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STABLE PARALLELIZABILITY
OF PARTIALLY ORIENTED FLAG MANIFOLDS

P. SANKARAN AND P. ZVENGROWSKI

This paper solves the questions of stable parallelizability and paral-
lelizability for the family of partially oriented (p.o.) flag manifolds,
except for a few undecided cases. In particular, for the oriented Grass-
mannians Gk(Rn) it is proved that apart from the spheres S1, S3, and SΊ

only 63(R6) is parallelizable, and only G2(B?) is stably parallelizable and
not parallelizable. Negative results are derived for the most part using
KO theory and the "inclusion method", while positive results are mainly
based on the "λ2 construction".

1. Introduction. The p.o. flag manifolds are real flag manifolds with
additional structure of orientations on some of the orthogonal sub-
spaces constituting each flag. More precisely the p.o. flag manifold
G(nl9...9nr\nr+v...,ns) is the space of all mutually orthogonal sub-
spaces σl9...9σs of R", where n = nλ + +ns, dimσz = ni9 and
σl9..., σr are oriented. The number "s" will always be used for the
"length" of the flag. Familiar examples are G(l, . .. ,l|w - r) = Vn r9

the real Stiefel manifold of orthonormal r-frames in Rw, while
G(k, n - k\) = Gk(Rn), the Grassmann manifold of oriented ^-planes in
Rn. The stable parallelizability or parallelizability of these manifolds is a
natural question, going back to work of Kervaire and Milnor in 1958 for
Sn~ι = VnV and Sutherland in 1964 for Vnn r > 1. More recently I. D.
Miatello and R. J. Miatello (1982) and R. Stong (1984) have studied this
question. Here we settle the stable parallelizability of p.o. flag manifolds,
apart from a few unsolved cases, and, among those known to be stably
parallelizable, completely determine which are parallelizable.

The corresponding problem for flag manifolds (r = 0) was settled in
1984 by Korbas [12] and Sankaran-Zvengrowski [18] (the latter also
covering the complex and quaternionic flag manifolds). We therefore
consider only the case r > 1 here. Notice that there is an obvious 2r-fold
covering map

G ( n l f . . . , n r \ n r + l 9 . . . 9 n 8 ) -> G ( n l 9 . . . 9 n 8 ) 9

and both spaces have the same dimension. In case r = s we make the
additional convention that the orientations on σl9..., σ̂  induce the stan-
dard orientation on Rn = ox Θ θα s . With this convention
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G ( n l 9 . . . , n s _ 1 \ n s ) = G ( n l 9 . . . 9 n s \ ) , a n d w e w r i t e s i m p l y G ( n l 9 . . . 9 n s )
here. Our main results are now summarized in 1.1 and 1.2. We consider
only p.o. flag manifolds G(nl9 . . . , nr\nr+l9..., ns) with nλ> > nr

and nr+ι > > ns since

G(nl9...9nr\nr+l9...9ns) = G(ml9..., mr\mr+l9..., ms)

if ml9...9mr and mr+l9 ...,ms are rearrangements of nv...,nr and

nr+l9...9ns respectively.

1.1. THEOREM. (A) For s = 2, k Φ 1, n - 1, G^(R") w stably paralle-

lizable if and only if (/?, &) = (4,2) or (6,3), #/?d only G3(R6) is paralleliz-

able {the cases k = 1, n — 1 are we// known and omitted here).

Now for (B), (C) and (D) we assume s > 3.

(B) Assume that at least two of the numbers nl9...9ns are greater than

1. Then G(nv .. ., nr \ nr+l9..., ns) is not stably parallelizable if

{nl9...9ns)€{%\}or{2,\).
(C) Consider G(nv ..., nr \ nr+v . . . , ns) with 1 < r < s — 1, a«<i e/Y/zer

Λ 9 > 1 for precisely one q, or {nl9...9ns} = { 3 , 1 } , or {nl9...9ns} =

{ 2 , 1 } with nr+1 = 2. Then G(nv .. .,nr\nr+1,... ,ns) is not stably paral-

lelizable in the following cases.

(ϊ)Letnr+1 = ••• = Λ S = 1.
(a) r < Λ1 — 2, #; # 1,2,6 for some i < r.

(b) r < s - 4, nt Φ 1,2 for some i < r.

( ϋ ) « r + i > 1, r < s - 2.
(iii) r = j - 2, «,_! > 1, (Λ 1 5 / I S _ 1 5 ns) Φ (1, 3,1), (1,7,1).
(D) The following p.o. flag manifolds are stably parallelizable.

(i) G(3, . . . , 3 , 1 , ••• ,1), / > 0.
(*) (0

(ii) G(2, . . . ,211, . . . ,1), / > 0
(*) (/)

(iii) G(6 |_l, l) , G(6, l | 1,1).
Of these only G(2, . . . , 2) α«ύf (5(2,..., 2,1) are «oί parallelizable.

Note: The parallelizability of G(l, . . . ,11 1, . . . ,1) is immediate from
(*) (0

that of G ( l , . . . , 1), proved in [18].

Theorem 1.1 leaves a few unsolved cases and these are now listed.

1.2. Unsolved cases, (for stable parallelizability)

, l ) , s>3,

l , l ) , s>5,

1,1,1), s>4.
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The families of flag and p.o. flag manifolds were first studied in full
generality by Lam [13], who derived the formula for the tangent bundle

τG(n1,...,ns) * Σ £,-«£/,

where £, is the vector bundle over G(nl9...,ns) whose fibre at (σv..., σ,)
is the n -dimensional vector space σ,-. Notice that ξλ Θ ®ξs « nε, the
trivial ^-dimensional bundle, and that Lam's formula holds for
G ( n v . . . , n r \ nr+v...,ns) a s wel l , w h e r e ξv...,ξr are n o w o r i e n t e d
vector bundles.

In §2 the case s = 2, i.e. the oriented Grassmannians, is solved
(Theorem 1.1A). This case is also the subject of [15], but there is a gap in
their proof (p. 350, line 1). We therefore give most of the details of our
proof, which in any case is shorter. Positive results on stable parallelizabil-
ity are obtained in §3, using a generalized λ2 (second exterior power)
construction. Negative results are obtained in §4 using the "inclusion"
method as in [18] and other ad hoc techniques. Recall the isomorphisms

1.3. λ2(ξ θ ϊ | ) « λ2ξ Θ ξ 0 η θ λ2η, for any real vector bundles £, η,
1.4. λp(ξ) « λn~p(ξ) for any real w-dimensional oriented vector bun-

dle ξ (by Hodge duality).
Another observation that will be of use in the sequel is the relation

(1.5) G(n-2\l,l) = Xn>2

with projective Stiefel manifolds. The homeomorphism is given by
φ(σ1? σ2,σ3) = [£], where a, b are any unit vectors in σ2, σ3 respectively
such that σv a, b induces the usual orientation on Rn (note σx is already
oriented), and [a

b] = [Za

b] ^ Xn,2.

2. The stable parallelizability of Gk(Rn). In this section we prove
Theorem l.l(A).

Note that in case k = 1 or n — 1, Gk(Rn) = Sn~ι and the solution for
their parallelizability was obtained independently by Kervaire [11] and
Milnor [16].

We identify Gk(Rn) with G(k, n - k) and write ξx = γ = ynk, ξ2 =

β = /U
We have γ Φ β ~ nε and T = τ(Gnk) ~ y ® β. We apply the functor

λ2 and 1.3 to the relation nε « γ Φ β to obtain

(2.1.1) ί^jε * λ2(γ Φ β) * λ2(γ) Φ λ2(β) Φ γ ® β

* λ2(γ) Φ \2{β) Φ T.
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When n = 4, k = 2 = n - 2. Thus by 1.4 λ2(γ) « ε * λ2()8). Therefore
2.1.1 gives 6ε « 2ε Θ T, showing that G2(R4) is stably parallelizable. The
nonparallelizabihty now follows from the fact that span G2(R4) = 0 as
χ(G2(R4)) = 2X(G2(R4)) Φ 0 (cf. Lemma 2.3 [9]).

When n = 5, k = 2 or 3, and since (52(R5) = (^(R5) we need only
consider the case k = 2. We proceed as before and obtain from (2.1.1)
and 1.4 the relation (|)e « ε Θ β Θ T. Thus τ ~ γ ^ 0 in KO(G2(R5)). In
other words G2(R5) is not stably parallelizable.

Let n = 6, fc = 3. Again by the same arguments one shows that

Hence G3(R6) is stably parallelizable.
We know from the work of Leite and Miatello [14] that span

G3(R6) > 1 = spanS9. Since dimG^R6) = 9, by the Bredon-Kosinski
Theorem [7] we conclude that G3(R6) is parallelizable.

Now only the cases Gk(Rn) with n > 6, (n,k) Φ (6,3) need to be
considered. Without loss of generality we assume that 2 k < n. It follows
that n - k > 4 = dimCP2. Thus every real (orientable) /c-plane bundle η
over C P 2 can be classified by a map g: CP 2 -> Gk(Rn) so that η « g*(γ)
(cf. §19, [19]). Taking η = ξ θ ( / : — 2)ε where ξ is the underlying real
2-plane bundle of the canonical complex line bundle over CP 2 we obtain
the following equalities in KO(CP2):

g Ote - γ),

« (Λ - A: + 2)ε - ξ.

Thus

~ (n - 2k + 4)ξ ® me - £ ® ξ

for a suitable m. Using the relation ξ ® £ « 4^ - 4ε in KO(CP2) and the
fact that I has infinite order (cf. Fujii [8]) we obtain the stable equivalence
g*(τ) - (n - 2k)ξ + 0 for n Φ 2k. Thus Gk(Rn) is not stably parallaliz-
able for n Φ 2k.

In case n = 2k> k > 4, consider the inclusion R8 -> RΛ"4 θ R8 θ
R^'4. This induces an inclusion j : G4(R8) -> Gk(R2k) where y(^) = 1 +
A, X = R^~4 ΘOΦO, and A = 0 Θ A Θ 0. It is readily seen that
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J*(Ύ2k,k) * Ϋ8.4 © ( * - 4)ε. H e n c e

3 5 ( ? M ©(* " Φ ) ®(&,4 ®(* - 4)e)

* %A ® &,4 ©(* " 4)ε ®(jδM Φ γ8(4) ©(* - 4)2ε

* τ((?4(R8)) ©(* - 4)ε β 8ε φ(fc - 4)2ε

Thus to prove that Gk(R2k), k > 4, is not stably parallelizable, it suffices
to show that τ(G4(R8)) -* 0. V. Bartik and J. Korbas [4] have computed
w (Gfc(Rn)) for 1 < i < 9. From their results w8(G4(R8)) = w2

4 + wfwf e
flr8(G4(R8); Z2) where vv̂  = ^ ( γ 8 4 ) . It follows that w8(G4(R8)) =
(w 2(γ 8 4)) 4 e /^8(G4(R8); Z2). One uses the Gysin sequence associated to
the double covering G4(R8) -> G4(R8) together with the known cohomol-
ogy of (?4(R8) to establish that (w2(γ8 4))4 Φ 0 in /f8(G4(R8); Z2). This
completes the proof.

REMARK. The authors could find no way to handle the exceptional
case (54(R8) without the use of Stiefel-Whitney classes. Other methods of
calculating w(G4(R8)) can be found in [17] or in [15].

3. The generalized λ2-construction. Using the so-called λ2-construc-
tion, we prove Theorem l.l(D).

In cases (i) and (ii) we apply the λ2 functor to the following bundle
isomorphism

(3.1.1) Λ β * ^ Θ ••• θ£ 5

to obtain

(3.1.2)
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We now use 1.4 and the fact that λ2(?) » 0 for a line bundle ? to

simplify the right hand side. Since from 3.1.1 one has the stable equiva-

lence ξx Θ 0 ξ Λ ~ 3kε in case (i), we obtain

~ me θ T

where m = 3k in case (i), and m = k in case (ii). This proves stable

parallelizability in cases (i) and (ii). The proof of parallelizability in cases

(i) and (ii) is postposed to the end of this section.

Parallelizability of G ( 6 | l , l ) = X82(cf. 1.5) is due to Zvengrowski

[23]. We now show that M = G(6,111,1) is parallelizable. We have

£ 2 ~ ε. Since Σ 1 < / < 4 ^ z ~ 9ε, and since ξλ and £2 are oriented, it follows

that wλ(ξ3) = wx(^4). Since a line bundle is determined by its first

Stiefel-Whitney class, we must have £3 « ξ4. Call this line bundle ?. Now

using the fact that £ ® ε « ε ® £ ~ £ we have the following bundle

isomorphisms

' ~ lmmtι S/ ^ ζj

as £3 ® £ 4 ~ f 0 f « ε « ξ2. Hence

T * i x θ ί 2 θ ξ3 θ ί 4 θ ίx (8) 2f « 9e 0 i x ® 2f,

showing that span M > 9 > spanS"", m = d imM = 21. We wish to

apply the Bredon-Kosinski Theorem to prove that M is parallelizable.

Thus it remains to prove that T ~ 0. In KO(M), ξλ « 9ε — ξ2 ~ ^3 ~ £4

« 8ε - 2f, so ξx 0 2? « (8ε - 2?) 0 2f « 16? - 4(ξ ® ζ) « 16? - 4e.

Therefore in KO(M), r - 16?.

Now consider the fibre map q: M = G ( 6 , l | l , l ) -^ G(8,l) = R P 8 .

Denoting the canonical line bundle over R P 8 by £, we see that q*(ξ) « ξ4

= ?. Since the order of ξ is 16 by [1], it follows that 16? ~ 0. Hence

M = G(6,111,1) is parallelizable.

Parallelizability in case (i) follows from the work of [15] and [20].

Using a similar argument one can show that the manifolds listed in (ii)

except for Mx = G(2, . . . , 21 1) and M2 = G(2, . . . , 2) are all paralleliz-

able. However, we give a direct proof using λ2 again in the proposition

that follows. The non-parallelizability of M1 and M2 follows from the fact

that their Euler characteristics are positive (cf. [12]) and hence their span

must be zero.



PARTIALLY ORIENTED FLAG MANIFOLDS 355

We now turn to the parallelizability proof for case (ii).
Let m = dim Af = p - k, where p = (£). Regard Rp as λ2(Rw). De-

fine a map g: M -> G(l, . . . , l |m) = ί ^ as follows: For an oriented

2-plane σ c Rn, λ2(σ) is an oriented line in λ2(Rw), the orientation on it
being given by the vector a A b where a, b is any positively oriented basis
of σ. Further if σ ± σ' in R" then λ2(σ) JL λ2(σ') in λ2(R"). Thus we may
define g(σ) = (λ2(σ1), . . . , λ 2(σj, Uσ) e G(l, . . . , 11 m) for σ =
(σ 1 ? . . . , σs) e Λf, where

t/σ = (λ2(σ1) + - + A 2 ( a J ) X in λ2(R").

CLAIM. ΊM ~ g*(£&+i(l>..., 11 rn)). We construct a specific bundle
isomorphism /: τM -» g*(i Λ + 1 (l, . .-, l | w)) as follows. Let σ =
(σ l 9 . . .,σ 5) G M. The tangent space To of M at σ is Σx^^^ ĵσ,. <S> σ̂ .
Thus any y 6 Γ σ may be expressed as a sum of terms having the
form υλ ® v2 + + ^ _ x ® ϋ5 with Vj e σy. It is easy to check that
Σ1<i<J<sviA vj^ t/9. Now/is defined by

flσ, Σ ^ β ^ ) = σ,(g(σ),
^ l<i<j<s ' \ \

^ A

Continuity of / is obvious. Fibres are preserved by / and, restricted to
each fibre, it is a linear isomorphism since the kernel of the homomor-
phism R" ® Rn -> λ2(Rw) intersects Σx^ ^ ^σ,. ® oj only in 0. Hence
r M - g * ( ^ + 1 ( l , . . . , l | m)).

To complete the proof we now show that g is null-homotopic (cf.
Theorem 4.7 Ch. II [10]). Since g depends only on σv..., σk it can be
factored as follows:

M Λ Vpk

where ττ(σ) = (σ 1 ? . . . , σk,σk+1 + + σ ί ) f o r σ G M , and g' is the map
induced by g. Now

d i m A T = p - k - l l \ < p - k - 1 f o r / > 2

= connectivity of Vpk.

Hence g' is null-homotopic. Therefore g = g'° π is also null-homotopic,
completing the proof.
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4. Results for partially oriented flag manifolds. In this section we

complete the proof of l.l(B) and l.l(C). We assume that s > 3, the case

s = 2 having been dealt with in §2. In case r = s we assume that n2 > 1,

since G(nvl9...9ΐ) = Vns_λ{s - 1 > 2) are all known to be paralleliz-

able [21], [13], [23], Also we assume that nx > 1 or nr+ι > 1 since

, . . . , 1) is parallelizable [18].

Proof of l.l(B). Using a method similar to the one used in [18], one

can show that for a suitable "inclusion"

the normal bundle to the imbedding k is trivial. Hence G(nv...,ns) is

not stably parallelizable if G(niyrtj) is not stably parallelizable. Our

assumptions on nl9..., ns and Theorem l.l(A) show that there exist / and

j for which Gin^rij) is not stably parallelizable, completing the proof in

the case r = s.

The case r < s — 1 follows from the above and the observation that

G(nv..., ns) is a covering space of G(nv ...,nr\ nr+ι,..., ns).

Note that Theorem l.l(B) and l.l(D) give complete results on stable

parallelizability of G(nv..., ns). We now turn to the proof of l.l(C).

Recall that only the p.o. flag manifolds G(nl9... 9 nr\nr+1,... 9 ns)

with 1 < r < s - 1, and either nq > 1 for precisely one q, or {n l 9..., ns)

= {3,1}, or {nl9...9ns} = {2,1} with nr+ι = 2 need to be considered

here.

(i) (a) In this case one considers the "inclusion" of

G(*λ 1Λ)-^ G(nl9...9nr\nr+l9...,ns)

which has trivial normal bundle. Now G(Λ,. | 1,1) = Xn + 2 2 is not stably

parallelizable since n ι,Φ 1,2,6 (cf. [2]). Therefore G(nv ...,nr\nr+v ...,ns)

is not stably parallelizable.

(i) (b) In this case we may assume from what has been shown in (i)(a)

that nιf = nq = 6. Now one has an inclusion

j 2 : G(6\ 1,1,1,1) -^ G K /ι f | Λ r + 1,. . .,/i,)

with trivial normal bundle. So it suffices to show that G (611,1,1,1) is not

stably parallelizable. Indeed, consider the covering projection

/ : Fio,4 -* G ( 6 I !> 1> !» ! ) w h i c h m a P s (vv vi> V3> VΛ) G Fίo,4 t 0

(yί, Ryχ, Ry2, Ry3, Rϋ4) where yl = {υl9 vl9 v39 v4}
± . The orientation on A

i s g i v e n b y a n y o r d e r e d b a s i s ul9...9u6 w h e r e ul9...9u69 υ l 9 υ 2 9 v 3 9 υ 4
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(equivalently ul9...9 t / 6 ,~v v -v 2 , -v 3 , -v 4 ) is in the standard orientation
on R10. It is readily seen that / can be factored as in the diagram below.

p

^10,4 ""* ^10,4

f\ S Γ
G(6\ 1,1,1,1)

Since / ' is a covering projection and since Xl0Λ is not stably parallelizable
(cf. [2], [3]) it follows that G(61 1,1,1, 1) is not stably parallelizable.

(ii) In this case one considers the inclusion j : G(nr+l9...,ns) ->
G(nv..., nr I nr+1,..., ns) and uses Theorem 1 of [18].

(in) If (ns_v ns) Φ (3,1), (7,1) then by considering the inclusion
j : G(ns_v ns) -> G(nv..., ns_2 \ ns_v ns) and the negative results about
the stable paralleϋzability of Grassmann manifolds (cf. [22]) we see that
G(nv..., ns_21 ns_λ, ns) is not stably parallelizable. Finally, it remains
to show that for k > 1, G(3, ... , 3,1,..., 11 3,1) is not stably paralleliz-

(k)

able. Once again, by the inclusion method it suffices to show that
G(313,1) is not stably parallelizable. In this case we resort to the standard
Stiefel-Whitney class argument as follows.

As in (3.1.2) one has Qε * λ2(£x) Θ λ2(£2) Θ λ2(£3) Θ r « ξt Θ
λ2(^2) Θ T. We will prove that w(^) w(X2(ξ2)) Φ 1. For a 3-plane bun-
dle {, w(λ2(ξ)) = 1 + (w^))2 + w2(ξ) + w3(ζ) + w2(ζ)w1(ξ) (cf. p. 497,
[6] or p. 32 [17]). Thus

(4.2.1) wUJ.

+ ( ^ i U 2 ) ) 2 + w2(ξ2) + w3(ξ2) + w2({2)W l(

By Theorem 11.1 [5], the only relations among the Stiefel-Whitney
classes of ξl9 £2, ξ3 over G(3,3,1) are those arising from the single
inhomogeneous relation

Using the Gysin sequence associated to the double covering (7(31 3,1) ->
G(3,3,1) one can then prove (cf. §15, [17]) that essentially the same holds
in <?(31 3,l),i.e.,
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generates all the relations among the Stiefel-Whitney classes of ξl9 £2> £3
over G(3| 3,1) in H*(G(3\ 3,1); Z2). From this and 4.2.1 one verifies
that

4.3. REMARKS. In concluding, Theorems l.l(B), (C), and (D) still leave
a few unsolved cases. These were listed in 1.2. Attempts by the authors to
settle these using the methods of this paper, Stiefel-Whitney classes, or the
Kervaire semicharacteristic have all failed.
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