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Abstract:Let f : Gn,k−→Gm,l be any continuous map between two dis-
tinct complex (resp. quaternionic) Grassmann manifolds of the same
dimension. We show that the degree of f is zero provided n,m are
sufficiently large and l ≥ 2. If the degree of f is ±1, we show that
(m, l) = (n, k) and f is a homotopy equivalence. Also, we prove that
the image under f ∗ of every element of a set of algebra generators of
H∗(Gm,l; Q) is determined up to a sign, ±, by the degree of f , provided
this degree is non-zero.

1. Introduction

The purpose of this paper is to study degrees of maps between two
distinct complex (resp. quaternionic) Grassmann manifolds. It can
be viewed as a continuation of the paper [14] where the case of ori-
ented (real) Grassmann manifolds was settled completely. The same
problem in the case of complex and quaternionic Grassmann mani-
folds was initiated and settled in [14] in half the cases. The problem
can be formulated purely algebraically in terms of algebra homomor-
phism between the cohomology algebras of the complex Grassmann
manifolds concerned. These algebras have additional structures, aris-
ing from Poincaré duality and the hard Lefschetz theorem. Our results
are obtained by exploiting these properties. In view of the fact that
the integral cohomology ring of a quaternionic Grassmann manifold is
isomorphic to that of the corresponding complex Grassmann manifold
via a degree doubling isomorphism, and since our proofs involve mostly
analyzing the algebra-homomorphisms between the cohomology alge-
bras of the Grassmann manifolds, we will only need to consider the
case of complex Grassmann manifolds. (In the course of our proof of
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Theorem 1.3, simply-connectedness of the complex Grassmann man-
ifold will be used; the same property also holds for the quaternionic
Grassmann manifolds.)

Let F denote the field C of complex numbers or the skew-field H
of quaternions. We denote by FGn,k the F-Grassmann manifold of k-
dimensional left F-vector subspaces of Fn. Let d := dimR F. Since
we will mostly deal with complex Grassmann manifolds, we shall write
Gn,k instead of CGn,k; the phrase ‘Grassmann manifold’, without further
qualification, will always mean a complex Grassmann manifold.

Using the usual ‘hermitian’ metric on Fn, one obtains a diffeomor-
phism ⊥ : FGn,k

∼= FGn,n−k. For this reason, it suffices to consider
only those F-Grassmann manifolds FGn,k with 1 ≤ k ≤ [n/2]. Let
1 ≤ l ≤ [m/2] be another F-Grassmann manifold having the same
dimension as FGn,k so that dimF FGn,k = k(n− k) = l(m− l) =: N .

Complex Grassmann manifolds admit a natural orientation arising
from the fact they have a natural complex structure. Although the
quaternionic Grassmann manifolds do not admit even almost complex
structures (cf. [11]), they are simply connected and hence orientable.

Let f : FGn,k−→FGm,l be any continuous map. It was observed in
[14] that when 1 ≤ k < l ≤ [m/2], the degree of f is zero. When l = 1,
one has N = m− 1 and FGm,l is just the F- projective space FPN . The
set of homotopy classes of maps f : FGn,k−→FPN are in bijection with
homomorphisms of abelian groups Z ∼= Hd(FPN ; Z)−→Hd(FGn,k; Z) ∼= Z
where d = dimR F, via the induced homomorphism. Furthermore the
degree of f is determined by f ∗ : Hd(FPN ; Z)−→Hd(FGn,k; Z). (See [14]
for details.)

We now state the main results of this paper.

Theorem 1.1.Let F = C or H and let d = dimR F. Let f : FGn,k−→FGm,l

be any continuous map between two F-Grassmann manifolds of the same
dimension. Then, there exist algebra generators ui ∈ Hdi(FGm,l; Q), 1 ≤
i ≤ l, such that the image f ∗(ui) ∈ Hdi(FGn,k; Q), 1 ≤ i ≤ l, is deter-
mined up to a sign ± by the degree of f , provided this degree is non-zero.

Theorem 1.2. Let F = C or H. Fix integers 2 ≤ l < k. Let m,n ≥ 2k
be positive integers such that k(n−k) = l(m− l) and f : FGn,k−→FGm,l

any continuous map. Then, degree of f is zero if (l2− 1)(k2− 1)((m−
l)2− 1)((n− k)2− 1) is not a perfect square. In particular, degree of f
is zero for n sufficiently large.
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Theorem 1.3. Let F = C or H. Suppose that k(n− k) = l(m− l), and
1 ≤ l ≤ [m/2], 1 ≤ k ≤ [n/2]. If f : FGn,k−→FGm,l is a map of degree
±1, then (m, l) = (n, k) and f is a homotopy equivalence.

Our proofs make use of the notion of degrees of Schubert varieties,
extended to cohomology classes. Theorem 1.3, which is an analogue in
the topological realm of a result of K. H. Paranajape and V. Srinivas
[13], is proved using Whitehead’s theorem. Proof of Theorem 1.1 uses
some properties of the cohomology of the complex Grassmann mani-
folds arising from Hodge theory. (See Proposition 3.2.) Theorem 1.2
is proved by reducing it to a diophantine problem and appealing to
Siegel’s Theorem on solutions of certain polynomial equation of the
form y2 = F (x). In our situation, F (x) will be of degree 4 over Q
having distinct zeros.

We now highlight the following conjecture made in [14]. Theorem
1.2 provides the strongest evidence in support of the conjecture.

Conjecture: Let F = C or H and let 2 ≤ l < k ≤ n/2 < m/2 where
k, l,m, n ∈ N. Assume that k(n− k) = l(m− l). Let f : FGn,k−→FGm,l

be any continuous map. The degree of f is zero.

The paper is organized as follows. In §2 we recall basic and well-
known facts concerning the cohomology algebra of the complex Grass-
mann manifolds. We shall consider continuous maps from a cohomo-
logically Kähler manifold and establish some important properties in
§3. They will be used in the course of our proofs. We prove the above
theorems in §4.

2. Cohomology of Grassmann manifolds

There are at least two well-known descriptions of the cohomology
ring of a complex Grassmann manifold Gn,k. We recall both of them.

Let γn,k be the ‘tautological’ bundle over Gn,k whose fibre over a point
V ∈ Gn,k is the k-dimensional complex vector space V . Evidently γn,k
is a rank k-subbundle of the rank n trivial bundle En with projection
pr1 : Gn,k × Cn−→Gn,k. The quotient bundle En/γn,k is isomorphic to
the orthogonal complement γ⊥n,k in En (with respect to a hermitian

metric on Cn) of the bundle γn,k. Let ci(γn,k) ∈ H2i(Gn,k; Z), be the
i-th Chern class of γn,k, 1 ≤ i ≤ k. Denoting the total Chern class of a
vector bundle η by c(η) we see that c(γn,k).c(γ

⊥
n,k) = 1.
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Let c1, . . . , ck denote the elementary symmetric polynomials in k in-
determinates x1, . . . , xk. Define hj = hj(c1, . . . , ck) by the identity∏

1≤i≤k

(1 + xit)
−1 =

∑
j≥0

hjt
j.

Thus cj(γ
⊥
n,k) = hj(c1(γn,k), c2(γn,k), . . . , ck(γn,k)), 1 ≤ j ≤ n − k.

(See [12].)

Consider the ring Z[c1, . . . , ck]/In,k where degree of ci = 2i, and
In,k is the ideal 〈hj | j > n − k〉. It can be shown that the ele-
ments hj, n − k + 1 ≤ j ≤ n, generate In,k. The homomorphism
of graded rings Z[c1, . . . , ck]−→H∗(Gn,k; Z) defined by ci 7→ ci(γn,k)
is surjective and has kernel In,k and hence we have an isomorphism
H∗(Gn,k; Z) ∼= Z[c1, . . . , ck]/In,k. Henceforth we shall write ci to mean
ci(γn,k) ∈ H∗(Gn,k; Z). We shall denote by c̄j the element cj(γ

⊥
n,k) =

hj ∈ H2j(Gn,k; Z).

As an abelian group, H∗(Gn,k; Z) is free of rank
(
n
k

)
. A Q-basis for

H2r(Gn,k; Q) is the set Cr of all monomials cj11 . . . c
jk
k where ji ≤ n −

k ∀i,
∑

1≤i≤k iji = r. In particular, cn−kk generates H2N(Gn,k; Q) ∼= Q.

If j denotes the sequence j1, . . . , jk, we shall denote by cj the monomial
cj11 . . . c

jk
k . If k ≤ n/2, the set C̄r := {c̄j | cj ∈ Cr} is also a basis for

H2r(Gn,k; Q) where c̄j := c̄j11 . . . c̄
jk
k .

Schubert calculus
Another, more classical description of the cohomology ring of the Grass-
mann manifold Gn,k is via the Schubert calculus. Recall that Gn,k =
SL(n,C)/Pk for the parabolic subgroup Pk ⊂ SL(n,C) which stabilizes
Ck ⊂ Cn spanned by e1, . . . , ek; here ei, 1 ≤ i ≤ n, are the standard
basis elements of Cn. Denote by B ⊂ SL(n,C) the Borel subgroup of
SL(n,C) which preserves the flag C1 ⊂ · · · ⊂ Cn and by T ⊂ B the
maximal torus which preserves the coordinate axes Cej, 1 ≤ j ≤ n.
Let I(n, k) denote the set of all k element subsets of {1, 2, . . . , n};
we regard elements of I(n, k) as increasing sequences of positive inte-
gers i := i1 < · · · < ik where ik ≤ n. One has a partial order on
I(n, k) where, by definition, i ≤ j if ip ≤ jp for all p, 1 ≤ p ≤ k. Let
i ∈ I(n, k) and let Ei ∈ Gn,k denote the vector subspace of Cn spanned
by {ej | j ∈ i}. The fixed points for the action of T ⊂ SL(n) on Gn,k

are precisely the Ei, i ∈ I(n, k).

Schubert varieties in Gn,k are in bijection with the set I(n, k). The B-
orbit of the T -fixed point Ei is the Schubert cell corresponding to i and
is isomorphic to the affine space of (complex) dimension

∑
j(ij − j) =:
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|i|; its closure, denoted Ωi, is the Schubert variety corresponding to i ∈
I(n, k). It is the union of all Schubert cells corresponding to those j ∈
I(n, k) such that j ≤ i. Schubert cells yield a cell decomposition of Gn,k.
Since the cells have even (real) dimension, the class of Schubert varieties
form a Z-basis for the integral homology of Gn,k. Denote by [Ωi] ∈
H2(N−|i|)(Gn,k; Z) the fundamental dual cohomology class determined by
Ωi. (Thus [Gn,k] ∈ H0(Gn,k; Z) is the identity element of the cohomology
ring.) We shall denote the fundamental homology class of Gn,k by
µn,k ∈ H2N(Gn,k; Z).

Schubert varieties corresponding to (n−k+ 1− i, n−k+ 2, . . . , n) ∈
I(n, k), 0 ≤ i ≤ n− k, are called special and will be denoted Ωi. More
generally, if ν = ν1 ≥ · · · ≥ νk ≥ 0 is a partition of an integer r,
0 ≤ r ≤ N , with ν1 ≤ n − k, we obtain an element i := (n − k +
1 − ν1, n − k + 2 − ν2, . . . , n − νk) ∈ I(n, k) with |i| = N − r. This
association establishes a bijection between such partitions and I(n, k),
or, equivalently, the Schubert varieties Ωi in Gn,k. It is sometimes
convenient to denote the Schubert variety Ωi by Ων where ν corresponds
to i. This is consistent with our notation for a special Schubert variety.

The special Schubert classes form a set of algebra generators of
H∗(Gn,k; Z). Indeed, [Ωi] = ci(γ

⊥
n,k) = c̄i, 1 ≤ i ≤ n − k. The struc-

ture constants are determined by (i) the Pieri formula, which expresses
the cup-product of an arbitrary Schubert class with a special Schubert
class as a non-negative integral linear combination of Schubert classes,
and, (ii) the Giambelli formula, which expresses an arbitrary Schubert
class as a determinant in the special Schubert classes [2, Chapter 14].

The basis {[Ωi] | i ∈ I(n, k)} is ‘self-dual’ under the Poincaré duality.
That is, assume that i, j ∈ I(n, k) are such that |i|+ |j| = N . Then

〈[Ωi][Ωj], µn,k〉 = δi′,j,

where i′ = (n+ 1− ik, . . . , n+ 1− i1) ∈ I(n, k).

The degree of a Schubert variety Ωi of (complex) dimension r is
defined as the integer 〈[Ωi]c̄

r
1, µn,k〉 ∈ Z. It is well-known [8],[2] that

deg(Ωi) =
r!
∏

1≤t<s≤k(is − it)
(i1 − 1)! . . . (ik − 1)!

. (1)

In particular

deg(Gn,k) = 〈c̄N1 , µn,k〉 =
N !1! . . . (k − 1)!

(n− k)! . . . (n− 1)!
. (2)
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More generally, deg([Ωi][Ωj]) := 〈[Ωi][Ωj]c̄
q
1, µn,k〉 = q!|1/(ir+jk+1−j−

n − 1)!| where q = dim(Ωi) + dim(Ωj) − dim Gn,k (See [2, p.274]. We
caution the reader that our notations for Grassmann manifolds and
Schubert varieties are different from those used in Fulton’s book [2].)

One has the following geometric interpretation for the degree of a
Schubert variety. More generally, given any algebraic imbedding X ↪→
Pm of a projective variety X of dimension d in the complex projective
space Pm, the degree of X is the number of points in the intersection
of X with d hyperplanes in general position. The degree of a Schubert
variety defined above is the degree of the Plücker imbedding Ωj ⊂
Gn,k ↪→ P(Λk(Cn)), defined as U 7→ Λk(U), where Λk(U) denotes the
k-th exterior power of the vector space U .

Cohomology of Quaternionic Grassmann manifolds
In the case of quaternionic Grassmann manifold HGn,k, one has a Schu-
bert cell decomposition with cells only in dimensions 4j, 0 ≤ j ≤ N ,
labeled by the same set I(n, k) as in the case of the complex Grassmann
manifold CGn,k. Furthermore, denoting the quaternionic Schubert vari-
ety corresponding to i ∈ I(n, k) by ΩH

i , the structure constants defining
the integral cohomology algebra of HGn,k for the basis {ΩH

i } are identical
to those in the case of CGn,k. Thus, the association [Ωi] 7→ [ΩH

i ] defines
an isomorphism of rings H∗(CGn,k; Z)−→H∗(HGn,k; Z) which doubles
the degree. In particular one has the identical formula, namely (1), for
the degrees of quaternionic Schubert classes. The orientation on HGn,k

is chosen so that the image of the positive generator of H2N(CGn,k; Z)
under the above isomorphism is positive.

3. Maps from cohomologically Kähler manifolds

In this section the symbol d will have a different meaning from what
it did in §1.

Let f : X−→Y be any continuous map between two compact con-
nected oriented manifolds of the same dimension. It is well-known that
if f ∗ has non-zero degree, then the induced map f ∗ : Hr(Y ; Z)−→Hr(X; Z)
is split-injective for all r. In particular, f ∗ : H∗(Y ; Q)−→H∗(X; Q) is a
monomorphism of rings.

Recall that a compact connected orientable smooth manifold X is
called c-symplectic (or cohomologically symplectic) if there exists an
element ω ∈ H2(X; R), called a c-symplectic class, such that ωd ∈
H2d(X; R) ∼= R is non-zero where d = (1/2) dimR X. If ω is a c-
symplectic class in X, then (X,ω) is said to satisfy the weak Lefschetz



DEGREES OF MAPS BETWEEN GRASSMANN MANIFOLDS 7

(respectively hard Lefschetz) condition if ∪ωd−1 : H1(X; R)−→H2d−1(X; R)
(respectively ∪ωi : Hd−i(X; R)−→Hd+i(X; R), 1 ≤ i ≤ d,) is an isomor-
phism. If (X,ω) satisfies the hard Lefschetz condition, then X is called
c-Kähler or cohomologically Kähler. If (X,ω) is c-Kähler, and if ω
is in the image of the natural map H2(X; Z)−→H2(X; R), we call X
c-Hodge. Note that if (X,ω) is c-Kähler and if H2(X; R) ∼= R, then
(X, tω) is c-Hodge for some t ∈ R.

Clearly Kähler manifolds are c-Kähler and smooth projective vari-
eties over C are c-Hodge. It is known that P2#P2 is c-symplectic but
not symplectic (hence not Kähler) since it is known that it does not
admit even an almost complex structure. It is also c-Kähler. Examples
of c-symplectic manifolds which satisfy the weak Lefschetz condition
but not c-Kähler are also known (cf. [10]).

Any c-symplectic manifold (X,ω) is naturally oriented; the funda-
mental class of X will be denoted by µX ∈ H2d(X; Z) ∼= Z.

Let (X,ω) be a c-Kähler manifold of dimension 2d. Let 1 ≤ r ≤ d.
One has a bilinear form (·, ·)ω (or simply (·, ·) when there is no danger
of confusion) on Hr(X; R) defined as (α, β)ω = 〈αβωd−r, µX〉, α, β ∈
Hr(X; R). When (X,ω) is c-Hodge, the above form is rational, that
is, it restricts to a bilinear form Hr(X; Q)×Hr(X; Q)−→Q. It will be
important for us to consider the bilinear form on the rational vector
space Hr(X; Q) rather than on the real vector space Hr(X; R). The
bilinear form (·, ·) is symmetric (resp. skew symmetric) if r is even
(resp. odd). Note that the above form is non-degenerate for all r. This
follows from Poincaré duality and the hard Lefschetz condition that
β 7→ β ∪ωd−r is an isomorphism Hr(X; Q)−→H2d−r(X; Q). Further, if
r ≤ d, the monomorphism ∪ω : Hr−2(X; Q)−→Hr(X; Q) is an isometric
imbedding, i.e., (α, β) = (αω, βω) for all α, β ∈ Hr−2(X; Q).

As in the case of Kähler manifolds (cf. [7],[16],[6]), one obtains
an orthogonal decomposition of the real cohomology groups of a c-
Kähler manifold (X,ω). The decomposition, which preserves the ratio-
nal structure when (X,ω) is c-Hodge, is obtained as follows: Let 1 ≤
r ≤ d. Let Vrω, or more briefly Vr when ω is clear from the context, be
the kernel of the homomorphism ∪ωd−r+1 : Hr(X; R)−→H2d−r+2(X; R).
An element of Vr will be called a primitive class. One has the Lefschetz
decomposition

Hr(X; R) =
⊕

0≤q≤[r/2]

ωqVr−2q. (3)

We have the following lemma.
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Lemma 3.1. Suppose that (X,ω) is a c-Hodge manifold of dimension
2d with second Betti number equal to 1. Let f : X−→Y be any con-
tinuous map of non-zero degree where Y is a compact manifold with
non-vanishing second Betti number. Then:
(i) (·, ·)tω = td−r(·, ·)ω on Hr(X; Q) for t ∈ Q, t 6= 0.
(ii) (Y, ϕ) is c-Hodge where ϕ ∈ H2(Y ; Q) is the unique class such that
f ∗(ϕ) = ω. Furthermore, f ∗ preserves the Lefschetz decomposition (3),
that is, f ∗(Vrϕ) ⊂ Vrω for r ≤ d.
(iii) If α, β ∈ Hr(Y ; Q), then (f ∗(α), f ∗(β))ω = deg(f)(α, β)ϕ. In par-

ticular, degree of f equals 〈ω
d,µX〉

〈ϕd,µY 〉
.

Proof. (i) This is trivial.
(ii) Let dim(X) = 2d. Since deg(f) 6= 0, f ∗ : H i(Y ; Q)−→H i(X; Q) is
a monomorphism for all i ≤ 2d. Comparing the second Betti numbers
of X and Y we conclude that f ∗ : H2(Y ; Q)−→H2(X; Q) ∼= Q is an
isomorphism. Let ϕ ∈ H2(Y ; Q) be the unique class such that f ∗(ϕ) =
ω. Since f ∗ is a homomorphism of rings, we have 0 6= ωd = (f ∗(ϕ))d =
f ∗(ϕd) and so ϕd 6= 0.

Let r ≤ d be a positive integer. One has a commuting diagram:

Hr(Y ; Q)
∪ϕd−r

−→ H2d−r(Y ; Q)
f ∗ ↓ ↓ f ∗

Hr(X; Q)
∪ωd−r

−→ H2d−r(X; Q)

The vertical maps are monomorphisms since deg(f) 6= 0. By our
hypothesis on X, the homomorphism ∪ωd−r in the above diagram is
an isomorphism. This implies that ∪ϕd−r is a monomorphism. Since,
by Poincaré duality, the vector spaces Hr(Y ; Q) and H2d−r(Y ; Q) have
the same dimension, ∪ϕd−r is an isomorphism and so (Y ;ϕ) is c-Hodge.
It is clear that f ∗(Vrϕ) ⊂ Vrω.

(iii) Suppose that α, β ∈ Hr(Y ; R). Then

(f ∗(α), f ∗(β))ω = 〈f ∗(α)f ∗(β)ωd−r;µX〉
= 〈f ∗(αβ)f ∗(ϕd−r);µX〉
= 〈f ∗(αβϕd−r);µX〉
= 〈αβϕd−r, f∗(µX)〉
= deg(f)〈αβϕd−r;µY 〉
= deg(f)(α, β)ϕ.

The formula for the degree of f follows from what has just been
established by taking α = β = ϕ. �
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Observe that the summands in the Lefschetz decomposition (3) are
mutually orthogonal with respect to the bilinear form (·, ·). Indeed, let
α ∈ Vr−2p, β ∈ Vr−2q, p < q. Thus αωn−r+2p+1 = 0 and so αωn−r+p+q =
0. Therefore (ωpα, ωqβ) = 〈αβωn−r+p+q, µX〉 = 0. As observed earlier
the form (·, ·) is non-degenerate. It follows that the form restricted to
each summand in (3) is non-degenerate. In favourable situations, the
form is either positive or negative definite as we shall see in Proposition
3.2 below.

We shall recall some basic results from Hodge theory and use several
facts concerning harmonic forms, all of which can be found in [6, §15].
They will be needed in the proof of Proposition 3.2.

Suppose that X has been endowed with a Kähler metric with Kähler
class ω ∈ H2(X; R). Recall that one has the decomposition Hr(X; C) ∼=
⊕p+q=rHp,q(X; C) where Hp,q denotes the ∂̄-cohomology. We identify
the Hp,q(X; C) with the space of harmonic forms (with respect to the
Kähler metric) Bp,q of type (p, q).

We shall follow the notations used in [6, §15.8]. One has the operators
L and Λ on Hp,q(X; C) where L : Hp,q(X; C)−→Hp+1,q+1(X; C) equals
wedging with the Kähler class ω and Λ: Hp,q(X; C) ∼= Bp,q−→Bp−1,q−1 ∼=
Hp−1,q−1(X; C) is the operator (−1)p+q#L# on Bp,q(X; C). The opera-
tor Λ is dual to L with respect to the hermitian scalar product denoted
(·, ·)∗:

(α, β)∗ :=

∫
X

α ∧#β (4)

on Hr(X; C) = ⊕p+q=rBp,q.

The kernel of Λ is denoted by Bp,q
0 . One has the Hodge decomposition

Hp,q(X) =
⊕

0≤k≤min{p,q}

Bp,q
k (5)

where Bp,q
k := Lk(Bp−k,q−k

0 ) is the space of all harmonic forms ϕ of type
(p, q) and class k. Then the distinct summands in (5) are pairwise or-
thogonal with respect to (·, ·)∗. Also, ΛLk is a non-zero scalar multiple

of Lk−1 on Bp−k,q−k
0 for p+ q ≤ d, 1 ≤ k ≤ min{p, q}.

Proposition 3.2. Suppose that (X,ω) is a compact connected Kähler
manifold such that Hp,q(X; C) = 0 for p 6= q. Then the form (−1)q+r(·, ·)ω
restricted to ωqV2r−2q ⊂ H2r(X; R) is positive definite for 0 ≤ q ≤
r, 1 ≤ r ≤ [d/2].

Proof. First assume that d = dimC X is even, say d = 2s. In view of our
hypothesis, all odd Betti numbers of X vanish and we have Bp,q

k = 0
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for all p 6= q, k ≥ 0, so that

H2r(X; C) = Hr,r(X; C) = ⊕0≤k≤rB
r,r
k . (6)

The real cohomology group H2r(X; R) ⊂ H2r(X; C) = Hr,r(X; C)
has an orthogonal decomposition induced from (3):

H2r(X; R) = ⊕0≤k≤sE
r,r
k (7)

where Ep,p
k = {α ∈ Bp,p

k | α = ᾱ}. Now taking r = s = d/2 one has
#α = (−1)s+kα for α ∈ Es,s

k . In particular the bilinear form (4) equals
(−1)s+kQ where Q(α, β) =

∫
X
αβ. Therefore (−1)s+kQ restricted to

each Es,s
k is positive definite.

We shall show in Lemma 3.3 below that ωkVd−2k = Es,s
k . The propo-

sition follows immediately from this since (α, β) = (ωs−rα, ωs−rβ) for
α, β ∈ ωkV2r−2k as d = 2s, completing the proof in this case.

Now suppose that d is odd. Consider the Kähler manifold Y =
X×P1 where we put the Fubini-Study metric on P1 with Kähler class η
being the ‘positive’ generator of H2(P1; Z) ⊂ H2(P1; R) and the product
structure on Y so that the Kähler class of Y equals ω + η =: ϕ. By
Künneth theorem H∗(Y ; R) = H∗(X; R)⊗H∗(P1; R). We shall identify
the cohomology groups of X and P1 with their images in H∗(Y ; R)
via the monomorphisms induced by the first and second projection
respectively. Under these identifications, Hp,q(Y ; C) = Hp,q(X; C) ⊕
Hp−1,q−1(X; C)⊗H1,1(P1; C). In particular, Hp,q(Y ; C) = 0 unless p = q.
By what has been proven already, the form (−1)r+k(·, ·) is positive
definite on ϕkV2r−2k

ϕ ⊂ H2r(Y ; R).

Choose a base point in P1 and consider the inclusion map j : X ↪→
Y . The imbedding j is dual to η. Also j∗(ϕ) = ω. It follows that
j∗(ϕkV2r−2k

ϕ ) ⊂ ωkV2r−2k
ω for 0 ≤ k < r, 1 ≤ r < d. Since the kernel of

j∗ : H2r(Y ; R)−→H2r(X; R) equals H2r−2(X; R)⊗H2(P1; R), and since
j∗ maps H2r(X; R) ⊂ H2r(Y ; R) isomorphically onto H2r(X; R), we
must have j∗(ϕkV2r−2k

ϕ ) = ωkV2r−2k
ω .

Let α, β ∈ H2r(X; R) ⊂ H2r(Y ; R). Since j : X ↪→ Y is dual to η, we
have j∗(µX) = η ∩ µY . Therefore,

(j∗(α), j∗(β))ω = 〈j∗(αβ)j∗(ω)d−2r;µX〉
= 〈αβωd−2r, j∗(µX)〉
= 〈αβωd−2r, η ∩ µY 〉
= 〈αβωd−2rη, µY 〉.

Since η2 = 0 we have ϕd−2r+1 = ωd−2r+1 + (d − 2r + 1)ωd−2rη. Fur-
thermore, αβωd−2r+1 ∈ H2d+2(X; R) = 0. Therefore, we conclude that



DEGREES OF MAPS BETWEEN GRASSMANN MANIFOLDS 11

(j∗(α), j∗(β))ω = 1
d−2r+1

〈αβϕd−2r+1, µY 〉 = 1
d−2r+1

(α, β)ϕ. This shows

that the bilinear form (·, ·)ω on H2r(X; R) is a positive multiple of the
form (·, ·)ϕ on H2r(Y ; R) restricted to H2r(X; R). It follows that the
bilinear form (−1)r+k(·, ·) on H2r(X; R) restricted to ωkV2r−2k(X) is
positive definite. �

We must now establish the following

Lemma 3.3. With notations as above, assume that d = 2s is even.
Under the hypothesis of the above proposition, Es−k,s−k

k equals ωkVd−2k,
0 ≤ k ≤ s.

Proof. Since L preserves real forms, it suffices to show that Er,r
0 = V2r

when r ≤ s. By definition Er,r
0 = Br,r

0 ∩H2r(X; R) = {α ∈ Hr,r(X; C) |
Λ(α) = 0, α = ᾱ}.

Let α ∈ Er,r
0 . Suppose that p ≥ 1 is the largest integer such that

ωd−2r+pα =: θ is a non-zero real harmonic form of type (d−r+p, d−r+
p). Since Ld−2r+2p : Hr−p,r−p(X; C)−→Hd−r+p,d−r+p(X; C) is an isomor-
phism, and since ω is real there must be a real form β ∈ Hr−p,r−p(X; R)
such that Ld−2r+2p(β) = θ = Ld−2r+p(α). Since p is the largest, using
the decomposition (6) we see that β ∈ Br−p,r−p

0 . Applying Λd−2r+p both
sides and (repeatedly) using ΛLqβ is a non-zero multiple of Lq−1β when
r − p + q < d we see that β is a non-zero multiple of Λpα = 0. Thus
β = 0 and hence θ = 0, which contradicts our assumption. Therefore
Ld−2r+1(α) = 0 and so α ∈ Vr0 . On the other hand Λ maps H2r(X; C)
onto H2r−2(X; C). A dimension argument shows that Er,r

0 = V2r. �

Example 3.4. The Grassmann manifold Gn,k has the structure of a
Kähler manifold with Kähler class ω := c̄1 = [Ω1] ∈ H2(Gn,k; Z). (This

fact follows, for example, from the Plücker imbedding Gn,k ↪→ P(n
k)−1.

) The bilinear form (·, ·) is understood to be defined with respect to ω.
An orthogonal basis for V2r

n,k ⊂ H2r(Gn,k; Q) can be obtained inductively
using Gram-Schmidt orthogonalization process as follows. Recall from
§2 the basis C̄r for H2r(Gn,k; Q). Clearly ω · C̄r−1 = c̄1 · C̄r−1 = {c̄j ∈
C̄r | j1 > 0} is a basis for ωH2r−2(Gn,k; Q). Therefore we see that the
subspace spanned by C̄r,0 := {c̄j ∈ C̄r | j1 = 0} is complementary to
⊕q>0B

r−q,r−q
q ⊂ H2r(Gn,k; Q). The required basis is obtained by taking

the orthogonal projection of C̄r,0 onto V2r. Indeed, inductively assume
that an orthogonal basis {vj} for ωH2r−2(Gn,k; Q) that is compatible
with the direct sum decomposition ⊕q>0B

r−q,r−q
q has been constructed.

We need only apply the orthogonalization process to the (ordered) set
{vj} ∪ {c̄j ∈ C̄r | j1 = 0} with respect to an ordering of Cr,0 where c̄r is
the last element. To be specific, we list the elements c̄j in the decreasing
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order with respect to the lexicographic order of the exponents. (For
example, taking n = 12, k = 6, r = 6, the elements of C̄6,0 are ordered
as c̄3

2, c̄2c̄4, c̄
2
3, c̄6.) We denote the basis element of V2r obtained from

cj ∈ C̄r,0 by vj. Note that when r ≤ k, the span of the set {vj | jr =
0} ⊂ H2r(Gn,k; Q) equals the space D of all decomposable elements
in H2r(Gn,k; Q) since, according to our assumption on the ordering of
elements c̄j, the element c̄r is the last to occur and so vr does not occur
in any other vj. Thus vr − c̄r belongs to D ⊂ H2r(Gn,k; Q) and vj ∈ D
for all other j, |j| = r.

We illustrate this for r = 2, 3. (When r = 1, V2 = 0. ) The element

v2 = c̄2 − (c̄2,ω2)
(ω,ω)

ω2 = c̄2 − deg c̄2
deg Gn,k

ω2 ∈ H4(Gn,k; Q) is a basis for the

one-dimensional space V4.

Similarly, v3 is a basis for V6 where

v3 := c̄3 − (c̄3,v2ω)
(v2ω,v2ω)

v2ω − (c̄3,ω3)
(ω3,ω3)

ω3

= c̄3 − deg c̄3
deg Gn,k

ω3 − deg Gn,k deg(c̄3c̄2)−deg c̄2 deg c̄3
deg Gn,k deg(c̄22)−(deg c̄2)2

v2ω.

This leads to
(v3, v3) = (v3, c̄3) = deg(c̄2

3)− (deg c̄3)2

deg Gn,k
−deg(c̄3c̄2) deg Gn,k−deg c̄2 deg c̄3

deg Gn,k deg(c̄22)−(deg c̄2)2
deg(c̄3v2).

The following calculation will be used in the course of the proof of
Theorem 1.2.

Lemma 3.5.With the above notation, (v2, v2) = deg Gn,k
(k2−1)((n−k)2−1)

2(N−1)2(N−2)(N−3)
.

Proof. The proof involves straightforward but lengthy calculation which
we work out below.

Since (v2, c̄
2
1) = 0, we get (v2, v2) = (v2, c2) = (c̄2, c̄2)− deg c̄2

deg Gn,k
(c̄2, ω

2) =

deg Gn,k(
deg(c̄22)

deg Gn,k
− ( deg c̄2

deg Gn,k
)2).

Since c̄2
2 = [Ω2]2 = [Ω4] + [Ω3,1] + [Ω2,2], we see that

deg c̄22
deg Gn,k

=
deg c̄4

deg Gn,k
+ deg Ω3,1

deg Gn,k
+ deg Ω2,2

deg Gn,k
.

Now an explicit calculation yields, upon using N = k(n− k):

deg c̄4
deg Gn,k

= (n−k−1)(n−k−2)(n−k−3)(k+1)(k+2)(k+3)
4!(N−1)(N−2)(N−3)

,
deg Ω3,1

deg Gn,k
= (n−k+1)(n−k−1)(n−k−2)(k+2)(k+1)(k−1)

2!4(N−1)(N−2)(N−3)
,

deg Ω2,2

deg Gn,k
= N(k−1)(k+1)(n−k+1)(n−k−1)

2!3·2(N−1)(N−2)(N−3)
,

deg c̄2
deg Gn,k

= (k+1)(n−k−1)
2!(N−1)

.
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Substituting these in the above expression for (v2, v2) we get (v2, v2) =
(k+1)(n−k−1)

4!(N−1)2(N−2)(N−3)
A where, again using N = k(n− k) repeatedly,

A := (N − 1){(n− k − 2)(k + 2)(n− k − 3)(k + 3)
+3(n− k − 2)(k + 2)(n− k + 1)(k − 1) + 2N(k − 1)(n− k + 1)}
−6(N − 2)(N − 3)((n− k − 1)(k + 1))2)
= (N − 1){(N + 2(n− 2k)− 4)(N + 3(n− 2k)− 9)
+3(N + 2(n− 2k)− 4)(N − (n− 2k)− 1) + 2(N − (n− 2k)− 1)}
−6(N − 2)(N − 3)(N + (n− 2k)− 1)
= 12(N − (n− 2k)− 1)
= 12(k − 1)(n− k + 1).

Therefore, (v2, v2) = deg Gn,k
(k2−1)((n−k)2−1)

2(N−1)2(N−2)(N−3)
. �

Remark 3.6. Although quaternionic Grassmann manifolds are not c-
Kähler, one could use the symplectic Pontrjagin class η := e1(γn,k) ∈
H4(HGn,k; Z) in the place of c̄1 ∈ H2(CGn,k; Z) to define a pairing (·, ·)η
on H4r(HGn,k; Q) and the primitive classes vj ∈ H4j(HGn,k; Q). We
define V4r ⊂ H4r(HGn,k; Q) to be the kernel of

∪ηN−2r+1 : H4r(HGn,k; Q)−→H4N−4r+4(HGn,k; Q).

The form (·, ·)η is definite when restricted to the space ηqV4r−4q ⊂
H4r(HGn,k; Q). The formula given in Lemma 3.5 holds without any
change. These statements follow from the degree doubling isomorphism
from the cohomology algebra of Gn,k to that of HGn,k which maps the
i-th Chern class of the tautological complex k-plane bundle over Gn,k

to the i-th symplectic Pontrjagin class of the tautological left H-bundle
over HGn,k.

4. Proofs of Main Results

In this section we prove the main results of the paper, namely The-
orems 1.1, 1.2 and 1.3. We will only consider the case of complex
Grassmann manifolds. The proofs in the case of quaternionic Grass-
mann manifolds follow in view of the fact that the cohomology algebra
of HGn,k is isomorphic to that of CGn,k via an isomorphism that doubles
the degree.

Recall that complex Grassmann manifolds are smooth projective va-
rieties and that Schubert subvarieties yield an algebraic cell decompo-
sition. In particular their Chow ring is isomorphic to singular cohomol-
ogy (with Z-coefficients) via an isomorphism that doubles the degree.
It follows that Hp,q(Gn,k; C) = 0 for p 6= q. Therefore results of the
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previous section hold for Gn,k. The bilinear form (·, ·) is understood to
be defined with respect to ω = c̄1 ∈ H2(Gn,k; Z) ∼= Z.

Lemma 4.1. Let f : Gn,k−→Gm,l be any continuous map where k(n −
k) = l(m− l) =: N . Suppose that f ∗(c1(γ⊥m,l)) = λc1(γ⊥n,k) where λ ∈ Z.
Then

deg(f) = λN
deg Gn,k

deg Gm,l

.

Proof. This follows immediately from Lemma 3.1(i) and (iii). �

Proof of Theorem 1.3. We may suppose that F = C and that l ≤ k;
otherwise k < l ≤ [m/2] in which case deg(f) = 0 for any f by [14,
Theorem 2].

Suppose that deg(f) = ±1 and that l < k. We have

deg Gn,k

deg Gm,l
= 1!...(k−1)!(m−l)!...(m−1)!

1!...(l−1)!(n−k)!...(n−1)!

= l!...(k−1)!(m−l)!...(m−1)!
(n−k)!...(n−1)!

= (
∏

1≤j≤k−l
(l−1+j)!

(n−k+j−1)!
)(
∏

1≤j≤l
(m−j)!
(n−j)! ).

Note that after simplifying (l+ j − 1)!/(n− k+ j − 1)! for each j in
the first product, we are left with product of (k− l) blocks of (n−k− l)
consecutive positive integers in the denominator, the largest to occur
being (n− l− 1). Similar simplification in the second product yields a
product of l blocks of (m − n) consecutive integers in the numerator,
the smallest to occur being (n−l+1). Since (k−l)(n−k−l) = l(m−n)
we conclude that deg(Gn,k) > deg(Gm,l).

In the notation of Lemma 4.1 above, we see that either deg(f) = 0
or | deg(f)| > |λ|N ≥ 1— a contradiction. Therefore (m, l) = (n, k) if
deg(f) = ±1. Now f ∗ : H∗(Gn,k; Z)−→H∗(Gn,k; Z) induces an isomor-
phism. Since Gn,k is a simply connected CW complex, by Whitehead’s
theorem, f is a homotopy equivalence. �

Remark 4.2. (i) The above is a topological analogue of the result of
Paranjape and Srinivas [13] that any non-constant morphism
f : Gn,k−→Gm,l is an isomorphism of varieties provided the Gm,l is not
the projective space. Our conclusion in the topological realm is weaker.
Indeed it is known that there exist continuous self-maps of any com-
plex and quaternionic Grassmann manifold which have large positive
degrees. See [1] and also [15].

(ii) Endomorphisms of the cohomology algebra of Gn,k having non-
zero degree have been classified by M. Hoffman [9]. These are either
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‘grading homomorphisms’ defined by ci 7→ λici, 1 ≤ i ≤ k for some λ
or when n = 2k, the composition of a grading homomorphism with the
homomorphism induced by the diffeomorphism ⊥ : Gn,k−→Gn,k defined
as U 7→ U⊥. If the degree of an endomorphism h of H∗(Gn,k; Q) is
zero, then h(c1) = 0. Hoffman has conjectured in [9] that in this case h
vanishes in positive dimensions. This conjecture has been established
in [4] when n > 2k2 − 1 and it is also known to hold when k ≤ 3.

Recall from Example 3.4 the construction of the primitive classes
vj ∈ H2j(Gn,k; Q), 2 ≤ j ≤ k. To avoid possible confusion, we shall de-
note the primitive classes in H2j(Gm,l; Q) corresponding to j = 2, . . . , l
by uj. Also V2r

m,l ⊂ H2r(Gm,l; Q) will denote the space of primitive
classes. The following lemma is crucial for the proof of Theorem 1.1.

Lemma 4.3. Suppose that f : Gn,k−→Gm,l is a continuous map such
that f ∗(c1(γ⊥m,l)) = λc1(γ⊥n,k) = λc̄1 with λ 6= 0. Let 2 ≤ j ≤ l. Assume
that k(n−k) = l(m− l). Then, with the above notations, f ∗(uj) = λjvj
where λj ∈ Q is such that

λ2
j = λ2j deg Gn,k

deg Gm,l

(uj, uj)

(vj, vj)

for 2 ≤ j ≤ l.

Proof. The degree of f equals λN deg Gn,k/ deg Gm,l 6= 0 by Lemma 4.1.

Therefore f ∗ : H2j(Gm,l; Q)−→H2j(Gn,k; Q) is an isomorphism and

f ∗(V2j
m,l) = V2j

n,k, since f ∗ is a monomorphism and the dimensions are
equal as j ≤ l. Note that f ∗ maps the space of decomposable elements
D2j
m,l ⊂ H2j(Gm,l; Q) isomorphically onto D2j

n,k. Since uj ⊥ D2j
m,l ∩ V

2j
m,l

we see that, by Lemma 3.1 (ii), f ∗(uj) ⊥ D2j
n,k ∩V

2j
n,k. As the form (·, ·)

on V2j
n,k is definite by Proposition 3.2 and V2j

n,k = Qvj ⊕ (V2j
n,k ∩ D

2j
n,k)

is an orthogonal decomposition, we must have f ∗(uj) = λjvj for some
λj ∈ Q.

Recall that deg(f) = λN deg Gn,k/ deg Gm,l. Note that

λN−2j(f ∗(uj), f
∗(uj)) = (f ∗(uj), f

∗(uj))λc̄1
= deg(f)(uj, uj)ω
= λN

deg Gn,k

deg Gm,l
(uj, uj)

by Lemma 3.1. Thus λ2
j(vj, vj) = (f ∗(uj), f

∗(uj)) = λ2j deg Gn,k

deg Gm,l
(uj, uj).

�

We are now ready to prove Theorem 1.1.
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Proof of Theorem 1.1: We need only consider the case F = C. Re-
call that the cohomology algebra H∗(Gm,l; Z) is generated by c̄1, , . . . , c̄l
where c̄j = cj(γ

⊥
m,l). Therefore f ∗ : H∗(Gm,l; Z)−→H∗(Gn,k; Z) is deter-

mined by the images of c̄j, 1 ≤ j ≤ l.

As observed in Example 3.4, one has uj − c̄j ∈ D2j
m,l, 2 ≤ j ≤ l. It

follows easily by induction that each c̄j, 1 ≤ j ≤ l, can be expressed
as a polynomial with rational coefficients in c̄1, u2, . . . , ul. Therefore
c̄1 =: u1, u2, . . . , ul generate H∗(Gm,l; Q).

Lemma 4.1 implies that f ∗(u1) = λc1(γ⊥n,k) where λN—and hence λ
up to a sign—is determined by the degree of f .

Now by Lemma 4.3, the image of uj under f ∗ equals λjvj where λj
is determined up to a sign by the degree of f , if deg(f) 6= 0. �

Proof of Theorem 1.2: We assume, as we may, that F = C. We preserve
the notations used in the above proof. Recall from Lemma 3.5 that

(v2, v2) = deg Gn,k
(k2−1)((n−k)2−1)

2(N−1)2(N−2)(N−3)
. Therefore, by Lemma 4.3 we have

λ2
2 = λ4 deg Gn,k

deg Gm,l

(v2,v2)
(u2,u2)

= λ4(
deg Gn,k

deg Gm,l
)2 (k2−1)((n−k)2−1)

(l2−1)((m−l)2−1)

= B2(k2 − 1)(l2 − 1)((n− k)2 − 1)((m− l)2 − 1)

where B :=
λ2 deg Gn,k

deg Gm,l(l2−1)((m−l)2−1)
∈ Q. It follows that deg(f) = 0 unless

Q := (l2− 1)(k2− 1)((m− l)2− 1)((n− k)2− 1) is a perfect square. It
remains to show that there are at most finitely many values for m,n
for which the Q is a perfect square. This is proved in the following
proposition.

Proposition 4.4. Let 1 < a < b be positive integers. Then there are
at most finitely many solutions in Z for the system of equations

y2 = Q(a, b, x, z), az = bx, (8)

where Q(a, b, x, z) := (a2 − 1)(b2 − 1)(x2 − 1)(z2 − 1).

Proof. Let r = gcd(a, b) and write a = rs, b = rt so that tx = sz.
Then the system of equations (8) can be rewritten as y2 = F (x) where
F (x) := (1/s2)(a2−1)(b2−1)(x2−1)(t2x2−s2). Note that F (x) ∈ Q[x]
has distinct zeros in Q. By a theorem of Siegel [5, Theorem D.8.3, p.
349] it follows that the equation y2 = F (x) has only finitely many
solutions in the ring RS ⊂ K of S-integers where K is any number
field and S any finite set of absolute valuations of K, including all
archimedean valuations. In particular, taking K = Q and S the usual
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(archimedean) absolute value, we see that there are only finitely many
integral solutions of (8). �

For the rest of the paper we shall only be concerned with the number
theoretic question of Q(a, b, c, d) being a perfect square.

Remark 4.5. (i) We observe that there are infinitely many integers 1 <
a < b < c < d such that Q(a, b, c, d) is a perfect square. Indeed given
a, b, let c be any positive integer such that (a2−1)(b2−1)(c2−1) = Pu2

where P > 1 is square free. Let (x, y) be any solution with x 6= 0 of
the so called Pell’s equation y2 = 1 + Px2. Then d = |y| is a solution
whenever d > c. Since Pell’s equation has infinitely many solutions,
there are infinitely many such d.

(ii) Suppose that (l2 − 1)(k2 − 1)(c2 − 1) = x2 is a perfect square.
(There exists such positive integers c—in fact infinitely many of them—
for which this happens if and only if (l2 − 1)(k2 − 1) is not a perfect
square.) Then there does not exist any d > 1 such that Q(l, k, c, d) is a
perfect square. Assume further that l|(kc)—this can be arranged, for
example, taking k to be a multiple of l—and set n := c+ k, m := kc/l
so that k(n− k) = l(m− l). Then Q(l, k, n− k,m− l) is not a perfect
square.

(iii) We illustrate below situations in which Q(l, k, n − k,m − l) is
not a perfect square (assuming that k(n− k) = l(m− l)) depending on
congruence classes, modulo a suitable prime power, of the parameters
involved.
(1) For an odd prime p, suppose that k ≡ p2r−1± 1 mod p2r and none
of the numbers l,m− l, n−k is congruent to ±1 mod p. Then p2r−1|Q
but p2r 6 |Q.
(2) Suppose that m ≡ l ≡ 5 mod 8, and k ≡ 7 mod 16. Then (m −
l)2− 1 is odd, l2− 1 ≡ 8 mod 16, k2− 1 ≡ 16 mod 32 and l(m− l) =
k(n−k) implies (n−k) is even and so (n−k)2−1 is odd. Thus Q ≡ 27

mod 28.
(3) Suppose that l ≡ 0 mod 8,m ≡ l mod 2, k ≡ 3 mod 8. Then
Q ≡ 8 mod 16.

We conclude the paper with the following

Proposition 4.6. Let c > 1 and let k = 3 or 7. Suppose that
Q(2, k, 2c, kc) is a perfect square. Then there exist integers ξ, η, v > 1
such that c = 1

2
(ξ2η2 +1), ξ2η2−3v2 = −2 and (i) ξ2−3η2 = −2 when

k = 3 and (ii) ξ2 − 7η2 = −6 when k = 7.



18 P. SANKARAN AND S. SARKAR

Proof. Assume that k = 7 and that Q := Q(2, 7, 2c, 7c) = 3224(2c −
1)(2c + 1)(7c − 1)(7c + 1) is a perfect square. There are several cases
to consider depending on the gcd of the pairs of numbers involved.
Write (2c − 1) = αu2, 2c + 1 = βv2, 7c − 1 = γx2, 7c + 1 = δy2, where
α, β, γ, δ are square free integers. Since Q is a perfect square and since
gcd(2c−1, 2c+1) = 1, gcd(7c−1, 7c+1) = 1 or 2, gcd(2c±1, 7c±1) =
1, or 5, gcd(2c±1, 7c∓1) = 1, 3, or 9, the possible values for (α, β) are:
(1, 1), (1, 5), (1, 3), (3, 1), (5, 1), (1, 15), (15, 1), (5, 3), (3, 5). The possi-
ble values for (γ, δ) are the same as for (α, β) as well as (2α, 2β).

Suppose (α, β) = (1, 1). Since (2c − 1) + 2 = (2c + 1), we obtain
u2 + 2 = v2 which has no solution. If (α, β) = (3, 1), then 3u2 + 2 = v2.
This equation has no solution mod 3. Similar arguments show that
if (α, β) = (5, 1), (1, 5), (1, 15), (15, 1), (5, 3), there are no solutions for
u, v. If (α, β) = (3, 5), then (γ, δ) = (5, 3) or (10, 6). If (γ, δ) = (5, 3)
again there is no solution mod 3 for the equation 5x2 + 2 = 3y2. When
(γ, δ) = (10, 6) we obtain 10x2 + 2 = 6y2. This has no solution mod 5.

It remains to consider the case (α, β) = (1, 3). In this case we obtain
the equation u2 + 2 = 3v2 which has solutions, for example, (u, v) =
(5, 3). Now (α, β) = (1, 3) implies (γ, δ) = (3, 1) or (6, 2). If (γ, δ) =
(3, 1) then we obtain the equation 3x2 + 2 = y2 which has no solution
mod 3. So assume that (γ, δ) = (6, 2). As (α, δ) = (1, 2) we obtain
4y2 − 7u2 = 9, that is, 4y2 − 7u2 = 9. Thus (2y − 3)(2y + 3) = 7u2.
Either 7|(2y− 3) or 7|(2y+ 3). Say 7|(2y− 3) and write (2y− 3) = 7z.
Now z(7z + 6) = u2. Observe that gcd(z, 7z + 6) divides 6. Since
β = 3, 2c − 1 = u2 is not divisible by 3. Also, u being odd, we must
have gcd(z, 7z + 6) = 1. It follows that both z and 7z + 6 are perfect
squares. This forces 6 to be a square mod 7—a contradiction. Finally,
suppose that 7|(2y + 3). Then repeating the above argument we see
that both (2y − 3) =: η2 and (2y + 3)/7 =: ξ2 are perfect squares. It
follows that 7ξ2−6 = η2 is a perfect square. Hence 2c−1 = u2 = ξ2η2.
Since 2c+ 1 = 3v2, the proposition follows.

We now consider the case k = 3. We merely sketch the proof in this
case. Let, if possible, Q = 233(2c − 1)(2c + 1)(3c − 1)(3c + 1) be a
perfect square. Write 2c−1 = αu2, 2c+1 = βv2, 3c−1 = γx2, 3c+1 =
δy2, where α, β, γ, δ are square free integers and u, v, x, y are positive
integers. Arguing as in the case k = 7, following are the only possible
values for α, β, γ, δ: (α, β) = (1, 3), (3, 1), (3, 5), (5, 3), (1, 15), (15, 1),
and (γ, δ) = (1, 2), (2, 1), (2, 5), (5, 2), (1, 10), (10, 1). It can be seen
that only the case (α, β, γ, δ) = (1, 3, 2, 1) remains to be considered,
the remaining possibilities leading to contradictions. Thus we have
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2c− 1 = u2, 2c+ 1 = 3v2, 3c− 1 = 2x2 and 3c+ 1 = y2. Therefore, we
have 4x2 − 1 = 3u2, i.e., (2x− 1)(2x+ 1) = 3u2 . Hence, 3|(2x− 1) or
3|(2x+ 1).

Suppose that 3|(2x − 1). Write 3z = 2x − 1, z ∈ Z. Since z is odd,
we have gcd(z, 3z + 2) = 1. As z(3z + 2) = u2 we conclude that z and
3z + 2 have to be perfect squares. This implies that 2 is a quadratic
residue mod 3–a contradiction. Therefore 3 6 |(2x−1) and we must have
3|(2x+ 1) and both z and 3z− 2 will have to be perfect squares. Write
z = η2 and 3z−2 = ξ2 so that ξ2−3η2 = −2 and v2 = u2+2 = ξ2η2+2.
This completes the proof. �

Remark 4.7. (i) Let K = Q[
√

7] and let R be the ring of integers in
K. If ξ + η

√
7 ∈ R, then ξ, η ∈ Z. Denote the multiplicative ring of

units in R by U . Note that any element of U has norm 1. (This is
because −1 is a quadratic non-residue mod 7.) Using Dirichlet Unit
theorem U has rank 1; indeed U is generated by ν := (8 + 3

√
7) and

±1. The integers ξ, η as in the above proposition yield an element
ξ + η

√
7 of norm −6 and the set S ⊂ R of all elements of norm −6 is

stable under the multiplication action by U . An easy argument shows
that S is the union of orbits through λ := 1 +

√
7, λ̄ = 1 −

√
7. Thus

S = {±λνk,±λ̄νk | k ∈ Z}.

Observe that if ξ, η are as in Proposition 4.6(ii), then ξ +
√

7η ∈
S. Listing elements ξ + η

√
7 ∈ S with ξ, η > 1 in increasing order

of η, the first three elements are 13 + 5
√

7, 29 + 11
√

7, 209 + 79
√

7.
Straightforward verification shows that when ξ + η

√
7 is any of these,

then there does not exist an integer v such that ξ2η2+2 = 3v2. Since the
next term is 463+175

√
7, we have the lower bound 2c > 1752×4632 =

6565050625 in order that Q(2, 7, 2c, 7c) be a perfect square (assuming
c > 1).

(ii) Now, let K = Q[
√

3] and let R be the ring of integers in K. Note
that if ξ + η

√
3 ∈ R, then ξ, η ∈ Z. Denote the multiplicative ring of

units in R by U , which is generated by (2 +
√

3) and ±1.

Suppose that Q(2, 3, 2c, 3c) is a perfect square, c > 1. Then the
integers ξ, η, as in the above proposition, yield an element ξ + η

√
3 of

norm −2. The set S ⊂ R of all elements of norm −2 is stable under
the multiplication action by U . In fact it can be verified easily that
S = {±(1 +

√
3)(2 +

√
3)m | m ∈ Z}.

Listing these with ξ, η > 1, in increasing order of η, the first five
elements are 5+3

√
3, 19+11

√
3, 71+41

√
3, 265+153

√
3, 989+571

√
3.

If ξ + η
√

3 equals any of these, direct verification shows that there is
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no integer v satisfying the equation ξ2η2 + 2 = 3v2. The next term
of the sequence being 3691 + 2131

√
3 we obtain the lower bound 2c >

21312 × 36912 = 61866420601441.
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