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Abstract. Given a group automorphism φ : Γ −→ Γ, one has an action of Γ on itself
by φ-twisted conjugacy, namely, g.x = gxφ(g−1). The orbits of this action are called
φ-conjugacy classes. One says that Γ has the R∞-property if there are infinitely many
φ-conjugacy classes for every automorphism φ of Γ. In this paper we show that any
irreducible lattice in a connected semisimple Lie group having finite centre and rank at
least 2 has the R∞-property.

1. Introduction

Let Γ be a finitely generated infinite group and let φ : Γ −→ Γ be an endomorphism.

One has an equivalence relation ∼φ on Γ defined as x ∼φ y if there exists a g ∈ Γ such that

y = gxφ(g)−1. The equivalence classes are called the φ-conjugacy classes. Note that when

φ is the identity, φ-conjugacy classes are the usual conjugacy classes. The φ-conjugacy

classes are nothing but the orbits of the action of Γ on itself defined as g.x = gxφ(g−1).

The φ-conjugacy class containing x ∈ Γ is denoted [x]φ or simply [x] when φ is clear

from the context. The set of all φ-twisted conjugacy classes is denoted by R(φ). The

cardinality R(φ) of R(φ) is called the Reidemeister number of φ. One says that Γ has the

R∞-property for automorphisms (more briefly, R∞-property) if there are infinitely many

φ-twisted conjugacy classes for every automorphism φ of Γ. If Γ has the R∞-property, we

shall call Γ an R∞-group.

The notion of twisted conjugacy originated in Nielson-Reidemeister fixed point the-

ory and also arises in other areas of mathematics such as representation theory, number

theory and algebraic geometry. See [6] and the references therein. The problem of deter-

mining which classes of groups have R∞-property is an area of active research initiated

by Fel’shtyn and Hill [9].

Let G be a non-compact semisimple Lie group with finite centre. We do not assume

that G is linear. Recall that a discrete subgroup Γ ⊂ G is called a lattice if G/Γ has a

finite G-invariant measure. One says that Γ is cocompact if G/Γ is compact; otherwise Γ

is non-cocompact. If, for any non-compact closed proper normal subgroup H ⊂ G, the

image of Γ under the quotient map G −→ G/H is dense, one says that Γ is irreducible. Let

Γ be a lattice in connected semisimple Lie group G which has no compact factors. Then

G is an almost direct product
∏

1≤i≤nGi of connected normal subgroups Gi, 1 ≤ i ≤ n,
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such that each Γi := Γ ∩ Gi is an irreducible lattice in Gi and the group
∏

1≤i≤n Γi is a

finite index subgroup of Γ. In particular, any lattice in G is irreducible if G is simple.

The main result of this paper is the following:

Theorem 1.1. Let Γ be any irreducible lattice in a connected semisimple Lie group G

with finite centre. If the real rank of G is at least 2, then Γ has the R∞ property.

When G has real rank 1, the above result is well-known. Indeed, assume that G has real

rank 1. When the lattice Γ is cocompact, it is hyperbolic. When Γ is not cocompact, it

is relatively hyperbolic. It has been shown by Levitt and Lustig [17] that any torsion free

non-elementary hyperbolic group has the R∞-property. Fel’shtyn ([5],[6]) established the

R∞ property for arbitrary non-elementary hyperbolic groups as well as non-elementary

relatively hyperbolic groups.

When Γ is a principal congruence subgroup of SL(n,Z), the above theorem was estab-

lished in [22]. When Γ = Sp(2n,Z), the result was first proved by Fel’shtyn and Gonçalves

[8]; see also [22].

We list below some important classes of groups which are known to have (or not have)

the R∞ property.

Examples. 1. Finitely generated infinite abelian groups do not have the R∞ property.

For example it can be shown easily that if f is any automorphism of Zn such that det(f −
id) 6= 0, then R(f) <∞.

2. Free nilpotent groups Nr,c of rank r and nilpotency class c are defined as Nr,c :=

Fr/Γc+1(Fr) where F = Fr is a free group of rank r and Γ1(F ) = [F, F ],Γj(F ) =

[F,Γj−1(F )], j > 1. Gonçalves and Wong [13] established that N2,c, c ≥ 9, have the R∞-

property. On the other hand, Roman’kov [27] has shown that N2,2, N2,3, N3,2 do not have

the R∞-property whereas Nr,c has the R∞ property in the following cases (i) r = 2, c ≥ 4;

(ii) r = 3, c ≥ 12; and (iii) r ≥ 4 and c ≥ 2r.

3. As noted above, non-elementary hyperbolic groups have the R∞-property. ([17], [5],

[6].)

4. The Baumslag-Solitor groupsBS(m,n) have theR∞-property if (m,n) 6= (1, 1), (−1,−1).

[7]. See also [16] for generalizations.

5. The Thompson group F and the Grigorchuk groups have the R∞-property. ([1], [10].)

6. The mapping class groups for closed oriented surfaces other than the sphere and the

braid groups have the R∞ property [8].

7. The lamplighter groups, which are defined as the (restricted) wreath products (Z/nZ) o
Z, have the R∞ property if either 2|n or 3|n. In fact Gonçalves and Wong [12] have

classified all finitely generated abelian groups G for which the wreath product G o Z has

the R∞-property. See also [28].
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Our proof of Theorem 1.1 involves only elementary arguments, using some well-known

but deep results concerning irreducible lattices in semisimple Lie groups. The main the-

orem is first established when G has no compact factors and has trivial centre. In this

case, the proof uses the Zariski density property of Γ due to Borel as well as the strong

rigidity theorem. When G has non-trivial compact factors, we need to use Margulis’ nor-

mal subgroup theorem to reduce to the case when G has trivial centre and no compact

factors.

In §2 we shall recall the results on lattices in semisimple Lie groups needed in the proof

of Theorem 1.1, given in §3. The R∞ property for S-arithmetic groups are considered in

§4.

After this paper was submitted, Felshtyn and Troitsky [11] have announced that any

residually finite non-amenable group has the R∞ property. Their result implies, among

other things, Theorem 1.1 at least when the lattice is residually finite. However it is

known that there are lattices in connected (semisimple) Lie groups G—necessarily non

linear—which are not residually finite. See [21], [4] and also [26]. Also, as noted already

in their paper, all S-arithmetic groups have the R∞ property. Their proof uses C∗-algebra

techniques.

2. Lattices in semisimple Lie groups

We recall below the definition of an arithmetic lattice in a semisimple Lie group and

some deep results concerning them relevant for our purposes.

Let G ⊂ GL(n,C) be an algebraic group, that is, G is a subgroup of GL(n,C) such that

G is the zero locus of a collection of (finitely many) polynomial equations fm(Xij) = 0 in

the n2 matrix entries Xi,j, 1 ≤ i, j ≤ n. One says that G is defined over a subfield k ⊂ C
if the fm can be chosen to have coefficients in k; in this case Gk := G ∩ GL(n, k) is the

k-points of G. If R is a subring of k, then GR := G ∩GL(n,R). A theorem of Borel and

Harish-Chandra asserts that if G is a connected semisimple algebraic group defined over

Q then GZ is a lattice in GR. We say that a lattice Γ ⊂ G is arithmetic if G is defined

over Q and if Γ is commensurable with GZ.

If N ⊂ G is a compact normal subgroup of a connected Lie group G and Γ a discrete

subgroup of G, then Γ is a lattice in G if and only if the image of Γ under the quotient

map G −→ G/N is a lattice.

Let G be a connected semisimple Lie group having finite centre. The (real) rank of G

is the dimension of a maximal R-diagonalizable subalgebra contained in the Lie algebra g

of G. (In the case when G is the identity component of the real points GR of an algebraic

group G defined over R, the real rank of G equals the dimension of any R-split maximal

torus contained in GR.)

The following well-known results will be needed in the proof of our main theorem.

Theorem 2.1. (Borel density theorem) Let Γ ⊂ GR be any lattice in a connected semisim-

ple algebraic group G. If GR has no compact factors, then Γ is Zariski dense in G. �
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We now state the Margulis’ normal subgroup theorem in the form that is suitable for

our purposes. See [19, Chapter VIII] for a more general version.

Theorem 2.2. (Margulis’ normal subgroup theorem) Let Γ ⊂ G be an irreducible lattice

where G is a connected semisimple Lie group of rank at least 2 and having finite centre.

If N is normal in Γ, then either N is of finite index in Γ or is a finite subgroup contained

in the centre of G. �

Next we state the strong rigidity for irreducible lattices.

Theorem 2.3. (Strong rigidity) Let G and G′ be connected linear semisimple Lie groups

with trivial centre and having no compact factors. Let Γ ⊂ G and Γ′ ⊂ G′ be irreducible

lattices. Assume that G and G′ are not locally isomorphic to SL(2,R). Then any isomor-

phism φ : Γ −→ Γ′ extends to an isomorphism G −→ G′ of Lie groups. �

The strong rigidity theorem for cocompact lattices was obtained by Mostow [20]. Mar-

gulis showed that the result holds for G as above with real rank ≥ 2. See also [25,

Theorems A & B]. The proofs of the rigidity theorem for the case rank ≥ 2, the Borel

density theorem, and the Margulis’ normal subgroup theorem can be found in [29].

3. Proof of Theorem 1.1

Before we begin the proof, we recall some elementary notions in combinatorial group

theory and recall some facts concerning the R∞-property.

Let Γ be a group and H a subgroup of Γ. Recall that a subgroup H is said to be

characteristic in Γ if φ(H) = H for every automorphism φ of Γ. Γ is called hopfian (resp.

co-hopfian) if every surjective (resp. injective) endomorphism of Γ is an automorphism

of Γ. One says that Γ is residually finite if, given any g ∈ Γ, there exists a finite index

subgroup H in Γ such that g /∈ H. It is well-known that any finitely generated subgroup

of GL(n, k), where k is any field, is residually finite and that finitely generated residually

finite groups are hopfian. We refer the reader to [18] for detailed discussion on these

notions.

We recall here some facts concerning the R∞-property. Let

1 −→ N
j
↪→ Λ

η−→ Γ −→ 1 (1)

be an exact sequence of groups.

Lemma 3.1. Suppose that N is characteristic in Λ and that Γ has the R∞-property, then

Λ also has the R∞-property.

Proof. Let φ : Λ −→ Λ be any automorphism. Since N is characteristic, φ(N) = N and so

φ induces an automorphism φ̄ : Γ −→ Γ. Since R(φ̄) =∞, it follows that R(φ) =∞. �

The following proposition is perhaps well-known; a proof can be found in [22].
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Proposition 3.2. Let Γ be a countably infinite residually finite group. Then R(φ) = ∞
for any inner automorphism φ of Γ. �

We are now ready to prove the main theorem.

Proof of Theorem 1.1: First suppose that G has trivial centre and has no compact factors.

Since the centre of G is trivial, the homomorphism ι : G −→ Aut(G) given by inner

automorphism allows us to identify G with the group of inner automorphims of G. Under

this identification, G is the identity component of Aut(G) and Aut(G)/G ∼= Out(G) is

finite. Also the group Aut(G) is isomorphic to the linear Lie group Aut(g) ⊂ GL(g) of

the automorphisms of the Lie algebra g of G under which φ ∈ Aut(G) corresponds to

its derivative at the identity element. Thus we have a chain of monomorphisms Γ ↪→
G

ι−→ Aut(G) ∼= Aut(g) ↪→ GL(g). Furthermore, Aut(G) ∼= Aut(g) is the R-points of

the complex algebraic group H := Aut(g ⊗R C) and the identity component of HR is

Aut(G)0 = G.

Suppose that φ : Γ −→ Γ is an automorphism. Clearly φ◦ιγ = ιφ(γ)◦φ where ιγ denotes

conjugation by γ. Now let x, y ∈ Γ be such that x ∼φ y. Then there exists a γ ∈ Γ such

that y = γxφ(γ−1); equivalently, ιy = ιγιxιφ(γ)−1 = ιγιxφιγ−1φ−1. Hence ιyφ = ιγ(ιxφ)ιγ−1 .

By the strong rigidity theorem, φ ∈ Aut(Γ) extends to an automorphism of the Lie

group G, again denoted φ ∈ Aut(G). For any h ∈ HR, consider the function τh : H −→ C
defined as τh(x) = tr(xh), the trace of xh ∈ H ⊂ GL(g⊗R C). Clearly this is a morphism

of varieties defined over R. We have that, if x, y ∈ Γ, x ∼φ y, then τφ(y) = τφ(x) since ιyφ

and ιxφ are conjugates in H.

Assume that the Reidemeister number of φ is finite. Then, by what has been observed

above, τφ assumes only finitely many values on Γ ⊂ H0
R = G. Since, by the Borel density

theorem, Γ is Zariski dense in H0, it follows that τφ is constant on H0. This clearly implies

that τhφ is constant for any h ∈ H0
R.

Let K be a maximal compact subgroup of HR = Aut(G). Since Aut(G) has only finitely

many components, by a well-known result of Mostow, K meets every connected component

of Aut(G). (See [3, Theorem 1.2, Ch. VII],[15].) Thus K contains representatives of

every element of Out(Γ) and so we may choose an h ∈ H0
R such that θ := hφ ∈ K. The

automorphism Ad(θ) on the Lie algebra Lie(K0) fixes a regular (semisimple) element

X ∈ Lie(K0) by §3.2, Ch. VII of [3]. Hence the one-parameter subgroup S := {exp(tX) |
t ∈ R} ⊂ K0 is contained in the centralizer CHR(θ) = {x ∈ HR | θx = xθ}. Note that

θ is also semisimple since K is compact subgroup of GL(g ⊗R C). It follows that θ and

exp(tX), t ∈ R, are simultaneously diagonalizable (over C). It is now readily seen that

τθ is not constant on S ⊂ H0
R, a contradiction to our earlier observation that τhφ is a

constant function for any h ∈ H0
R. This implies that R(φ) =∞.

Next suppose that G has no compact factors but possibly has non-trivial centre, Z. By

our hypothesis Z is finite. Clearly Z ∩ Γ ⊂ Z(Γ) the centre of Γ. Since Γ̄ := Γ/(Z ∩ Γ) is

Zariski dense in G/Z, and since G/Z has trivial centre, we see that Γ/(Z ∩ Γ) has trivial
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centre. It follows that Z(Γ) = Z ∩ Γ. Consider the exact sequence

1→ Z ∩ Γ→ Γ→ Γ̄→ 1. (2)

Since Z ∩Γ = Z(Γ) is a finite characteristic subgroup of Γ, the R∞ property for Γ follows

from that for Γ̄.

Finally let G be any Lie group as in the theorem. Let M be the maximal compact

normal subgroup of G. Note that M contains the centre Z of G. Now M ∩ Γ is a finite

normal subgroup of Γ. We invoke Theorem 2.2 to conclude that M ∩ Γ is contained in

the centre of G. Also Z(Γ) is contained in Z since, otherwise, by Theorem 2.2 again, Γ

would be virtually abelian, and, since G is a non-compact semisimple Lie group, this is

impossible. Since M contains Z, we see that M ∩ Γ = Z ∩ Γ equals the centre of Γ and

hence is characteristic in Γ. Now Γ̄ := Γ/(M ∩ Γ) is an irreducible lattice in G/M , which

has trivial centre and no compact factors. Using the exact sequence (2) again, we see that

R(φ) =∞. This completes the proof. �

Remark 3.3. (i) Suppose that G is not locally isomorphic to SL(2,R) and that the real

rank of G equals 1. When G has no compact factors, the above proof can be repeated

verbatim to show that Γ has the R∞ property. When G has compact factors and Γ is

residually finite (for example when G is linear) one can find a finite index characteristic

subgroup Γ′ of Γ such that Γ′ ∩ M = {1} where M is as in the above proof. Now

Γ′ ∼= Γ′/M ⊂ G/M and so has the R∞ property since G/M has no compact factors. Now

we have an exact sequence

1→ Γ′ → Γ→ Γ/Γ′ → 1. (3)

Since Γ′ is characteristic in Γ and Γ/Γ′ finite, the R∞ property for Γ follows from that for

Γ′. See [22, Lemma 2.2] a proof.

(ii) Suppose that G is a linear connected semisimple Lie group of real rank at least 2 and

let Γ be an irreducible lattice in G. Since Γ is finitely generated and linear, it follows

that Γ is residually finite and hence Hopfian. Let 1 → A
j
↪→ Λ

η→ Γ → 1 be an exact

sequence of groups where A is any countable abelian group. Proceeding as in the proof

of [22, Theorem 1.1(ii)], one can show that Λ has the R∞-property. We give an outline

of the proof. Let φ ∈ Aut(Λ) and let f = η ◦ φ|A. Then f(A) is normal in Γ. By the

normal subgroup theorem of Margulis, either f(A) is of finite index—in which case f(A)

is a lattice in G—or f(A) is contained in the centre of G since G has real rank at least 2

and Γ is irreducible. Since Γ is not virtually abelian, we see that f(A) has to be finite.

Replacing A by Ã := η−1(Z(Γ)) we see that Ã is a characteristic subgroup of Λ. Using

the observation that Γ is Hopfian and proceeding as in [22], we see that Λ has the R∞
property.

(iii) Timur Nasibullov [23] has obtained the following result. Let Γ = GL(n,R) or

SL(n,R), n ≥ 3, where R is an infinite integral domain and let Φ be the subgroup of

Aut(Γ) generated by the inner automorphisms, homothety by a central character, and

the contragradient automorophisms. Then for any φ ∈ Φ, one has R(φ) =∞. In particu-

lar, if R has no non-trivial automorphism (e.g. R = R) and has characteristic zero, then

Γ has the R∞-property.
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4. S-arithmetic groups

In this section we consider the the R∞-property for S-arithmetic groups. We begin by

recalling the definition of S-arithmetic groups, referring the reader to [24] and [19] for

details.

Let k be a finite extension of Q and let Ok (or O) be the ring of integers in k. Let

V (resp. V∞) be the set of all valuations (resp. archimedean valuations) of k. A non-

archimedean v ∈ V corresponds to local ring Ov = {x ∈ k | v(x) ≥ 0} with maximal ideal

p = {x ∈ k | v(x) > 0}. Choose π ∈ p, π /∈ p2. Then p = πOv and for any 0 6= x ∈ k, v(x)

equals the unique integer r for which x.π−r is invertible in the local ring Ov. (As usual

we set v(0) =∞.) Let qv denote the cardinality of the residue field Ov/p, which is finite.

Then |.|v is the normalized absolute value defined as |x|v = q−rv where r = v(x). The

archimedean valuations v ∈ V∞ are in bijection with the set of real imbeddings k → R
and pairs of complex imbeddings k → C which are complex conjugates. If v is real (resp.

complex), |.|v is the restriction to k of the usual absolute value on R (resp. square of the

absolute value on C).

Let S be a finite subset of V containing V∞. Let O(S) = {x ∈ k | |x|v ≤ 1, v /∈ S}
denote the ring of S-integers in k. When k = Q and S = {p1, . . . , pn,∞}, we have

O(S) = Z[1/p1, . . . , 1/pn] which we denote by Z(S).

Denote by kv the completion of k with respect to the metric defined by v. When v is

archimedean, kv is isomorphic to either R or C.

Suppose that G is a linear algebraic group defined over a number field k (or more briefly

a k-group). We write G` for the `-points of G where ` is an extension field of k and denote

by the same symbol G the C-points of G. Set Gv := Gkv , GS :=
∏

v∈S Gv, G∞ := GV∞ .

The group G∞ is a Lie group whereas Gv is a locally compact totally disconnected group

when v is non-archimedean. Thus GS is a locally compact topological group and has a

left invariant Haar measure, which is also right invariant if G is semisimple.

A subgroup Γ ⊂ Gk is called an S-arithmetic group if there is a faithful k-morphism

r : G → GLn such that r(Γ) is commensurable with r(G)OS
:= r(Gk) ∩ GL(Ok(S)). It

is known that any S-arithmetic group Γ ⊂ Gk in a semisimple group G defined over k

is finitely generated ([24, Theorem 5.7]) and hence residually finite and hopfian. It is

evident that GO(S) contains GO. When G is connected and semisimple, the image of Γ

under the diagonal imbedding Gk → GS, defined by the imbedding of k →
∏

v∈S kv, is a

lattice in GS. That is, GS/Γ has a finite GS-invariant (regular) measure.

Suppose that G is defined over Q and is Q-split, that is, GQ has a Q-torus TQ ∼= (Q×)l

where l = rank(G). Then G is k-split as k contains Q.

We consider only S-arithmetic subgroups of the form Γ = GO(S). If σ is any automor-

phism of the field k which stabilizes S, then σ induces an automorphism of Gk which

stabilizes GO(S). The group Aut(G) is the semi-direct product of the group of inner au-

tomorphisms of G and the group Out(G) of outer automorphisms of G. Thus Out(G)
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can and will be viewed as a finite subgroup of Aut(G). Furthermore, it may be arranged

so that Out(G) preserves the O-structure of Gk and so Out(G) acts on GO(S). See [2] for

details. For example if G = SL(n), n ≥ 3, then Out(G) ∼= Z/2Z generated by g 7→ (tg)−1.

We need the following theorem due to Borel [2, Theorem 4.3] which describes the

automorphisms of GO(S). Let Aut(k, S) denote the set of all automorphisms σ of the field

k such that σ(S) = S.

Theorem 4.1. (Borel [2]) Suppose that G is a connected simple group, defined and split

over Q. Suppose that rank(G) ≥ 2 or that card(S) ≥ 2. (i) Suppose that the centre of G

is trivial. Then Aut(GO(S)) is generated by Out(G), Aut(k, S), and the inner automor-

phisms of GO(S).

(ii) Suppose that G is simply connected. Then Aut(GO(S) is generated by Aut(k, S), Out(G),

and automorphisms θf,v of the form x 7→ f(x)vxv−1, where v ∈ NG(GO(S)) and f :

GO(S) → Z(Gk) is a homomorphism. �

Using the above theorem we obtain

Theorem 4.2. We keep the notations and hypotheses of Theorem 4.1. Assume that

Out(G) = 1. Then the group GO(S) has the R∞-property.

Proof. First assume that G has trivial centre. By the residual finiteness of Γ := GO(S) in

view of Proposition 3.2 it suffices to show that R(φ) is infinite for a set of representatives

φ of the outer automorphisms of Γ. By the above theorem of Borel and our hypothesis

that Out(G) is trivial, and so it suffices to show that R(σ) = ∞ this for σ ∈ Out(Γ) ∼=
Aut(k, S).

Let n = o(σ), the order of σ. Suppose that x, y ∈ Γ are fixed by σ and that y = z−1xσ(z)

for some z ∈ Γ. Applying σ to both sides successively and using σ(x) = x, σ(y) = y, we

obtain y = σj(z−1)xσj+1(z) for 0 ≤ j < n. Multiplying these equations we obtain

yn = z−1xnσn(z) = z−1xnz. Thus yn and xn are conjugate in Γ.

To complete the proof that R(σ) = ∞ we need only show the existence of a sequence

(xm) of elements of Γ such that σ(xm) = xm and xnr and xns are pairwise non-conjugate

in Γ.

Since σ ∈ Aut(k, S) ⊂ Aut(k) restricts to the identity automorphism of Q, it is clear

that σ viewed as an element of Aut(Γ) restricts to the identity automorphism of Γ ∩GQ.

In particular σ(x) = x for all x in GZ. Clearly GZ is a lattice in GR. Our assumption that

G is Q-split implies that GR cannot have compact factors. In particular, by the Borel

density theorem GZ is Zariski dense in G.

Consider the morphism ψ : G→ C defined as ψ(x) = tr(Ad(xn)). Then ψ(x) = ψ(y) if

xn and yn are conjugate in G. This morphism is clearly non-constant. Since GZ is Zariski

dense in G, its image under ψ cannot be finite. Any sequence of elements xm ∈ GZ ⊂ Γ

having pairwise distinct images under ψ clearly have the property that the xnm belong to

pairwise distinct conjugacy classes in Γ.
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It remains to consider the case when the centre Z(G) is non-trivial. Since G is simple,

Z(G) is finite. Note that Z(Γ), the centre of Γ, equals Z(G) ∩ Γ. This follows from

the density property of Γ ⊂ G. Hence Γ̄ := Γ/Z(Γ) = Γ/(Γ ∩ Z(G)) ⊂ G/Z(G) =: Ḡ.

It follows that Γ̄ = ḠO(S). Hence by what has been established already Γ̄ has the R∞
property. It follows by Lemma 3.1 that Γ has the R∞-property. �

It is known that the outer automorphism group is trivial in the following cases (cf.

[14, §5, Chapter X]): SL2, Spin(2n + 1), n ≥ 2,Spn, n ≥ 3, and the exceptional groups

E7,E8,F4 and G2. Theorem 4.2 is applicable these groups G provided it is defined and

split over Q. However it leaves out the important case of special linear group G = SL(n,C)

as they have non-trivial outer automorphisms. We treat this case separately.

Theorem 4.3. Let Γ = GZ(S) where G = SLn/Z where Z ⊂ Z(G). Then Γ has the

R∞-property.

Proof. Leaving out the case n = 2 which is already covered by Theorem 4.2, we have

Out(G) ∼= Z/2Z generated by the involution σ defined as g 7→ tg−1. A direct verification

(indicated below) as in [22] shows that R(σ) =∞ when G = PSLn. Since Aut(Q, S) = 1,

this already establishes the theorem in the case G = PSLn. Note that the centre of SLn
being cyclic, any subgroup Z ⊂ Z(SLn) is also characteristic. Again by invoking Lemma

3.1 and arguing as in the proof of the above theorem, we see that Γ ⊂ G = SL/Z has the

R−∞ property.

To complete the proof, we exhibit elements [Ar] ∈ Γ = SLn(Z(S))/Z, r ∈ N, which

are in pairwise distinct σ-conjugacy classes. For convenience we work with matrices in

SLn(Z(S)).

As in [22, §3], consider the matrix Ap = In+pE2,1 where Eij is the matrix with (i, j)-th

entry 1 and others zero. For any X ∈ Γ and non-zero S-integers p, q, the relation Ap =

XAqι(X
−1) = X.Aq.

tX implies, on comparing the (2, 1)-entry, that p = q(x11x22−x12x21)
where X = (xij) ∈ Γ that is xij ∈ O(S). Reversing the roles of Ap and Aq we obtain

q = p(y11y22 − y12y21) for some yij ∈ O(S). Since xij, yij ∈ O(S), we conclude that p/q is

an invertible element in O(S).

Now fix a prime π ∈ Ok such that the valuation at π is not in Ok. Set pr = πr ∈ Ok, r ≥
1. Then Apr and Aps are not in the same ι-conjugacy class of Γ for r 6= s. This shows

that R(ι) =∞. �

We do not know how to extend Theorem 4.2 to arbitrary S-arithmetic groups in

semisimple algebraic groups over an arbitrary number field. As mentioned in the in-

troduction, the work of Fel’shtyn and Troitsky [11] establishes the R∞ property for any

S-arithmetic groups.

Acknowledgments: The authors thank Prof. A. Fel’shtyn for pointing out to us the

paper [11]. We thank the referees for their comments.
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Birkhäuser, 1984.

The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India.

E-mail address: mubeena@imsc.res.in

E-mail address: sankaran@imsc.res.in


	1. Introduction
	Examples

	2. Lattices in semisimple Lie groups
	3. Proof of Theorem 1.1
	4. S-arithmetic groups
	References

