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Abstract. Given a group automorphism φ : Γ −→ Γ, one has an action of Γ on itself
by φ-twisted conjugacy, namely, g.x = gxφ(g−1). The orbits of this action are called
φ-twisted conjugacy classes. One says that Γ has the R∞-property if there are infinitely
many φ-twisted conjugacy classes for every automorphism φ of Γ. In this paper we show
that SL(n,Z) and its congruence subgroups have the R∞-property. Further we show
that any (countable) abelian extension of Γ has the R∞-property where Γ is a torsion
free non-elementary hyperbolic group, or SL(n,Z),Sp(2n,Z) or a principal congruence
subgroup of SL(n,Z) or the fundamental group of a complete Riemannian manifold of
constant negative curvature.

1. Introduction

Let Γ be a finitely generated infinite group and let φ : Γ −→ Γ be an endomorphism.

One has an action of Γ on itself defined as g.x = gxφ(g−1). This is just the conjugation

action when φ is identity. The orbits of this action are called the φ-twisted conjugacy

classes; the φ-twisted conjugacy class containing x ∈ Γ is denoted [x]φ or simply [x]

when φ is clear from the context. If x and y are in the same φ-twisted conjugacy class,

we write x ∼φ y. The set of all φ-twisted conjugacy classes is denoted by R(φ). The

cardinality R(φ) of R(φ) is called the Reidemeister number of φ. One says that Γ has the

R∞-property for automorphisms (more briefly, R∞-property) if there are infinitely many

φ-twisted conjugacy classes for every automorphism φ of Γ. If Γ has the R∞-property,

we shall call Γ an R∞-group. All these notions make sense for any group, not necessarily

finitely generated.

The notion of twisted conjugacy originated in Nielson-Reidemeister fixed point the-

ory and also arises in other areas of mathematics such as representation theory, number

theory and algebraic geometry. See [4] and the references therein. The problem of deter-

mining which classes of groups have R∞-property is an area of active research initiated

by Fel’shtyn and Hill [6]. We now state the main result of this paper.

Theorem 1.1. Let Λ be an extension of a group Γ by an arbitrary countable abelian group

A. Then Λ has the R∞-property in case any one of the following holds:

(i) Γ is a torsion-free non-elementary hyperbolic group,

(ii) Γ = SL(n,Z),PSL(n,Z),GL(n,Z),PGL(n,Z), Sp(2n,Z),PSp(2n,Z), n ≥ 2,

(iii) Γ is a normal subgroup of SL(n,Z), n > 2, not contained in the centre, and,
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(iv) Γ is the fundamental group of a complete Riemannian manifold of constant negative

sectional curvature and finite volume.

Our proofs involve straightforward arguments, using well-known results concerning the

group Γ in each case. More precisely, in each of the cases, we show that A or a bigger

subgroup N ⊂ Λ in which A has finite index is characteristic in Λ. Proof of this requires

some facts concerning normal subgroups of Γ. In the cases (ii), (iii) and (iv) we invoke

the normal subgroup theorem of Margulis [21, Chapter 8]; in case (i) we use the quasi-

convexity property of infinite cyclic subgroups of Γ. Using the fact that Γ is hopfian,

the R∞-property for Λ is then deduced from the R∞-property for Γ. That Γ has the

R∞-property when it is a torsion-free non-elementary hyperbolic group is due to [9].

This result was extended to arbitrary non-elementary hyperbolic groups by [3]. The R∞-

property for the groups Sp(2n,Z) was established by Fel’shtyn and Gonçalves [5]. The

R∞-property for SL(n,Z) and PGL(n,Z) is established in §3. We show, in §3, the R∞-

property for non-central normal subgroups of SL(n,Z), n > 2, using the Mostow-Margulis

strong rigidity theorem and the congruence subgroup property of SL(n,Z). The proof of

the main theorem is given in §4.

2. preliminaries

Let G be a group and H a subgroup of G. Recall that a subgroup H is said to be

characteristic in G if φ(H) = H for every automorphism φ of G. G is called hopfian (resp.

co-hopfian) if every surjective (resp. injective) endomorphism of G is an automorphism

of G. One says that G is residually finite if, given any g ∈ G, there exists a finite index

subgroup H in G such that g /∈ H.

We shall recall here some facts concerning the R∞-property. Let

1 −→ N
j
↪→ Λ

η−→ Γ −→ 1 (1)

be an exact sequence of groups.

Lemma 2.1. Suppose that N is characteristic in Λ and that Γ has the R∞-property, then

Λ also has the R∞-property.

Proof. Let φ : Λ −→ Λ be any automorphism. Since N is characteristic, φ(N) = N and so

φ induces an automorphism φ̄ : Γ −→ Γ. Since R(φ̄) =∞, it follows that R(φ) =∞. �

Lemma 2.2. Suppose that N is a characteristic subgroup of Λ. (i) If N is finite and Λ

has the R∞-property then Γ also has the R∞ -property.

(ii) If Γ is finite and N has the R∞-proeperty, then Λ has the R∞- property.

Proof. (i) Any automorphism φ : Λ −→ Λ maps N isomorphically onto itself and hence

induces an automorphism φ̄ : Γ −→ Γ (where Γ = Λ/N).

It is readily seen that x ∼φ y implies η(x) ∼φ̄ η(y) for any x, y ∈ Λ. Therefore η

induces a surjection η̃ : R(φ) −→ R(φ̄) where η̃([x]φ) = [η(x)]φ̄. We need only show that

the fibres of η̃ are finite.
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Suppose the contrary and let xk ∈ Λ, k ≥ 0, be such that [xk]φ 6= [xl]φ for k 6= l

and that [η(xk)]φ̄ = [η(x0)]φ̄. For each k ≥ 1, there exists gk ∈ Λ such that η(x0) =

η(gk)η(xk)φ̄(η(g−1
k )) = η(gkxkφ(g−1

k )). Therefore there exists an hk ∈ N such that x0hk =

gkxkφ(gk)
−1. That is, for any k ≥ 1, we have xk ∼φ x0hk for some hk ∈ N . Since N is

finite, it follows that xk ∼φ xl for some k 6= l, a contradiction.

(ii) Let φ : Λ −→ Λ be an automorphism and let θ = φ|N . Let j̃ : R(θ) −→ R(φ)

be the map defined as [x]θ 7→ [x]φ. Suppose that R(φ) < ∞ but that R(θ) = ∞. Then

there exist elements xk ∈ N, k ≥ 0, such that [xk]θ 6= [xl]θ, k 6= l, but xk ∼φ x0 for all

k ≥ 0. Choose gk ∈ Λ such that xk = gkx0φ(g−1
k ), k ≥ 1. Since Γ = Λ/N is finite, there

exist distinct positive integers k, l such that h := gkg
−1
l ∈ N . Now xk = gkx0φ(g−1

k ) =

gkg
−1
l xlφ(gl)φ(g−1

k ) = hxlθ(h
−1) and so [xk]θ = [xl]θ, a contradiction. This completes the

proof. �

Lemma 2.3. Suppose that there is no non-trivial homomorphism from N to Γ and that

either Γ is hopfian or N is co-hopfian. If Γ has the R∞-property, then so does Λ.

Proof. Let φ : Λ −→ Λ be any automorphism. Consider the homomorphism f : N −→ Γ

defined as f = η ◦φ|N where η : Λ −→ Γ is the quotient map as in (1). By our hypothesis

f is trivial, and so it follows that φ(N) ⊂ ker(η) = N . If N is co-hopfian then φ(N) = N

and so N is characteristic. In any case φ defines a homomorphism φ̄ : Γ −→ Γ where

φ̄(xN) = φ(x)N, x ∈ Λ. It is clear that φ̄ is surjective with kernel φ−1(N)/N . If Γ is

hopfian, φ̄ is an isomorphism and it follows that φ(N) = N . Thus our hypothesis implies

that N is characteristic in Λ and the lemma now follows from Lemma 2.1. �

We conclude this section with the following observation.

Proposition 2.4. Let Γ be a countably infinite residually finite group. Then R(φ) = ∞
for any inner automorphism φ of Γ.

Proof. Let φ = ιγ and let x ∼φ y. Thus y = gxγg−1γ−1. Equivalently xγ is conjugate to

yγ. Hence it suffices to show that Γ has infinitely many conjugacy classes.

Since Γ is infinite and since Γ is residually finite, there exist finite quotients Γ̄ of Γ

having arbitrarily large (finite) order. It is a classical result of R. Brauer [1] (see also [15])

that the number of conjugacy classes of a finite group of order n is bounded below by

log log n. Since Γ has at least as many conjugacy classes as any of its quotients, it follows

that Γ has infinitely many conjugacy classes. �

Remark 2.5. (i) Recall that finitely generated residually finite groups are hopfian. A

well-known class of residually finite groups is the class of finitely generated subgroups of

GL(n,K) where K is any field. See [10]. This class includes, in particular, all lattices in

linear Lie groups. An important unsolved problem is to decide whether hyperbolic groups

are residually finite. It has been shown by Sela [18] that torsion-free hyperbolic groups

are hopfian.
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(ii) It is known that there are countably infinite groups with only finitely many con-

jugacy classes. (See [19, §1.4], or [10, Chapter 4, §3].) Finitely generated such examples

have been constructed by S. Ivanov. Recently D. Osin [14] has constructed a finitely

generated infinite group which has exactly one non-trivial conjugacy class.

3. The R∞-property for special linear groups

In this section we give new examples of R∞-groups which are subgroups of finite index

in SL(n,Z). Recall that Sp(2n;Z) has been shown to have the R∞-property by Fel’shtyn

and Gonçalves [5].

Our first result is the following.

Theorem 3.1. The groups SL(n,Z),PSL(n,Z),GL(n,Z), and PGL(n,Z) have the R∞-

property for all n ≥ 2.

Proof. It follows from Lemma 2.2(ii) that the R∞-property for SL(n,Z) implies that for

GL(n,Z). Also the R∞-property for SL(n,Z) (resp. GL(n,Z)) implies that for PSL(n,Z)

(resp. PGL(n,Z)) in view of Lemma 2.2(i). Therefore we need only prove the theorem

for SL(n,Z).

The group SL(2,Z) is non-elementary hyperbolic group and hence, by [3], has the R∞-

property. Let n ≥ 3 and set Γ := SL(n,Z). Since Γ is residually finite, R(φ) =∞ for any

inner automorphism by Proposition 2.4. In this case we can see this more directly: the

set {tr(A) | A ∈ Γ} is infinite and so there are infinitely many conjugacy classes in Γ.

It remains only to show that R(φ) is infinite for a set of representatives of (the non-

trivial) elements of the group Out(Γ) of all outer automorphisms of Γ. It is known from

the work of Hua and Reiner [8] and of O’Meara [13] that Out(Γ) ∼= Z/2Z or Z/2Z×Z/2Z
according as n is odd or even.

The group Out(Γ) is generated by a set S where S = {τ} when n is odd and when n

is even, S = {σ, τ} where τ : Γ −→ Γ is defined as X 7→ tX−1, and, when n is even, the

involution σ : Γ −→ Γ is defined as X 7→ JXJ−1 = JXJ where J is the diagonal matrix

diag(1, . . . , 1,−1). Thus X ∼τ Y (resp. X ∼σ Y ) if and only if there exists a Z such that

Y = ZX(tZ) (resp. Y = ZXJZ−1J)).

First we consider τ -twisted conjugacy classes. Let k ≥ 1 and let A(k) be the block

diagonal matrix A(k) = diag(B(k), In−2) where B(k) =

(
1 0
k 1

)
. We shall show that

A(k) ∼τ A(l) implies k = l. This clearly implies that R(τ) =∞.

Let X = (xij) ∈ Γ be such that

X.A(k).tX = A(l). (2)

We shall denote the i-th row and i-th column of X by ri and ci respectively. A straightfor-

ward computation shows that X.A(k).tX = X.tX + kc2.
tc1. Comparing the (2, 1)-entries

on both sides of (2) we get r2.
tr1 + kx22x11 = l whereas comparing the (1, 2)-entries gives
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r1.
tr2 + kx12x21 = 0. Therefore r2.

tr1 = r1.
tr2 = −kx12x21 and so l = k(x11x22 − x12x21).

Since xi,j ∈ Z, we obtain that k|l. Interchanging the roles of k, l we get l|k and so we

must have k = l since k, l ≥ 1.

Now consider σ-twisted conjugacy classes. SinceA ∼σ B if and only ifAJ = X(BJ)X−1

for some X ∈ SL(n,Z). We need only show that the set {tr(AJ) | A ∈ SL(n,Z)} is in-

finite. Let A′ ∈ SL(n − 1,Z) and let A = diag(A′, 1) where A′ ∈ SL(n − 1,Z). Then

AJ = diag(A′,−1). Therefore tr(A) = tr(A′) − 1. Since n > 2, the set {tr(A′) | A′ ∈
SL(n− 1,Z)} is infinite and we conclude that R(σ) =∞.

The proof of that R(στ) =∞ is similar and so we omit the details. �

It is possible to give a more direct proof of the R∞-property for SL(2,Z) as for

SL(n,Z), n > 2, given above, using the description of the (outer) automorphism group of

SL(2,Z) given in [8, Theorem 2].

It is known that the R∞-property is not inherited by finite index subgroups in general.

For example, the infinite dihedral group, which contains the infinite cyclic group as an

index 2 subgroup, has the R∞ -property (whereas R(−idZ) = 2). (See [7].) However we

have the following result.

Let Γm denote the principal level m congruence subgroup of SL(n,Z); thus Γm is the

kernel of the surjection SL(n,Z) −→ SL(n,Z/mZ) induced by the surjection Z −→ Z/mZ.

Theorem 3.2. Let n ≥ 3. Let Λ be a non-central normal subgroup of SL(n,Z). Then Λ

has the R∞-property.

Proof. Let Γ = SL(n,Z). We shall use the notations introduced in the proof of Theorem

3.1. It is known that any finite index subgroup of SL(n,Z) contains Γm for some m ≥ 2.

This is the congruence subgroup property for SL(n,Z), n > 2. See [20, §4.4].

Let M = (mi,j) ∈ SL(n,Z) and let φ := φM be the restriction to Λ of the inner

automorphism ιM of Γ. Then X ∼φ Y if and only if XM = Z(YM)Z−1 for some Z ∈ Λ.

In particular tr(XM) = tr(YM). To show that R(φ) = ∞ we need only show that the

set {tr(AM) | A ∈ Λ} is infinite for any M ∈ SL(n,Z). There are two cases to consider:

(1) mii 6= 0 for some i, (2) mii = 0 for all i.

Case (1): Without loss of generality we may assume that m11 6= 0. Let k > 1 and let X(k)

be the block diagonal matrix X(k) = diag(C(k), In−2) where C(k) =

(
k2 + 1 k
k 1

)
. A

straightforward computation shows that tr(X(k)M) = (k2 + 1)m11 + k(m12 + m21) +∑
2≤j≤nmjj. Therefore tr(X(k)M) = tr(X(l)M) if and only if (k+ l)m11 +m12 +m21 = 0.

Choose k0 > (m12 +m21)/m11. Then X(mk), k ≥ k0, belong to pairwise distinct φ-twisted

conjugacy classes in this case.

Case (2): Without loss of generality assume that m12 6= 0. Let A(k) be as in the proof of

Theorem 3.1. Then tr(A(k)M) = km1,2. Therefore tr(A(k)M) = tr(A(l)M) if and only

if k = l. Since A(mk) ∈ Γm ⊂ Λ for all k, it follows that R(φ) =∞ in this case as well.
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Suppose that τ(Λ) = Λ where τ(X) = tX−1 as in the proof of Theorem 3.1. We see

that R(τ |Λ) =∞ arguing as we did to establish that R(τ) =∞ in the proof of Theorem

3.1 by considering the set of elements A(mk) ∈ Γm ⊂ Λ, k ≥ 1. Similarly, we show that

R(θ|Λ) = ∞ for each representative θ of the outer automorphisms of Γ which leaves Λ

invariant.

To complete the proof, we need only show that every automorphism of Λ extends to an

automorphism of Γ. For this purpose we observe that the R-rank of the semi simple Lie

group G := SL(n,R) equals n − 1 ≥ 2. Let θ : Λ −→ Λ be any automorphism. By the

Mostow-Margulis strong rigidity theorem [21, Chapter 5], θ extends to an automorphism

θ̃ : SL(n,R) −→ SL(n,R). By a result of Newman [12, Lemma 2] we have NG(Λ) = Γ. So

θ̃ restricts to an automorphism θ̄ of Γ. Thus θ is the restriction of an automorphism of

Γ, namely θ̄. This completes the proof. �

Remark 3.3. Recall that Fel’shtyn and Gonçalves [5] have shown that Sp(2n,Z) has the

R∞- property. One could also establish this result along the same lines as for SL(n,Z)

given above. We assume that n ≥ 2 as Sp(2,Z) = SL(2,Z). To fix notations, regard

Sp(2n,Z) as the subgroup of SL(2n,Z) which preserves the skew symmetric form β :

Z2n × Z2n −→ Z defined as β(e2i, e2j) = 0 = β(e2i−1, e2j−1), β(e2i−1, e2j) = δij, 1 ≤
i ≤ j ≤ n (Kronecker δ). Equivalently Sp(2n,Z) = {X ∈ SL(2n,Z) | tXJ0X = J0}

where J0 = diag(j0, . . . , j0), j0 :=

(
0 1
−1 0

)
is the matrix of β. Infinitude of (untwisted)

conjugacy classes follows from the residual finiteness of Sp(2n,Z). (cf. Proposition 2.4).

Alternatively, observe that X(k) ∈ Sp(2n,Z) where X(k) is as in the proof of Theorem

3.2. This shows that the trace function is unbounded on Sp(2n,Z).

To complete the proof, we need only verify that R(φ) = ∞ for representatives of the

elements of Out(Sp(2n,Z)). One knows from [17] that the outer automorphism group of

Sp(2n,Z) is isomorphic to Z/2Z if n > 2 and is isomorphic to Z/2Z×Z/2Z when n = 2.

The generators of the outer automorphism groups may be described as follows. Let

θ be the automorphism of Sp(2n,Z) which is conjugation by J := diag(I ′, I2n−2) ∈

GL(2n,Z) where I ′ =

(
0 1
1 0

)
. Let φ be the automorphism of Sp(4,Z) defined as

φ(X) = χ(X)X where χ : Sp(4,Z) −→ {1,−1} is the (non-trivial) central character.

Then Out(Sp(2n,Z)) = 〈θ〉, n > 2, and Out(Sp(4,Z)) = 〈θ, φ〉.
To see that R(θ) =∞ we note that tr(X(k)J) = 2k+(2n−2). Therefore the X(k), k ≥

1, belong to pairwise distinct θ-twisted conjugacy classes.

As observed already in [5, Lemma 3.1], any φ-twisted conjugacy class of X is a union of

the (untwisted) conjugacy class of X and of −X. Since the number of conjugacy classes

in Sp(4,Z) is infinite, it follows that R(φ) = ∞. Proof that R(θφ) = ∞ is similar and

omitted. This completes the proof.

It is an interesting problem to determine which (irreducible) lattices in semi simple Lie

groups have the R∞-property. We shall address this question in a sequel to this paper.
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4. Proof of the main theorem

We now proceed to the proof of the main theorem. Let j : A ↪→ Λ be the inclusion and

η : Λ −→ Γ the canonical quotient map so that 1 −→ A ↪→ Λ −→ Γ −→ 1 is an exact

sequence of groups.

Proof of Theorem 1.1: Let φ : Λ −→ Λ be any automorphism and let f : A −→ Γ be the

composition η ◦ φ ◦ j. Note that since A is normal in Λ, φ(A) is normal in Λ and hence

f(A) is normal in Γ.

(i) In this case we claim that f is trivial. Suppose that f(A) is not the trivial subgroup.

Since Γ is a non-elementary group it does not contain a free abelian group of rank 2.

Since Γ is torsion free, the centralizer of any non-trivial element of Γ is infinite cyclic. By

[2, Corollary 3.10, Chapter III.Γ] f(A) is quasi-convex. Hence by [2, Proposition 3.16,

Chapter III.Γ] the subgroup f(A) has finite index in its normalizer, which is Γ. This

contradicts the assumption that Γ is non-elementary. Therefore f(A) must be trivial.

This means that φ(A) ⊂ A and we have the following diagram in which the top horizontal

sequence is exact:

A ↪→ Λ −→ Γ
φ|A ↓ φ ↓ ↓ φ̄

A ↪→ Λ −→ Γ.

Now φ̄ is a surjection since η ◦ φ is. Since Γ is assumed to be torsion-free, by Sela’s

theorem [18], Γ is hopfian and so φ̄ is an isomorphism. Therefore φ(A) = A. Hence A is

characteristic in Λ. Since Γ has the R∞-property by [9] (cf. [3]), Lemma 2.1 now implies

that Λ has the R∞-property.

(ii) The group Γ is a lattice in one of the simple linear Lie groupsG = SL(n,R),PGL(n,R),

Sp(2n,R),PSp(2n,R). These Lie groups have centre a group of order at most 2. Also,

Γ is hopfian. First we consider the case Γ = SL(n,Z),PSL(n,Z),PGL(n,Z), n > 2, or

Sp(2n,Z),PSp(2n,Z), n > 1, so that the corresponding Lie group G has real rank at least

2. By the normal subgroup theorem of Margulis [21, Chapter 8], the subgroup f(A) being

normal in Γ is either of finite index or is contained in the centre of G. Since A is abelian,

f(A) cannot be of finite index in Γ. Hence f(A) ⊂ Z(Γ) the centre of Γ which is of order

at most 2. First assume that f(A) is trivial. Then we have φ(A) ⊂ A. Using the fact

that Γ is hopfian, we conclude as above, that A is characteristic. Now Γ has the R∞-

property by Theorem 3.1 in the case of SL(n,Z),PSL(n,Z),PGL(n,Z) and by the work of

Fel’shtyn-Gonçalves [5] in the case of Sp(2n,Z),PSp(2n,Z) (cf. Lemma 2.2(i)). It follows

as in case (i) that Λ also has the R∞-property. Now assume that f(A) = Z(Γ) ∼= Z/2Z.

Set Γ̄ = Γ/Z(Γ) which is the lattice PSL(n,Z) or PSp(2n,Z) in the corresponding Lie

group of adjoint type. Let N = η−1(Z(Γ)). Clearly N/A ∼= Z(Γ). Now we have the

exact sequence N
j̃
↪→ Λ

η̄−→ Γ̄ where η̄ is the canonical quotient map. Now we claim

that N is characteristic. Indeed, let f̃ : N −→ Γ̄ be defined as η̄ ◦ φ ◦ j̃. Again using

Margulis’ normal subgroup theorem, the fact that N is virtually abelian forces f̃(N) to

be contained in the centre of Γ̄. Since Γ̄ has trivial centre, we must have f̃(N) ⊂ N . Now



8 T. MUBEENA AND P. SANKARAN

Γ̄ is again hopfian (being finitely generated and linear). As before, we conclude that N is

characteristic. By Lemma 2.1 applied to Γ̄ we conclude that Λ has the R∞-property.

We now consider the case SL(2,Z) ∼= Sp(2,Z). Proceeding as above we see that f(A)

is a normal abelian subgroup of SL(2,Z). We need only show that f(A) ⊂ {I,−I}. Let

F ⊂ SL(2,Z) be a free group of finite index which is normal. Then F ∩f(A) is trivial since

any normal subgroup of F is a non-abelian free group. Hence f(A) is finite as it imbeds in

the finite group SL(2,Z)/F . Let C be the image of f(A) in PSL(2,Z) ∼= (Z/2Z) ∗ (Z/3Z)

under the natural quotient map. Since any element of finite order is conjugate to the

generator of PSL(2,Z) of order 2 or that of order 3 (see [10, Theorem 2.7, Chapter IV]).

Since C is normal and finite, it follows easily that C is trivial. Hence f(A) ⊂ {I,−I}.
(iii) By Theorem 3.2 the R∞-property holds for Γ. The rest of the proof is as in case

(ii) above and hence omitted.

(iv) If M is compact, then Γ is a torsion-free hyperbolic group and our statement follows

from part (i). In any case, Γ is a lattice in G, the group of orientation preserving isometries

of the universal cover of M . Thus G is a simple Lie group with trivial centre and real

rank 1. In particular, G is linear and so Γ is residually finite. Indeed G is the identity

component of the real points GR of the complex linear algebraic group G of adjoint type

whose Lie algebra equals Lie(G)⊗R C.

If M is non-compact then Γ is relatively hyperbolic (with respect to the family of

stabilizers of the cusps of M). Fel’shtyn [4, Theorem 3.3] has established the R∞- property

for such groups Γ.

Next we show that f(A) is trivial. Let Z ⊂ GR be the Zariski closure of f(A) and let

H be the normalizer of Z in GR. Then H is an algebraic subgroup which contains Γ.

Since Γ is Zariski dense in GR by the Borel density theorem [16], it follows that H = GR

and so Z is normal in GR. Since Z is abelian and since G is simple, it follows that Z is

finite and is contained in the centre of GR. Therefore f(A) equals Z ∩G and is contained

in the centre of G. Since the centre of G is trivial, we conclude that f(A) = {1}. The

rest of the proof is as in the previous cases above. �

We conclude this paper with the following remarks.

Remark 4.1. (i) Theorem 1.1 contains as special cases the direct product A× Γ as well

as the the restricted wreath product C o Γ = (⊕γ∈ΓCγ) n Γ where Cγ = C is any cyclic

group.

(ii) Let P be any set of primes containing 2; thus any homomorphism A(P ) −→ Z/2Z
is trivial. Let A(P ) = Z[1/p|p ∈ P ] ⊂ Q. Note that i : A(P ) −→ A(Q) is any non-

trivial homomorphism, then P ⊂ Q. Set Λ(P ) := A(P ) o Γ where Γ is as in Theorem

1.1. Suppose that θ : Λ(P ) −→ Λ(Q) is an isomorphism. Then, as in the proof of Theo-

rem 1.1, the composition ⊕γ∈ΓA(P ) ↪→ Λ(P )
θ−→ Λ(Q) −→ Γ is trivial. It follows that

θ(⊕γ∈ΓA(P )) ⊂ ⊕γ∈ΓA(Q) and so P ⊂ Q. Similarly Q ⊂ P and so P = Q. It follows

that there are 2ℵ0 many pairwise non-isomorphic countable groups Λ satisfying the R∞-

property for each Γ as in Theorem 1.1. The same conclusion can also be arrived at by
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considering the groups A(P )× Γ.

Note: Recently T. Nasybullov [11] has established the R∞-property for SL(n,K) and

GL(n,K) where K is any infinite integral domain such that either (i) characteristic of K

is zero and Aut(K) is torsion, or, (ii) K has arbitrary characteristic and Aut(K) is the

trivial group.
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