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Abstract: Denote by L (resp. L+) the long line (resp. half long line). In this note we shall prove
that we show that, for n ≥ 1, any torsion subgroup of the group of all homeomorphisms of Ln

+

(resp. Ln) is isomorphic to a subgroup of the symmetric group Sn (resp. the semidirect product
(Z/2Z)n n Sn).

1 Introduction

The well-known classification theorem for one-dimensional manifolds is that there are exactly two
non-metrizable manifolds of dimension 1 (besides the two metrizable ones R and S1) namely the
Alexandrof’s long line and the half-long line. (The half-long line is also referred to as the long ray.)
The half-long line is described as the space L+ \ {0} where L+ := [0, 1) × SΩ with lexicographic
order topology and 0 := {(0, 0)} is the smallest element. Here the SΩ, the set of all ordinals which
are less than Ω, is given the order topology, Ω being the smallest uncountable ordinal. The long
line is then the space L = L− ∪ L+ glued at {0} where L− stands for L+ with its order reversed.

We shall classify, up to isomorphism, the torsion subgroups of the group of all homeomorphisms
of Ln

+ and Ln. More precisely, denote by Homeo(X) the group of all homeomorphisms of X. The
symmetric group Sn acts on (Z/2Z)n by permuting the factors. We denote by Gn the semi-direct
product (Z/2Z)n nSn. Note that Sn acts on Ln

+ and Ln by permuting the coordinates. Also there
is an obvious involution on L which yields an action of (Z/2Z)n on Ln, n ≥ 1. This, together with
the action of Sn, defines an action of Gn on Ln. We now state our main results.

Theorem 1.1. There exist surjective homomorphisms Φ: Homeo(Ln
+)−→Sn and Ψ:

Homeo(Ln)−→Gn which split. Furthermore, ker(Φ) and ker(Ψ) are torsion-free.

An immediate corollary is the following:
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Theorem 1.2. Let T be a subgroup of Homeo(Ln) (resp. Homeo(Ln
+)) in which every element is

of finite order. Then T is isomorphic to a subgroup of Gn (resp. Sn). 2

Our proofs involve mostly elementary concepts from set-topology. We shall make crucial use of
[8, Theorem 1, §5.5] in §3. Also we use the fact that the Stone-Čech compactification of Ln

+ (resp.
Ln) is Ln

+ (resp. Ln). See [1] for an elementary proof. In fact the above fact is a special case of a
very general result of Glicksberg [7, Theorem 1].

For values of n ≤ 3 (resp. n ≤ 2), the orders of torsion elements of Homeo(Ln
+) (resp.

Homeo(Ln)) have been determined by Deo and Gauld [4]. After this paper was completed, Satya
Deo pointed out to us the preprint [3] in which the orders of torsion elements of Homeo(Ln

+) and
Homeo(Ln), n ≥ 1, have been determined, but not the structure of torsion subgroups.

2 Homeomorphisms of Ln+ and Ln

We use the following notations throughout. As usual I denotes the interval [0, 1] ⊂ R. If M is a
manifold with boundary (which could be empty), ∂M will denote the boundary of M . If x ∈ L,
then −x ∈ L denotes the image of x under the order reversing involution L−→L which switches L+

and L− fixing 0. We denote by δLn
+ the space Ln

+ \ Ln
+. Let x = (x1, · · · , xn) ∈ Ln

+. Ω(x) denotes
the set {j|xj = Ω} ⊂ {1, 2, · · · , n} and Ωn denotes the point (Ω, · · · ,Ω) ∈ Ln

+. For any set-map
h : X−→I, and any subset J ⊂ R, h−1(J) will have the obvious meaning, namely, h−1(I ∩ J).

Since the Stone-Čech compactification of Ln
+ is Ln

+, any homeomorphism of Ln
+ ex-

tends to a unique homeomorphism of Ln
+ and the obvious restriction homomorphism

Homeo(Ln
+)−→Homeo(Ln

+) is an isomorphism of groups. Similar statements hold for Ln.

Observe that Ln
+,L

n
, n ≥ 1, are not path connected. The path components of Ln

+ are labelled
by the set Vn := {0,Ω}n. More precisely, the elements of Vn are in distinct path components and
every path component of Ln

+ contains a point of Vn. We shall denote the path component containing
p ∈ Vn by Xp. Note that Xp =

∏
Uj where Uj = L+ if j /∈ Ω(p) and Uj = {Ω} otherwise. In

particular, dimXp = n−#Ω(p).

We obtain a directed graph Hn (or just H) whose vertex set is H0 = {Xp | p ∈ Vn} and edge
set H1 = {ε(p, q) | Xp ⊂ Xq, dimXp = dimXq − 1}. The edge ε(p, q) is oriented so that it issues
from Xp to Xq. One has a partition of Vn = ∪0≤k≤nVn(k) where Vn(k) = {p ∈ Vn | #Ω(p) = k}.
The number of edges issuing from (resp. terminating at) Xp equals #Ω(p) (resp. dimXp). We
let Hn denote the group of all automorphisms of the directed graph Hn. Every element of Hn

fixes XΩn = {Ωn}. It is not hard to see that Hn is isomorphic, via restriction, to the group of
permutations of {Xp | p ∈ Vn(n− 1)} ⊂ H0

n. Thus Hn
∼= Sn.

Let h : Ln
+−→L

n
+ be a homeomorphism and let h∗ denote the induced map on the set of

path-components of Ln
+.

Proposition 2.1. Any homeomorphism h:Ln
+ −→ Ln

+ induces an isomorphism of the directed
graph Hn. The map h 7→ h∗ is a surjective homomorphism of groups Φ :Homeo(Ln

+)−→Hn which
splits.
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Proof. Any homeomorphism of Ln
+ induces an isomorphism of the set of path components. Fur-

thermore this defines a homomorphism from the group Homeo(Ln
+) to the group of permutations

of the set of path-components of Ln
+. So h ∈Homeo(Ln

+) induces a bijection of the vertex set of the
graph Hn. Also h(Xp) ⊂ h(Xq) if Xp ⊂ Xq. It follows that it preserves the oriented edges of Hn.
Hence h induces an isomorphism h∗ of Hn.

Clearly every homeomorphism of Ln
+ fixes Ωn. Hence h maps Vn(n − 1) onto Vn(n − 1). Any

permutation σ of Vn(n − 1) is evidently realizable by the homeomorphism h of Ln
+ given by the

same permutation of the coordinates. Therefore Φ is surjective. This also shows that Φ splits. 2

Now consider the space Ln. Since the path components of L are −Ω,Ω and L, Ln has 3n

path components. They are labelled by {−Ω, 0,Ω}n. The element q ∈ {−Ω, 0,Ω}n labels the
path component Xq =

∏
Uj where Uj = {qj} if qj 6= 0 and Uj = L if qj = 0. Observe that

dimXq = #{j | dim qj = 0}.

Let Wn = {−Ω,Ω}n. Each element of Wn forms a path component of Ln. Observe that any
self-homeomorphism h of Ln preserves Wn as other path components are of positive dimension.

Consider the (simple) graph Gn whose vertices are Xp, p ∈Wn. The edges of the graph are ep,q if
p and q differ exactly in one coordinate (where they differ by sign). The group Gn of automorphisms
of Gn is isomorphic to the semi-direct product (Z/2Z)n n Sn where the actions of (Z/2Z)n and Sn

are obtained from their obvious respective actions on Wn.

Proposition 2.2. Any homeomorphism h of Ln induces an isomorphism h∗ of the graph Gn. Fur-
thermore, h 7→ h∗ defines a surjective homomorphism of groups Ψ :Homeo(Ln)−→Gn which splits.

Proof. As observed above, h(Wn) = Wn and so h induces a bijection of the vertices of Gn. Suppose
that ep,q is an edge of Gn, say, pi = Ω = −qi, pj = qj for j 6= i. Consider Xp,q = {x ∈ Ln | xi ∈
L, xj = pj , j 6= i} ∼= L. Then h(Xp,q) has to be a path component of dimension 1 which contains
h(p), h(q) ∈Wn in its closure. It follows that h(p), h(q) are end points of an edge of Gn. Therefore
h∗ is an isomorphism of Gn.

It is evident that the homeomorphisms of Ln which flips the signs of certain coordinates forms a
subgroup of Homeo(Ln) isomorphic to (Z/2Z)n. These, together with the homeomorphisms which
permute the coordinates form a group isomorphic to (Z/2Z)n n Sn. It is evident that Ψ maps this
subgroup isomorphically onto Gn. Therefore Ψ is split. 2

3 Proof of Theorem 1.1

The proof of our main result will make crucial use of the following lemma. The first part of it is
a classical result of M. H. A. Newman [9, Theorem 2] and is stated as Theorem 1 in §5.5, [8]. We
observe that although Theorem 1 of [9] concerns metrizable manifolds, his Theorem 2 is valid for
any connected topological manifold, not necessarily metrizable. For a simplified proof we refer the
reader to Andreas Dress [5]. The second part of the lemma follows from the first trivially.

Lemma 3.1. (i) Let f : M−→M be a periodic homeomorphism of a connected open manifold, not
necessarily metrizable, such that f |U is the identity on some non-empty open set U of M . Then f
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equals the identity homeomorphism.
(ii)Let V be a connected manifold with non-empty boundary ∂V . Suppose that h:V−→V is a
homeomorphism which restricts to the identity on ∂V . Then either h is the identity or is of infinite
order.

Proof. (i) Refer to [5].

(ii) Consider the double M = V0 ∪∂V V1 of V , obtained by gluing two copies V0, V1 of V along
the common boundary. Since h|∂V is identity, it extends to a homeomorphism h0 : M−→M where
h0 is just h on V0 and is identity on V1. Since h0 is identity on a non-empty open set of M , the
assertion now follows from (i). 2

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1: As observed in §2, any homeomorphism of Ln
+ lifts to a unique home-

omorphism of Ln
+ and similarly any homeomorphism of Ln lifts to a unique homeomorphism

of Ln. Indeed the restriction induces isomorphisms of groups Homeo(Ln
+) ∼=Homeo(Ln

+) and
Homeo(Ln) ∼=Homeo(Ln).

In view of Propostions 2.1 and 2.2, to complete the proof, we need only to show that ker(Φ)
and ker(Ψ) are torsion-free. When n = 1 the statement is trivial to verify. Assume that n > 1 and
that the theorem is valid for all dimensions up to n− 1.

Let f be any element of Homeo(Ln
+) of finite order such that f∗ ∈ Hn is trivial. Observe that

X0 = Ln
+. We shall show that f |∂X0 is the identity homeomorphism. It would then follow, in view

of Lemma 3.1(ii), that f |X0 is the identity and so f itself is the identity as X0 is dense in Ln
+.

0

Figure 1: ∂X0.

Note that f maps each path component of Ln
+ to itself and fp := f |Xp is a finite order home-

omorphism of Xp for each p ∈ Vn. Let k = #Ω(p). If k > 0, then Xp
∼= Ln−k

+ and furthermore
fp induces the identity map of the directed graph Hn−k associated to Xp. Hence, by induction
hypothesis, fp is the identity map of Xp. Now let k = 0. In this case p = 0 and ∂X0 is not
homeomorphic to Ln

+ and so we cannot apply inductive hypothesis directly to conclude that f |∂X0

is the identity map. However, note that the points q ∈ Vn(n − 1) in the closure ∂X0 of ∂X0

have basic neighbourhoods in ∂X0 whose closures are homeomorphic to Ln−1
+ . Consider, say, the

point q = (Ω, · · · ,Ω, 0) ∈ ∂X0. By what has been shown already, we have f(q) = q. Since f
has finite order, there exists a neighbouhood U0 ⊂ ∂X0 of q which is invariant under f . Choose
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a λ0 < Ω such that the basic open set B0 := (λ0,Ω]n−1 × {0} is contained in U0. The open set
∩0≤j<rf

r(B0) =: U1 is invariant under f where r is the order of f . Repeating this argument,
we get a sequence λ0 < λ1 < · · · < Ω in L+ and open sets U0 ⊃ B0 ⊃ U1 ⊃ B1 ⊃ · · · in ∂X0

where Bi = (λi,Ω]n−1 × {0} and Ui are invariant under f . Let µ < Ω be the limit of (λi). Then
C := ∩k≥0Uk = ∩k≥0Bk = [µ,Ω]n−1 × {0} is invariant under f and C ∼= Ln−1

+ . Note that (f |C)∗
is the identity automorphism of the directed graph Hn−1 associated to C since f(x) = x for all
x ∈ Xv∩C for all v ∈ Vn(k), k ≥ 1. Since f |C is of finite order, by induction hypothesis we conclude
that f |C is trivial. Since C contains a non-empty open subset of the manifold ∂X0, we conclude,
by Lemma 3.1(i), that f |∂X0 is the identity map.

Proof in the case of Ln is similar and we merely give an outline. Let g be a finite order home-
omorphism of Ln which induces the identity automorphism of Gn. Let X be any path component
of Ln which is of dimension less than n. If X is zero-dimensional, then it is point-wise fixed by g
as g∗ is the identity. Otherwise. X ∼= Lk, 1 ≤ k < n, the map g|X is of finite order and induces the
identity map of the graph associated to X. Hence, by induction hypothesis, g|X is identity. Thus
g|(δLn) is the identity. Now consider Ωn ∈ L

n. Proceeding as in the construction of C above, we
obtain a µ < Ω such that g(D) = D where D := [µ,Ω]n ⊂ Ln

. Note that D ∼= Ln
+. Now g|D is

a finite order element and it induces identity map of the directed graph Hn. Hence, by what has
been shown already, g|D is identity. Now by Lemma 3.1(i), g|Ln is identity. 2

Remark 3.2. (i) Let h : Ln
+−→L

n
+ be a homeomorphism. The induced automorphism h∗ of the di-

rected graphHn determines and is determined by the isomorphism H0(h) : H0(Ln
+; Z)−→H0(Ln

+; Z)
induced by h in 0-th singular homology. Since H0(Ln

+) is the free abelian group on the set of ver-
tices of Hn, we see that the elements of Sn ⊂Homeo(Ln

+) are in distinct homotopy classes. It can
be shown, again using [7, Theorem 1], that the Stone-Čech compactification of Ln

+ × I is Ln
+ × I.

It follows that any homeomorphism h of Ln
+ which is isotopic to the identity extends to a home-

omorphism of Ln
+ which is isotopic to the identity of Ln

+. Hence we see that distinct elements of
Sn ⊂Homeo(Ln

+) ∼=Homeo(Ln
+) are in distinct isotopy classes. The last statement also holds for

the group Gn ⊂Homeo(Ln) and can be seen by a similar argument. See also [2, p. 44] and [3]. It
follows that the homomorphisms Φ and Ψ factor through the mapping class groups of Ln

+ and Ln

respectively. It is shown in [3] that mapping class groups of Ln
+ and Ln are isomorphic to Hn and

Gn respectively. Thus ker(Φ) and ker(Ψ) consist precisely of homeomorphisms which isotopic to
respective identity maps.

(ii) It is an interesting problem to classify conjugacy classes of finite subgroups of Homeo(Ln)
and of Homeo(Ln

+).
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