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On theta characteristics of a compact Riemann surface
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Abstract

Let σ be a nontrivial automorphism of a compact connected Riemann surface X of genus at least two.
Assume that σ fixes each of the theta characteristics of X. We prove that X is hyperelliptic, and σ is the
unique hyperelliptic involution of X.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Let X be a compact connected Riemann surface with g := genus(X) > 1. Theta characteristics
on X are the square-roots of the holomorphic cotangent bundle of X. Since the degree of the
holomorphic cotangent bundle of X is an even integer, there are theta characteristics on X. In
fact, there are exactly 4g of them. Theta characteristics are very important objects associated to
a Riemann surface; see [2,4].

Any holomorphic automorphism on X acts on the set of all theta characteristics on X. The
action of any automorphism σ of X sends a theta characteristic L to σ ∗L. Our aim here is to
investigate the action of a holomorphic automorphism of X on its theta characteristics.

We prove the following theorem (see Theorem 2.1):
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Theorem 1.1. Let σ be a holomorphic automorphism of X that fixes pointwise all the theta
characteristics on X. Assume that σ �= IdX . Then X is a hyperelliptic Riemann surface, and
furthermore, σ is the unique hyperelliptic involution of X.

We recall that a hyperelliptic Riemann surface is a double cover of CP
1, and a hyperelliptic

involution is an automorphism of order two for which the quotient is isomorphic to CP
1. We note

that any hyperelliptic involution fixes all the theta characteristics pointwise (see Remark 2.2).
Theorem 1.1 can be strengthened in the following way: If σ is a nontrivial holomorphic au-

tomorphism of X that fixes pointwise all the even theta characteristics on X, then σ must be a
hyperelliptic involution. (See Proposition 2.3.)

We note that Theorem 1.1 remains valid for elliptic curves if we restrict ourselves to automor-
phisms that fix some point; see Remark 2.4.

Proof of Theorem 1.1 will be carried out in two parts. First we shall prove that σ 2 = IdX .
Then it will be shown that the quotient of X by σ is isomorphic to CP

1.

2. Automorphisms and the theta characteristics

Let X be a compact connected Riemann surface of genus g, with g � 2. The holomorphic
cotangent bundle of X will be denoted by KX .

A theta characteristic on X is a holomorphic line bundle L of degree g − 1 over X such
that the tensor product L ⊗ L is holomorphically isomorphic to the cotangent line bundle KX .
Let S(X) denote the space of all isomorphism classes of theta characteristics on X. We note that
S(X) is an affine space for the group of all order two holomorphic line bundles on X. The action
on S(X) of any holomorphic line bundle ξ of order two sends any theta characteristic L to L⊗ ξ .

We will denote by J (X)2 the group of all isomorphism classes of holomorphic line bundles
on X of order two. There is a natural isomorphism of groups

μ :J (X)2 −→ H 1(X;Z/2Z) (1)

which can be constructed as follows. Given a holomorphic line bundle L on X of order two, fix
a holomorphic isomorphism

α :L⊗2 −→ X × C,

where X × C is the trivial line bundle over X. Let

β :L −→ L⊗2

be the (nonlinear) holomorphic map between the total spaces of line bundles defined by w �−→
w ⊗ w. Let

p : (α ◦ β)−1(X × {1}) −→ X

be the restriction of the natural projection L −→ X. This map p is evidently a unramified cover-
ing of degree two. Therefore, the covering p gives an element

p̃ ∈ Hom
(
π1(X),Z/2Z

) = Hom
(
H1(X;Z/2Z),Z/2Z

) = H 1(X;Z/2Z).

It is easy to see that the isomorphism class of the covering p is independent of the choice of the
isomorphism α. With the above notation, the homomorphism μ in (1) is defined by

μ(L) = p̃.
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Using the isomorphism μ, the set S(X) of theta characteristics on X is an affine space for the
group H 1(X;Z/2Z). In particular, there are exactly 4g distinct theta characteristics on X. Let

φ :S(X) × H 1(X;Z/2Z) −→ H 1(X;Z/2Z) (2)

be the action of H 1(X;Z/2Z) on S(X).
We recall that a compact connected Riemann surface Y is called hyperelliptic if it admits a

nonconstant holomorphic map, of degree two, to the complex projective line CP
1. A holomorphic

automorphism τ of Y is called a hyperelliptic involution if τ ◦ τ = IdY with genus(Y/〈τ 〉) = 0,
where Y/〈τ 〉 is the quotient of Y by τ . If Y is hyperelliptic, and genus(Y ) � 2, then Y admits
exactly one hyperelliptic involution [3, p. 108, Corollary 2].

Let

σ :X −→ X (3)

be a holomorphic automorphism of the Riemann surface X. The automorphism σ acts on the
group of all holomorphic line bundles on X by sending any L to its pull back σ ∗L. This action
clearly takes the holomorphic cotangent bundle KX to itself. Therefore, σ acts on the set of all
theta characteristics on X.

Theorem 2.1. Let σ be a holomorphic automorphism of X that acts trivially on the set of all
theta characteristics on X. Assume that σ �= IdX . Then σ is an involution, and the quotient
X/〈σ 〉 is isomorphic to CP1. In other words, X is hyperelliptic, and σ is the unique hyperelliptic
involution of X.

Proof. The automorphism σ in (3) acts on both J (X)2 and H 1(X;Z/2Z), and the isomor-
phism μ in (1) intertwines these two actions. Also, the map φ in (2) evidently commutes with the
actions of σ , with σ acting diagonally on S(X) × H 1(X;Z/2Z). Therefore, the given condition
that σ acts trivially on the set of all theta characteristics on X immediately implies that σ acts
trivially on

H 1(X;Z/2Z) = H 1(X;Z/2Z)∗ = H1(X;Z/2Z).

The above isomorphism between H 1(X;Z/2Z) and H 1(X;Z/2Z)∗ is obtained from the cup
product.

Since g � 2, the holomorphic automorphism group of X is finite; a theorem of Hurwitz says
that the cardinality of Aut(X) is at most 84(g −1), where Aut(X) is the group of all holomorphic
automorphisms of X (see [3, p. 258, Theorem]). In particular, the automorphism σ is of finite
order. Let

T :H1(X;Z) −→ H1(X;Z) (4)

be the isomorphism given by the automorphism σ .
If we fix a symplectic basis of H1(X;Z), then T is given by an element in Sp(2g,Z). Let

T2 :H1(X;Z/2Z) −→ H1(X;Z/2Z)

be the automorphism induced by T . This automorphism T2 evidently coincides with the one
given by σ . We noted above that σ acts trivially on H1(X;Z/2Z). Therefore, T2 = IdH1(X;Z/2Z).
From this it follows that

T 2 = IdH1(X;Z) (5)
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(see [3, p. 292, Lemma]).
The natural homomorphism Aut(X) −→ Aut(H1(X;Z)) is injective [3, p. 287, Theorem].

Consequently, from (5) we conclude that

σ ◦ σ = IdX. (6)

(See also [3, p. 293, Theorem].)
Any holomorphic automorphism of X preserves the unique hyperbolic metric on X of con-

stant curvature −1. Therefore, from Proposition 3.1, which is stated and proved in the next
section, we know that the quotient surface X/〈σ 〉 is isomorphic to CP

1. We already noted that
a compact connected Riemann surface of genus at least two admits at most one hyperelliptic
involution. This completes the proof of the theorem. �
Remark 2.2. Let X be a hyperelliptic Riemann surface. Let σ be the hyperelliptic involution
of X. Then σ fixes each of the theta characteristics on X; see [1, p. 288, 32(i)].

We recall that the set S(X) of theta characteristics of X can be partitioned into two subsets
Si (X), i = 0,1, where Si (X) consists of all those line bundles L for which dimC H 0(X;L) ≡ i

mod 2. The elements of S0(X) are called the even theta characteristics, while the elements of
S1(X) are called the odd theta characteristics. It is known that there are exactly 2g−1(2g + 1)

elements in S0(X) and 2g−1(2g − 1) elements in S1(X) [4, p. 190, § 4]. Clearly the action of any
automorphism of X on S(X) preserves both S0(X) and S1(X).

The following proposition, which is proved using Theorem 2.1, gives a stronger version The-
orem 2.1.

Proposition 2.3. Let σ be a holomorphic automorphism of X. Assume that σ �= IdX . If σ fixes
pointwise all the even theta characteristics on X, then X is hyperelliptic, and σ is the unique
hyperelliptic involution of X.

Proof. Assume that σ fixes pointwise all the even theta characteristics S0(X) on X. Fix an
element L0 ∈ S0(X).

We noted earlier that the set of all theta characteristics S(X) is an affine space for the Z/2Z-
vector space H 1(X;Z/2Z). Taking L0 as the origin, we identity S(X) with H 1(X;Z/2Z) in a
H 1(X;Z/2Z)-equivariant way.

Let

Γ0 ⊂ H 1(X;Z/2Z)

be the subgroup generated by the subset S0(X) using the above H 1(X;Z/2Z)-equivariant iso-
morphism of S(X) with H 1(X;Z/2Z). If σ fixes S0(X) pointwise, then it follows immediately
that the action of σ on H 1(X;Z/2Z) fixes Γ0 pointwise.

The order #Γ0 of the subgroup Γ0 is submultiple of the order #H 1(X;Z/2Z). On the other
hand,

2 · #Γ0 = 2g(2g + 1) > 4g = #H 1(X;Z/2Z).

Therefore, Γ0 = H 1(X;Z/2Z). Consequently, if σ fixes S0(X) pointwise, then it actually fixes
S(X) pointwise. Now the proof of the proposition is completed using Theorem 2.1. �
Remark 2.4. Let Z be a compact connected Riemann surface of genus one. Fix a point z0 ∈ Z.
There is a unique complex (abelian) Lie group structure on Z with z0 as the identity element.
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This group is identified with Pic0(Z) by sending any z ∈ Z to the holomorphic line bundle over
X defined by the divisor z − z0. Any holomorphic automorphism of Z that fixes z0 is actually an
automorphism of the Lie group.

Let

τ :Z −→ Z

be a holomorphic automorphism of the group that fixes pointwise the order two points of Z.
From [3, p. 292, Lemma] it follows that τ ◦ τ = IdZ .

Since τ ◦ τ = IdZ , the corresponding automorphism of the Lie algebra of Z is either the
identity map, or it is multiplication by −1. Any holomorphic automorphism of the Lie group Z is
uniquely determined by the corresponding automorphism of the Lie algebra of Z. Therefore, we
now conclude that either τ = IdZ or τ is the inversion map defined by z �−→ −z. The inversion
map is evidently a hyperelliptic involution of Z.

In the next section we will prove Proposition 3.1.

3. Involutions acting trivially on homology mod 2

We consider in this section all the orientation preserving involutions of compact hyperbolic
surfaces that act trivially on homology with Z/2Z coefficients. By a theorem of Nielsen [5] such
an involution is homotopic to an isometry of some hyperbolic metric on the surface.

We make the following convention throughout. If C is an (unoriented) curve on a surface S,
then [C] is the corresponding class in H1(S;Z/2Z). Further if [C] and [C′] are such homology
classes, then [C] · [C′] denotes their mod 2 intersection number.

Proposition 3.1. Let τ :F −→ F be an orientation preserving isometric nontrivial involution of
a compact hyperbolic surface F such that the induced homomorphism

τ∗ :H1(F ;Z/2Z) −→ H1(F ;Z/2Z)

is the identity map. Then the quotient S of F by the action of τ is a sphere.

Proof. Note that as τ is a hyperbolic isometry, the quotient S := F/〈τ 〉 is a surface, and further-
more, the quotient map

π :F −→ S (7)

is a branched covering whose branch points are the images of the fixed points of τ .
We first assume that the automorphism τ has a fixed point. Let p1, . . . , pd be the fixed points

of τ . Let qi := π(pi) be the image under the quotient map in (7).
Set F ′ = F −{p1, . . . , pd} and S′ = S −{q1, . . . , qd}. Then the restriction of π gives a 2-fold

covering

π ′ := π |F ′ :F ′ −→ S′. (8)

This corresponds to a surjective homomorphism

ϕ̂ :π1(S
′) −→ Z/2Z.

This homomorphism ϕ̂ in turn factors through a surjective homomorphism

ϕ :H1(S
′;Z/2Z) −→ Z/2Z. (9)
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Let the genus of the surface S be m. Let a1, b1, . . . , am, bm be a standard system of curves for
S. This means that {a1, b1, . . . , am, bm} is a collection of smooth simple curves in S such that ai

and bi intersect in a single point transversally for each i, and all other pairs of curves in the system
are disjoint, and furthermore, the complement S \ {a1, b1, . . . , am, bm} is connected (hence it is
an open disk). We assume that each of the curves is contained in S′. Then the complement
S′ \ {a1, b1, . . . , am, bm} is a disk with punctures q1, . . . , qd . Let μi be the boundary of a small
disk neighborhood of qi in S.

Note that the collection of elements [ai], [bi] and [μi] represent a system of generators for
H1(S

′;Z/2Z). Hence the homomorphism ϕ in (9) is determined by its values on these elements.
Further, note that ϕ(μi) = 1 for all i by elementary covering space theory.

We need the following lemma for the proof of the proposition.

Lemma 3.2. The standard system of curves can be chosen so that ϕ([ai]) = ϕ([bi]) = 0 for all i.

Proof. Suppose ϕ([aj ]) = 1. Let α be a smooth arc with endpoints on aj and μ1 whose interior
is disjoint from all the curves ai , bi and μi for all i (recall that we have assumed that there is
at least one fixed point). Let a′

j be the component of the boundary of a regular neighborhood of
aj ∪ α ∪ μ1 that intersects the boundary of regular neighborhoods of each of the curves aj , α

and μj . Geometrically, this is the curve obtained by sliding aj over μ1 along the arc α.
Observe that in H1(S

′;Z/2Z), we have the relation [a′
j ] = [aj ] + [μ1]. Hence ϕ([a′

j ]) = 0.
Further note that replacing aj by a′

j gives a standard system of curves for S. Note that the other
curves of the standard system have not been affected.

We modify the standard system in a similar way for each curve ak or bk with image 1 under ϕ.
The resulting system of curves is as required. �

Continuing with the proof of the proposition, we assume henceforth that the system of curves
has been chosen as above. By elementary covering space theory, it follows that the inverse image
of each of the curves ai and bi , 1 � i � m, consists of two components, each a simple closed
curve mapping homeomorphically under the projection π ′ in (8); recall that all the curves ai , bi

are contained in S′.
Suppose now that the genus m of S is at least one. Let x be the point of intersection of a1 and

b1 and let y be one point π−1(x). Let A1 and B1 be the components containing y of π−1(a1)

and π−1(b1) respectively. Then A1 and B1 intersect transversely in one point, hence the mod 2
intersection number [A1] · [B1] is 1. On the other hand, the curve [τ(A1)] is the other component
of π−1(a1), which is disjoint from B1. This implies that τ∗([A1]) · [B1] is zero.

It follows that τ∗([A1]) �= [A1] in H1(F ;Z/2Z), contradicting the hypothesis that τ∗ induces
the identity on H1(F ;Z/2Z). Thus, if τ has a fixed point, then S has genus zero, i.e., S is a
sphere. This completes the proof of the proposition under the assumption that τ has a fixed
point.

Now assume that τ does not have any fixed points. Therefore, S = S′, and π = π ′ :F −→ S

is a unramified covering.
We note that S is not a sphere as F is connected, and S is not a torus as its cover F has genus

at least two. Hence F must have genus at least two.
As before, we have the surjective homomorphism ϕ :H1(S;Z/2Z) −→ Z/2Z constructed

in (9). We choose a standard system of curves ai , bi , 1 � i � m, for S as before. Recall that we
have m > 1.
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Lemma 3.3. The standard system of curves can be chosen so that

(1) ϕ([a1]) = 1,
(2) ϕ([ai]) = 0 for i � 2, and
(3) ϕ([bi]) = 0 for all i.

Proof. We first ensure that the condition on the curves bi , 1 � i � m, is satisfied. Suppose
ϕ([bj ]) = 1 for some j . If ϕ([aj ]) = 0 we note that we can interchange the (unoriented) curves aj

and bj to get a new standard system of curves so that ϕ([bj ]) = 0. On the other hand, if ϕ([aj ]) =
1, we can replace bj by its image under a Dehn twist about aj to get a new standard collection
of curves with ϕ([bj ]) = 0. Thus, we can ensure that ϕ([bi]) = 0 for each i.

We now view the surface S as the boundary of a handlebody H with the curves ai the cores
of 1-handles and the curves bi the meridians (i.e., curves bounding disks in H ). By the condition
on the curves bj , the map ϕ factors through a map

ϕ′ :H1(H ;Z/2Z) −→ Z/2Z.

We shall use homeomorphisms of the handlebody H , restricted to its boundary S, to modify the
standard system of curves. Note that a modification by such a homeomorphism automatically
preserves the condition that ϕ([bi]) = 0 for all i as this condition holds for all homomorphisms
factoring through H1(H ;Z/2Z). Thus, it suffices to show that such modifications can ensure that
the first two conditions hold.

Firstly, as ϕ is a surjection, for some j we have ϕ([aj ]) = 1. Using a homeomorphism
that interchanges 1-handles, we can ensure that ϕ([a1]) = 1. Now if for some j > 1 we have
ϕ([aj ]) = 1, we handle slide the corresponding handle over the 1-handle corresponding to a1.
After this modification we obtain ϕ([aj ]) = 0. By performing such modifications for all j with
ϕ([aj ]) = 1, we obtain a standard system of curves satisfying all the desired conditions. This
completes the proof of the lemma. �

We now complete the proof of the proposition as in the case with fixed points. Recall that
m > 2. As ϕ([a2]) = 0 and ϕ([b2]) = 0, we can choose components A2 and B2 of the inverse
images of these curves intersecting transversally in one point, with τ(A2) disjoint from B2. As
before, we deduce that τ∗([A2]) �= [A2], a contradiction.

Thus, it is impossible that τ acts without fixed points, and in the case where τ has fixed points
the quotient is a sphere. This completes the proof of the proposition. �
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