digit numbers

Testing whether a number is prime

Traveling Salesperson Problem (TSP) and others

Conclusions

Given a list of n iterms, arrange them in increasing order.

Given a list of n iterms, arrange them in increasing order.

By repeatedly finding the maximum, one can sort in about n² comparisons.

Given a list of n iterms, arrange them in increasing order.

- By repeatedly finding the maximum, one can sort in about n² comparisons.
- Can be improved to O(n log n) a number of methods (Mergesort, Heapsort, ...)

Given a list of n iterms, arrange them in increasing order.

- By repeatedly finding the maximum, one can sort in about n² comparisons.
- ► Can be improved to O(n log n) a number of methods (Mergesort, Heapsort, ...)
- Using a decision tree, one can show that this can not be (asymptotically) improved.

Outline

Introduction

Find my number

Finding the GCD of two numbers

Finding the maximum

Sorting

Matrix Multiplication

Multiplying two n digit numbers

Testing whether a number is prime

Traveling Salesperson Problem (TSP) and others

Conclusions

Given two matrices A and B, each of dimension $n \times n$, compute AB.

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \times \begin{bmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{bmatrix} = \begin{bmatrix} 58 & 64 \\ \end{bmatrix}$$

Given two matrices A and B, each of dimension $n \times n$, compute AB.

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \times \begin{bmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{bmatrix} = \begin{bmatrix} 58 & 64 \\ \end{bmatrix}$$

Standard multiplication algorithm takes n³ (scalar) multiplications.
 (C[i,j] = ∑_{k=1}ⁿ A[i,k] * B[k,j], there are n² product values,

each requires about *n* multiplications)

Given two matrices A and B, each of dimension $n \times n$, compute AB.

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \times \begin{bmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{bmatrix} = \begin{bmatrix} 58 & 64 \\ \end{bmatrix}$$

- Standard multiplication algorithm takes n³ (scalar) multiplications.
 (C[i,j] = ∑_{k=1}ⁿ A[i,k] * B[k,j], there are n² product values, each requires about n multiplications)
- Using Divide and Conquer and algebraic techniques, one can improve this to $n^{2.236}$.

Given two matrices A and B, each of dimension $n \times n$, compute AB.

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \times \begin{bmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{bmatrix} = \begin{bmatrix} 58 & 64 \\ \end{bmatrix}$$

- Standard multiplication algorithm takes n³ (scalar) multiplications.
 (C[i,j] = ∑_{k=1}ⁿ A[i,k] * B[k,j], there are n² product values, each requires about n multiplications)
- ► Using Divide and Conquer and algebraic techniques, one can improve this to n^{2.236}.
- Can we solve it faster? We don't know, the search is on. Improving the bound is an open problem.

Outline

Introduction

Find my number

Finding the GCD of two numbers

Finding the maximum

Sorting

Matrix Multiplication

Multiplying two *n* digit numbers

Testing whether a number is prime

Traveling Salesperson Problem (TSP) and others

Conclusions

• Given two *n* digit numbers *a* and *b*, compute *ab*.

- Given two *n* digit numbers *a* and *b*, compute *ab*.
- Standard multiplication algorithm takes n² (single digit) multiplications.

- Given two *n* digit numbers *a* and *b*, compute *ab*.
- Standard multiplication algorithm takes n² (single digit) multiplications.

► Example: 435876 × 275683

- Given two *n* digit numbers *a* and *b*, compute *ab*.
- Standard multiplication algorithm takes n² (single digit) multiplications.
- ► Example: 435876 × 275683
- ► Using Divide and Conquer and algebraic techniques, this can be further improved to O(n log n log log n).

- Given two *n* digit numbers *a* and *b*, compute *ab*.
- Standard multiplication algorithm takes n² (single digit) multiplications.
- ► Example: 435876 × 275683
- ► Using Divide and Conquer and algebraic techniques, this can be further improved to O(n log n log log n). Improving this further is an open problem.

Divide and Conquer algorithm for integer multiplication

Divide and Conquer algorithm for integer multiplication

An idea for a better method:

Divide and Conquer algorithm for integer multiplication

 An idea for a better method: 435876 = 435x10³ + 876 275683 = 275x10³ + 683

 An idea for a better method: 435876 = 435x10³ + 876 275683 = 275x10³ + 683 The product = (435x275)10⁶ + (876x683) + 10³(435x683 + 876x275).

In general, multiplying a pair of n digit numbers is broken into 4 multiplications of pairs of n/2 digit numbers.

 An idea for a better method: 435876 = 435x10³ + 876 275683 = 275x10³ + 683 The product = (435x275)10⁶ + (876x683) + 10³(435x683 + 876x275).

In general, multiplying a pair of n digit numbers is broken into 4 multiplications of pairs of n/2 digit numbers. I.e. T(n) = 4T(n/2) + O(n)

- In general, multiplying a pair of n digit numbers is broken into 4 multiplications of pairs of n/2 digit numbers. I.e. T(n) = 4T(n/2) + O(n)
- ▶ which unfortunately solves again to T(n) = O(n²). Here is an improved idea.

- In general, multiplying a pair of n digit numbers is broken into 4 multiplications of pairs of n/2 digit numbers. I.e. T(n) = 4T(n/2) + O(n)
- ▶ which unfortunately solves again to T(n) = O(n²). Here is an improved idea.
- ► The product = $(435 \times 275) \times 10^6 + (876 \times 683) + 10^3 ((435 + 876)(275 + 683) (435 \times 275) (876 \times 683))$

- In general, multiplying a pair of n digit numbers is broken into 4 multiplications of pairs of n/2 digit numbers. I.e. T(n) = 4T(n/2) + O(n)
- ▶ which unfortunately solves again to T(n) = O(n²). Here is an improved idea.
- ► The product = $(435\times275)\times10^6 + (876\times683) + 10^3((435+876)(275+683) (435\times275) (876\times683))$
- I.e. $T(n) = {}^{3}T(n/2) + O(n)$

- In general, multiplying a pair of n digit numbers is broken into 4 multiplications of pairs of n/2 digit numbers. I.e. T(n) = 4T(n/2) + O(n)
- ▶ which unfortunately solves again to T(n) = O(n²). Here is an improved idea.
- ► The product = $(435 \times 275) \times 10^6 + (876 \times 683) + 10^3 ((435 + 876)(275 + 683) (435 \times 275) (876 \times 683))$
- I.e. T(n) = 3T(n/2) + O(n)
- which results in a HUGE improvement $(O(n^{1.7}))$.

Outline

Introduction

Find my number

Finding the GCD of two numbers

Finding the maximum

Sorting

Matrix Multiplication

Multiplying two n digit numbers

Testing whether a number is prime

Traveling Salesperson Problem (TSP) and others

1, 23, 29, 31, 37, 41, 43, 47, 53, 5

1, 23, 29, 31, 37, 41, 43, 47, 53, 5

For i = 2 to √n check if i divides n, if so, it is not prime, else (no factor till √n), it is prime.

1, 23, 29, 31, 37, 41, 43, 47, 53, 5

For i = 2 to √n check if i divides n, if so, it is not prime, else (no factor till √n), it is prime.

• Takes \sqrt{n} divisions.

1, 23, 29, 31, 37, 41, 43, 47, 53, 59

- For i = 2 to √n check if i divides n, if so, it is not prime, else (no factor till √n), it is prime.
- Takes \sqrt{n} divisions.
- Recently (about 10 years ago), this has been improved to O(log⁵ n) divisions using techniques from algebraic number theory.

1, 23, 29, 31, 37, 41, 43, 47, 53, 59

For i = 2 to \sqrt{n}

check if *i* divides *n*, if so, it is not prime, else (no factor till \sqrt{n}), it is prime.

- Takes \sqrt{n} divisions.
- Recently (about 10 years ago), this has been improved to O(log⁵ n) divisions using techniques from algebraic number theory. Major recent contribution from India (Agrawal, Kayal, Saxena, IITKanpur)

1, 23, 29, 31, 37, 41, 43, 47, 53, 59

For i = 2 to \sqrt{n}

check if *i* divides *n*, if so, it is not prime, else (no factor till \sqrt{n}), it is prime.

- Takes \sqrt{n} divisions.
- Recently (about 10 years ago), this has been improved to O(log⁵ n) divisions using techniques from algebraic number theory. Major recent contribution from India (Agrawal, Kayal, Saxena, IITKanpur)
- Manindra Agrawal won several awards including Bhatnagar award, Goedel prize, Infosys award

Outline

Introduction

Find my number

Finding the GCD of two numbers

Finding the maximum

Sorting

Matrix Multiplication

Multiplying two n digit numbers

Testing whether a number is prime

Traveling Salesperson Problem (TSP) and others

Graph Algorithms

- A number of real world optimization problems can be modeled as a graph theoretic problem such as
 - Traveling Salesperson Problem, Graph Coloring
 - Shortest/Longest Paths, Games and Puzzles
- and hence Graph Algorithms form a huge area in the study of algorithms.

Graph Algorithms

- A number of real world optimization problems can be modeled as a graph theoretic problem such as
 - Traveling Salesperson Problem, Graph Coloring
 - Shortest/Longest Paths, Games and Puzzles
- and hence Graph Algorithms form a huge area in the study of algorithms.

For many of them, the best known method takes exponential time (2^n steps) and

Graph Algorithms

- A number of real world optimization problems can be modeled as a graph theoretic problem such as
 - Traveling Salesperson Problem, Graph Coloring
 - Shortest/Longest Paths, Games and Puzzles
- and hence Graph Algorithms form a huge area in the study of algorithms.

For many of them, the best known method takes exponential time (2^n steps) and whether they have polynomial time (say n^5) algorithms is a million dollar open problem.

Summary

Problem	Time	Can we do better?
Find number	log n	NO
GCD	$O(\log n)$	NO
Find max	n-1	NO
Integer Multiplication	$O(n \log n \log \log n)$	OPEN
Sorting	$O(n \log n)$	NO
Matrix Multiplication	$O(n^{2.236})$	OPEN
Primality	$O(\log^5 n)$	OPEN
TSP	c^n (for some $c < 2$)	OPEN

Outline

Introduction

- Find my number
- Finding the GCD of two numbers
- Finding the maximum
- Sorting
- Matrix Multiplication
- Multiplying two *n* digit numbers
- Testing whether a number is prime
- Traveling Salesperson Problem (TSP) and others

 Efficient algorithms form the fundamental core behind a software (For example, Google, Airline scheduling – Makemytrip,).

- Efficient algorithms form the fundamental core behind a software (For example, Google, Airline scheduling – Makemytrip,).
- Either by understanding the problem or by using sophisticated algorithmic techniques, one can design better algorithms.

- Efficient algorithms form the fundamental core behind a software (For example, Google, Airline scheduling – Makemytrip,).
- Either by understanding the problem or by using sophisticated algorithmic techniques, one can design better algorithms.
- Better algorithms can make a difference between a software running in seconds versus minutes or hours or months or years.

- Efficient algorithms form the fundamental core behind a software (For example, Google, Airline scheduling – Makemytrip,).
- Either by understanding the problem or by using sophisticated algorithmic techniques, one can design better algorithms.
- Better algorithms can make a difference between a software running in seconds versus minutes or hours or months or years.
- There is a theory of non existence of efficient algorithms for some problems – and even this is useful

- Efficient algorithms form the fundamental core behind a software (For example, Google, Airline scheduling – Makemytrip,).
- Either by understanding the problem or by using sophisticated algorithmic techniques, one can design better algorithms.
- Better algorithms can make a difference between a software running in seconds versus minutes or hours or months or years.
- There is a theory of non existence of efficient algorithms for some problems – and even this is useful in areas like cryptography (for password protection etc).

- Efficient algorithms form the fundamental core behind a software (For example, Google, Airline scheduling – Makemytrip,).
- Either by understanding the problem or by using sophisticated algorithmic techniques, one can design better algorithms.
- Better algorithms can make a difference between a software running in seconds versus minutes or hours or months or years.
- There is a theory of non existence of efficient algorithms for some problems – and even this is useful in areas like cryptography (for password protection etc).
- Deep and interesting mathematics are behind designing and analysing efficient algorithms.

Thank you