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Abstract. We consider quotients of complex Stiefel manifolds by finite

cyclic groups whose action is induced by the scalar multiplication on the

corresponding complex vector space. We obtain a description of their tan-
gent bundles, compute their mod p cohomology and obtain estimates for

their span (with respect to their standard differentiable structure). We

compute the Pontrjagin and Stiefel-Whitney classes of these manifolds and
give applications to their stable parallelizability.

1. Introduction

Let Wn,k, 1 ≤ k < n, denote the complex Stiefel manifold of unitary k-frames

(v1, . . . , vk) in Cn where it is understood that Cn has the standard hermitian

metric. One has the identification Wn,k = U(n)/U(n − k) where U(n) denotes

the group of unitary transformations of Cn and U(n − k) is imbedded in U(n)

as the subgroup that fixes the first k standard basis vectors e1, . . . , ek ∈ Cn.

One also has the complex projective Stiefel manifold PWn,k defined as the

quotient of Wn,k modulo the free action of the circle group S1 which acts via

scalar multiplication: z(v1, . . . , vk) = (zv1, . . . , zvk) for (v1, . . . , vk) ∈ Wn,k and

z ∈ S1. Note that PWn,k = U(n)/(S1 × U(n− k)) where S1 = {z ∈ C | |z| = 1}
is identified with the centre of U(n). Observe that S1 × U(n − k) = U(1) ×
U(n − k) ⊂ U(k) × U(n − k) ⊂ U(n) where U(1) ⊂ U(k) is the centre of U(k)

and U(k)×U(n− k) is the subgroup of U(n) that stabilizes the complex vector

subspace Ck, spanned by e1, . . . , ek. Thus we get an equivalent description

PWn,k = U(n)/(U(1)× U(n− k)).
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We define Wn,k;m to be the quotient of Wn,k by the subgroup Γm ⊂ S1 of m-th

roots of unity. Thus dimWn,k;m = dimWn,k = k(2n−k). The manifolds Wn,k;m

will be referred to as the m-projective Stiefel manifolds. Clearly Wn,k;m is the

coset space U(n)/(Γm × U(n − k)) and the obvious quotient map Wn,k;m −→
PWn,k is the projection of a principal bundle with fibre and structure group

S1/Γm
∼= S1. Also the projection Wn,k −→ Wn,k;m is a covering map with

deck transformation group Γm. In particular π1(Wn,k;m) ∼= Γm and the Euler

characteristic χ(Wn,k;m) vanishes. The manifold Wn,k;m is orientable since Γm

is a subgroup of the connected group S1 which preserves the orientation on Wn,k.

Our aim in this paper is to initiate the study of the topology of Wn,k;m. In §2
we describe their tangent bundle and give (in Theorem 2.4) estimates for their

span and stable span. Span and other related notions will be recalled in §2;

see also [10]. We compute, in §3, the mod p cohomology of Wn,k;m. We also

determine the height of the generator of H2(Wn,k;m; Z) ∼= Zm. We show that,

given n, k where 1 ≤ k < n − 1, Wn,k;m is not stably parallelizable for all but

finitely many values of m. See Theorem 3.5 for the precise statement. When

k = n− 1, Wn,n−1;m is parallelizable, since Wn,n−1
∼= SU(n− 1).

The case k = 1 corresponds to the (standard) lens space Ln(m) = S2n−1/Γm.

The non-parallelizability of spheres Wn,1 = S2n−1, n 6= 1, 2, 4, already implies

non-parallelizability of the lens spaces Ln(m) for any m. Kambe’s [9, §4] result

on immersion dimension for Ln(p), p an odd prime, and the fact that Ln(2) =

RP 2n−1 are not stably parallelizable except when n = 1, 2, 4, implies that ‘most’

of Ln(m), m > 1, are not stably parallelizable. From the celebrated work of

Adams, we know that span(Ln(m)) ≤ span(S2n−1) = ρ(2n) − 1, where ρ(n) is

the Radon-Hurwitz number, defined as ρ((2c+1)24a+b) = 8a+2b, where a, c ≥ 0

and 0 ≤ b ≤ 3. See also [8] for lower bounds for span of lens spaces.

In view of this, we assume that 1 < k < n leaving out the case of lens spaces

from consideration for the most part.

Our proofs involve standard arguments making use of well-known results and

techniques. The description of the tangent bundle of Wn,k;m relies on the de-

scription of the tangent bundle of PWn,k due to Lam [13]. Estimates for (stable)

span involve well-known arguments such as those employed in the context of real
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projective Stiefel manifolds; see [10], [11]. The cohomology calculations involve

spectral sequences and known results concerning the cohomology of Stiefel man-

ifolds and of projective Stiefel manifolds (see [4] and [2]).

2. The tangent bundle of Wn,k;m

We describe below certain canonical vector bundles over the manifold Wn,k;m

and establish relations among them. We shall describe its tangent bundle and

obtain lower bounds for their span and stable span.

Let 1 ≤ k < n and let m ≥ 2. Let Γm ⊂ U(1) denote the group of m-th roots

of unity. Let πm : Wn,k;m −→ PWn,k and π1 : Wn,k −→ PWn,k be the canon-

ical quotient maps. These are projections of principal bundles with structure

groups U(1)/Γm and U(1) respectively. Let pm : Wn,k −→ Wn,k;m be the quo-

tient map which is the universal covering projection with deck transformation

group Γm. One also has the obvious covering projections pm,l : Wn,k;l −→Wn,k;m

whenever l|m. Note that π1 = πm ◦ pm and pm = pm,l ◦ pl. We shall de-

note by [v1, . . . , vk]m (or simply [v1, . . . , vk] when there is no danger of con-

fusion) the element πm(v1, . . . , vk) ∈ Wn,k;m where (v1, . . . , vk) ∈ Wn,k. Also,

π1(v1, . . . , vk) ∈ PWn,k will be denoted [v1, . . . , vk]0 (or more briefly [v1, . . . , vk]).

Let ζn,k denote the complex line bundle over PWn,k associated to the prin-

cipal U(1)-bundle π1 : Wn,k −→ PWn,k. Thus, the total space of ζn,k is the

fibre product Wn,k ×U(1) C. It is isomorphic to the bundle over PWn,k whose

fibre over a point [v1, . . . , vk]0 is the complex vector space Cv1 ⊂ Cn. De-

fine ξn,k;m := π∗m(ζn,k) and let γn,k;m be the complex line bundle associated

to the principal U(1)-bundle obtained by extension of structure group via the

character Γm ⊂ U(1) of the Γm-bundle Wn,k −→ Wn,k;m. (When m = 2,

ξn,k;m is the complexification of the real line bundle associated to the double

cover Wn,k −→ Wn,k;2.) Explicitly, γn,k;m has total space the twisted product

Wn,k ×Γm
C where Γm operates on C by scalar multiplication. We have the

following lemma. We outline a proof, which is elementary, as the lemma will be

used throughout. For any vector bundle η, ηl denotes the l-fold tensor product

with itself and lη, the l-fold Whitney sum with itself.
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Lemma 2.1. (i) The complex line bundle associated to the principal U(1)/Γm
∼=

U(1)-bundle with projection Wn,k;m −→ PWn,k is isomorphic to ζm
n,k.

(ii) One has an isomorphism ξn,k;m
∼= γn,k;m of complex line bundles over

Wn,k;m.

Proof. (i) The isomorphism U(1)/Γm −→ U(1) is induced by the homomorphism

z 7→ zm of U(1) onto itself. This homomorphism induces the map η 7→ ηm,

for any line bundle η associated to a principal U(1)-bundle. By definition,

ζn,k is associated to the principal U(1)-bundle π1 : Wn,k −→ PWn,k. Since

πm : Wn,k;m −→ PWn,k is the U(1)/Γm-bundle associated to π1, it follows that

the complex line bundle associated to the principal U(1)/Γm
∼= U(1)-bundle πm

is ζm
n,k.

(ii) By the very definition of γn,k;m, its total space has the description E(γn,k;m) =

{[x, z] | x ∈ Wn,k, z ∈ C} where [x, z] = [x′, z′] if and only if xg = x′, g−1z =

z′ for some g ∈ Γm. Also, one has E(ξn,k) = {(pm(v), tv1) | t ∈ C, x =

(v1, . . . , vk) ∈ Wn,k}. Consider the map f : E(ξn,k;m) −→ E(γn,k;m) defined

as (pm(v), tv1) 7→ [v; t]. It is readily checked that this is a well-defined continu-

ous map that covers the identity map of the base space Wn,k;m, and is a linear

isomorphism on each fibre. This completes the proof. �

Observe that ξl
n,k;m, which corresponds to the character Γm −→ U(1), z 7→ zl,

is non-trivial when 1 ≤ l < m. In particular it follows that the order of

the class of ξn,k;m in the Picard group Pic(Wn,k;m) of Wn,k;m is m. Indeed,

ξn,k;m is a generator of Pic(Wn,k;m) ∼= Zm. For, one has H1(Wn,k;m; Z) ∼=
π1(Wn,k;m) ∼= Zm. It is not difficult to see that H2(Wn,k;m; Z) = 0. Hence

Pic(Wn,k;m) ∼= H2(Wn,k;m; Z) ∼= Zm by the universal coefficient theorem. The

projection πm : Wn,k;m −→ PWn,k induces a surjection H2(PWn,k; Z) ∼= Z −→
Zm
∼= H2(Wn,k;m; Z) and hence maps the generator c1(ζn,k) to the generator of

Zm. By the naturality of Chern classes we see that c1(ξn,k;m) is a generator of

H2(Wn,k;m; Z) ∼= Zm. Summarising we have

Lemma 2.2. The Picard group Pic(Wn,k;m) is isomorphic to Zm and is gener-

ated by ξn,k;m.
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The following isomorphism of complex vector bundles on PWn,k is well-known

and is due to K.-Y. Lam [13]: kζn,k ⊕ βn,k
∼= nεC where εC denotes the trivial

complex line bundle and βn,k is the complex (n − k)-plane bundle whose fibre

over [v1, . . . , vk]0 is the vector space {v1, . . . , vk}⊥ ⊂ Cn where the orthogonal

complement is taken with respect to the standard hermitian inner product on

Cn. Pulling back to Wn,k;m via the projection πn,k;m we obtain an isomorphism

kξn,k;m ⊕ βn,k;m
∼= nεC (1)

of complex vector bundles over Wn,k;m where βn,k;m := π∗m(βn,k). Tensoring

with the dual bundle ξ∨n,k;m
∼= ξm−1

n,k;m we get kεC⊕ ξ∨n,k;m⊗C βn,k;m
∼= nξ∨n,k;m =

nξm−1
n,k;m. Taking duals, we obtain

kεC ⊕ ξn,k;m ⊗C β
∨
n,k;m

∼= nξn,k;m. (2)

Recall from [13, Theorem 3.2] that the tangent bundle τPWn,k of PWn,k

is isomorphic to the (real) vector bundle kζ∨n,k ⊗C βn,k ⊕ (k2 − 1)εR. Since

πm : Wn,k;m −→ PWn,k is a principal S1-bundle, we have

τWn,k;m
∼= kξ∨n,k;m ⊗C βn,k;m ⊕ k2εR. (3)

In the above isomorphism, and in the sequel, we have used the same symbol to

denote a complex vector bundle and its underlying real vector bundle, as there

is no risk of confusion.

Remark 2.3. Assume that k is even, equivalently Wn,k;m is even dimensional.

Then τWn,k;m has a complex structure arising from the isomorphism of vector

bundles given in (3). Thus Wn,k;m admits an almost complex structure. Recall

that, by the work of Wang [17], Wn,k = SU(n)/SU(n − k) admits a complex

structure invariant under the left action of SU(n). When m divides n, Γm is

contained in the centre Γn of SU(n). In this case the action of Γm on Wn,k

preserves the complex structure. We conclude that Wn,k;m admits a complex

structure when it is even dimensional and m|n.

Using the isomorphism (1) and the fact that εC = 2εR, we obtain an isomor-

phism

τWn,k;m ⊕ k2εR ∼= k(ξ∨n,k;m ⊗C βn,k;m ⊕ kεC) = nkξ∨n,k;m (4)
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of real vector bundles.

Recall that the span of a smooth manifold M is the maximum number r ≥ 0

for which there exist r everywhere linearly independent vector fields on M .

Equivalently span of M is the maximum number r such that τM ∼= rεR ⊕ η for

some vector bundle η. The stable span of M is the maximum number s such that

τM ⊕ tεR ∼= (s+ t)εR⊕ θ for some vector bundle θ where t > 0. Indeed one may

take t = 1 in the above definition of stable span. The rank of θ is then called

the geometric dimension of τM . We denote the span of M by span(M). The

notions of span, stable span, and geometric dimension can be extended in an

obvious manner to any vector bundle. The reader may refer to [10] and [11] for a

detailed discussion on the vector field problem, which asks for the determination

of the span of a given smooth manifold.

Theorem 2.4. Suppose that 2 ≤ k < n and m ≥ 2. Then:

(i) span(Wn,k;m) > stable span(PWn,k) ≥ dim(Wn,k;m) − 2n + 1. Moreover,

when n is even, span(Wn,k;m) > dim(Wn,k;m)− 2n+ 3.

(ii) span(Wn,k;m) > stable span(Wn,k−1;m).

(iii) Wn,n−1;m is parallelizable.

Proof. (i) Since πm is a principal S1-bundle, one has the bundle isomorphism

τ(Wn,k;m) ∼= π∗(τPWn,k) ⊕ εR = π∗(τPWn,k ⊕ εR). Hence span(Wn,k;m) >

stable span(PWn,k). Now consider the projection q : PWn,k −→ CPn−1 defined

as [v1, . . . , vk] 7→ [v1]. The stable tangent bundle τPWn,k⊕ (k2 +1)εR is isomor-

phic to nkζn,k = q∗(nkζn,1). Clearly the bundle nkζn,1 over CPn−1 contains a

trivial real vector bundle of rank 2(nk− (n− 1)). (See [7].) Therefore the stable

span of PWn,k is at least 2nk − 2(n− 1)− (k2 + 1) = dimWn,k;m − 2n+ 1.

Let n be even. The complex 2-plane bundle ζn,1 ⊕ ζ∨n,1 evidently admits

a reduction of structure group to SU(2) = Sp(1). Hence it is the underly-

ing complex vector bundle of a quaternionic line bundle. Any such bundle

can be classified by a map into the quaternionic projective space HP r where

r = b(1/4) dimR(CPn−1)c = n/2 − 1. That is, there exists a continuous map

h : CPn−1 −→ HP r such that h∗(ω) ∼= ζn,1 ⊕ ζ∨n,1 where ω is the canonical

quaternionic line bundle over HP r. The underlying real vector bundle (nk/2)ω

admits (2nk− 4r)εR as a summand and so, working with underlying real vector
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bundles throughout, we have nkζn,1 = (nk/2)(q∗(ζn,1⊕ ζ∨n,1)) = h∗((nk/2).ω) =

(2nk − 4r)εR ⊕ η for some real vector bundle η. As before, it follows that

span(Wn,k;m) > stable span(PWn,k) ≥ dimWn,k;m − 2n+ 3.

(ii) Consider the fibre bundle projectionWn,k −→Wn,k−1 with fibre S2n−2k+1.

Since it is Γm-equivariant, we obtain a S2n−2k+1-bundle with projection p :

Wn,k;m −→ Wn,k−1;m. Note that p∗(ξn,k−1;m) = ξn,k;m and p∗(βn,k−1;m) =

βn,k;m⊕ξn,k;m. Write k2εR as (k−1)2εR⊕(k−1)(ξ∨n,k;m⊗C ξn,k;m)⊕εR. Substi-

tuting this in the expression (3) for τWn,k;m and observing that kξ∨n,k;m⊗βn,k;m⊕
(k− 1)ξ∨n,k;m ⊗C ξn,k;m = (k− 1)ξ∨n,k;m ⊗ (βn,k;m ⊕ ξn,k;m)⊕ ξ∨n,k;m ⊗ βn,k;m, we

obtain that τWn,k;m
∼= p∗(τWn,k;m−1)⊕ εR⊕ ξ∨n,k;m⊗ βn,k;m

∼= p∗(τWn,k;m−1⊕
εR) ⊕ ξ∨n,k;m ⊗ βn,k;m. Therefore span(Wn,k;m) ≥ span(τWn,k−1;m ⊕ εR) >

stable span(Wn,k−1;m) as asserted.

(iii) Note that Wn,n−1
∼= SU(n). Therefore Wn,n−1;m, being a quotient of a

Lie group by a finite subgroup, is parallelizable. �

We refer the reader to [18] and [8] for the span of lens spaces.

Proposition 2.5. Let 2 ≤ k < n and let m ≥ 2. One has

span(Wn,k;m) = stable span(Wn,k;m)

in each of the following cases: (i) k is even, (ii) n is odd, and, (iii) n ≡ 2

mod 4.

Proof. From (3) we obtain that span(Wn,k;m) ≥ k2 ≥ 4. Since Wn,k;m is ori-

entable, the first Stiefel-Whitney class w1(Wn,k;m) vanishes. As observed already

in the introduction, the Euler characteristic χ(Wn,k;m) vanishes. Furthermore,

it follows from (4) that the Stiefel-Whitney classes w1(Wn,k;m), w2(Wn,k;m) van-

ish when nk is even. (We shall give a formula for the total Stiefel-Whitney class

of Wn,k;m in Proposition 3.4, which also implies that wi(Wn,k;m) = 0, i = 1, 2

when nk is even.)

Our hypotheses on k and n imply that d = dim(Wn,k;m) = k(2n− k) is even

when k is even, d ≡ 1 mod 4 when both k and n are odd, and d ≡ 3 mod 8

when k is odd and n ≡ 2 mod 4. The proposition now follows from the work of

Koschorke. More precisely, (i) follows from [12, Theorem 20.1] and, assuming,
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as we may, that k is odd, (ii) and (iii) follow, respectively, from Corollaries 20.9,

and 20.10 of [12]. �

Remark 2.6. Recall that the generalized vector field problem asks for the

determination of the geometric dimension of multiples of the Hopf bundle ξn
over the real projective space RPn. When m = 2, Wn,1;2 = RP 2n−1 and

the bundle ξn,1;2 is isomorphic, as a real vector bundle, to 2ξn−1. Denot-

ing by p : Wn,k;2 −→ RP 2n−1 the projection [v1, . . . , vk] 7→ [v1] we see that

ξn,k;2
∼= p∗(2ξ2n−1). Therefore, using the bundle isomorphism (4), we have

stable span(Wn,k;2) ≥ span(2nkξ2n−1)− k2. (5)

Invoking Proposition 2.5 we obtain the following lower bound:

span(Wn,k;2) ≥ span(2nkξ2n−1)− k2 (6)

when k is even, or n is odd, or n ≡ 2 mod 4. Although the generalized vector

field problem is yet to be solved completely, the precise value of the span of rξn
is known from the work of Lam [14, Theorem 1.1] when r = 8l+ p, n = 8m+ q,

l ≥ m ≥ 0,
(

l
m

)
is odd, 0 ≤ p, q ≤ 7. See also [15]. In many cases, (6) yields a

better lower bound than Theorem 2.4(i).

We conclude this section with the following

Proposition 2.7. Let m ≥ 2 be an integer. Let X be any topological space

and let ξ be a complex line bundle over X such that (i) ξ admits a reduction of

structure group to Zm, and, (ii) nξ admits k everywhere C-linearly independent

cross-sections. Then there exists a continuous map f : X −→ Wn,k;m such that

f∗(ξn,k;m) ∼= ξ.

Proof. Let p : X̃ −→ X be a regular covering projection with deck transforma-

tion group Γm
∼= Zm such that ξ is isomorphic to the bundle with projection

E := X̃ ×Γm
C −→ X where Γm acts on C via a character Γm −→ C∗. The

existence of such a covering is the content of (i). We identify the total space of ξ

with E. Observe that ξ admits a hermitian metric: (e, e′) 7→ zz̄′ is a hermitian

metric where e = [x, z], e′ = [x, z′] ∈ E, x ∈ X, z, z′ ∈ C. Consequently ξ∨ also

admits a hermitian metric.
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In view of (ii) and the existence of a hermitian metric on nξ, we have a

splitting nξ ∼= kεC ⊕ θ. Taking duals, we get nξ∨ ∼= kεC ⊕ θ∨. Tensoring with

ξ, we see that nεC = kξ ⊕ η where η := ξ ⊗ θ∨. Then η also admits a hermitian

metric which is such that each copy of ξ and η are pairwise orthogonal.

For any hermitian vector bundle ν of rank n over X, one has an associated

Wn,k;m-bundle, denoted Wn,k;m(ν), defined as the space of all Γm-equivalence

classes of unitary k-frames in each fibre of ν. When ν is trivial, this is just the

product bundle X ×Wn,k;m −→ X.

Now one has a cross-section σ : X −→ X×Wn,k;m = Wn,k;m(kξ⊕η) defined as

follows: For any x ∈ X, let x̃ ∈ p−1(x) be any point in the fibre over x ∈ X. We

identify x̃ with [x̃, 1] ∈ X̃×ΓmC = E(ξ). Then σ(x) = [x̃, . . . , x̃; 0] ∈Wn,k;m(kξ⊕
η) is well-defined and is independent of the choice of x̃ in p−1(x). Since p : X̃ −→
X, is a local homeomorphism, it is immediate that σ is continuous.

The desired map f : X −→ Wn,k is now obtained as the composition pr2 ◦
σ. �

Remark 2.8. An analogue of the above property for real projective Stiefel man-

ifolds was established in [3]. A similar universal property for complex projective

Stiefel manifolds was established in [2], under the additional assumption that X

be a finite CW complex.

3. The mod p cohomology

In this section we shall describe the mod p cohomology of Wn,k;m where

p is a prime. Recall that H∗(Wn,k; Z) is isomorphic to the exterior algebra

ΛZ(v2n−2k+1, . . . , v2n−1) where vq ∈ Hq(Wn,k; Z). This result is attributed to C.

Ehresmann by Borel [4, Prop. 9.1]. It is customary to denote by ΛZp
(x1, . . . , xk)

any graded commutative algebra A over Zp in which square-free monomials in

x1, . . . , xr form a basis. (If p is odd, and all the generators xj have odd degree,

then A is isomorphic to the exterior algebra. However when p = 2, it need not

be so.) This convention will be used in what follows.

Notations: Let N := 2N ′ where N ′ := N ′p = minn−k+1≤j≤n{j |
(
n
j

)
6≡ 0

mod p}. (Note that the value of N ′ depends on n, k and p.) In what follows, we
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shall label (homogeneous) generators of a graded algebra by their degrees. Thus

|yj | = j when yj ∈ H∗(X;R).

Theorem 3.1. Suppose that 2 ≤ k < n and m ≥ 2.

(i) If p is any prime not dividing m, then

p∗m : H∗(Wn,k;m; Zp) ∼= H∗(Wn,k; Zp) = ΛZp(v2n−2k+1, . . . , v2n−1)

is an isomorphism of algebras.

(ii) If p is a an odd prime that divides m, then

H∗(Wn,k;m; Zp) ∼= H∗(S1; Zp)⊗H∗(PWn,k; Zp)
∼= Zp[y2]/〈yN ′

2 〉 ⊗ ΛZp
(y1, y2n−2k+1, y2n−2k+3, . . . , ŷN−1, . . . , y2n−1)

where N,N ′ are as defined above. (As usual, ˆ stands for omission of the vari-

able.) Also y2 = c1(ξn,k;m) mod p.

(iii)(a) Suppose m ≡ 2 mod 4. Then

H∗(Wn,k;m; Z2) = Z2[y1]/〈yN
1 〉 ⊗ ΛZ2(y2n−2k+1, y2n−2k+3, . . . , ŷN−1, . . . , y2n−1).

(b) Suppose that m ≡ 0 mod 4. Then

H∗(Wn,k;m; Z2) = Z2[y2]/〈yN ′

2 〉⊗ΛZ2(y1, y2n−2k+1, y2n−2k+3, . . . , ŷN−1, . . . , y2n−1),

where y2
1 = 0.

Proof. (i) Let γ ∈ Γm. Recall that pm : Wn,k −→ Wn,k;m is the covering

projection with deck transformation group Γm. The covering map γ : Wn,k −→
Wn,k is homotopic to the identity since γ ∈ U(n) and U(n) is connected. It

follows that Γm acts trivially on the cohomology groups of Wn,k. Since p does

not divide m, p∗m : H∗(Wn,k;m; Zp) −→ H∗(Wn,k; Zp)Γm = H∗(Wn,k; Zp) is an

isomorphism. One knows that H∗(Wn,k; Zp) ∼= ΛZp
(y2n−k+1, . . . , y2n−1) (see [4,

Proposition 9.1]).

(ii) By definition, ξn,k;m = π∗m(ζn,k) where πm : Wn,k;m −→ PWn,k is

the projection of the principal U(1)/Γm
∼= S1-bundle. (See §2.) Let y2 =

c1(ζn,k) ∈ H2(PWn,k; Zp). We apply the Serre spectral sequence with Zp-

coefficients to the principal S1-bundle with projection πm. The differential

d : E0,1
2 −→ E2,0

2 maps the generator of E0,1
2
∼= H1(S1; Zp) ∼= Zp to c1(ζm

n,k) =

my2 ∈ H2(PWn,k; Zp) ∼= Zpy2 by Lemma 2.1 (i). Since p|m, this differential is

zero. It follows that the spectral sequence collapses and we getH∗(Wn,k;m; Zp) ∼=
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H∗(S1; Zp)⊗H∗(PWn,k; Zp). Note that y2
1 = 0 as p is odd. The rest of the state-

ment follows from the description of the Zp-cohomology of PWn,k due to Astey,

Gitler, Micha and Pastor [2].

(iii) We proceed as in (ii) and obtain that H∗(Wn,k;m; Z2) ∼= H∗(S1; Z2) ⊗
H∗(PWn,k; Z2) as an H∗(PWn,k; Z2)-module. Denoting by ν the real line bundle

associated to the double cover f : Wn,k;l −→ Wn,k;m where m = 2l we have

w1(ν) =: y1 is the generator of H1(Wn,k;m; Z2). Also, ν ⊗R C is evidently an

element of order 2 in Pic(Wn,k;m) and hence ν ⊗R C ∼= ξl
n,k;m by Lemma 2.2. It

follows that y2
1 = c1(ν ⊗ C) = lc1(ξn,k;m) = ly2. Hence y2

1 = 0 if l is even, and

y2
1 = y2 if l is odd.

Finally, write d = dimWn,k;m. Then Hd−1(PWn,k; Z2)⊗Z2y1
∼= Hd(Wn,k;m;

Z2) ∼= Z2. Therefore y1y
N ′−1
2 y2n−2k+1 . . . ŷN−1 . . . y2n−1 generatesHd(Wn,k;m; Z2)

∼= Z2. Using this, and the property that square-free monomials in y2n−2k+1,

. . . , ŷN−1, . . . , y2n−1 are linearly independent, it follows that the same property

holds for y1, y2n−2k+1, . . . , ŷN−1, . . . , y2n−1. This completes the proof. �

We now turn to the integral cohomology of Wn,k;m. It is easily seen that

H2(Wn,k;m; Z) ∼= Zm generated by y2 = c1(ξn,k;m). We are mainly interested

in the height of y2. Recall that the height of 0 6= y ∈ Hq(X;R) is the largest

positive integer h such that yh 6= 0. In view of the fact that the complex

Stiefel manifold Wn,k is 2(n − k)-connected, we see that the 2(n − k)-skeleton

of Wn,k;m with respect to any CW-structure may be regarded as the 2(n −
k)-skeleton of the infinite lens space L∞(m) with fundamental group Zm. So

Hq(Wn,k;m; Z) ∼= Hq(L∞(m); Z) ∼= Hq(Zm; Z) for q < 2(n−k). It is well-known

that H∗(L∞(Zm); Z) ∼= Z[y2]/〈my2〉; see [6]. It follows that Hq(Wn,k;m; Z) ∼=
Zmy

r where q = 2r < 2n− 2k. However, the following theorem gives the precise

value of the height.

Definition 3.2. Fix integers n, k,m such that m > 1 and 1 ≤ k < n. We define

mr := m if r ≤ n− k and mr := gcd{m,
(
n
j

)
;n− k < j ≤ r} if n− k < r ≤ n.

The integral cohomology ring of lens spaces is well-known. We shall now

establish the following



12 S. GONDHALI AND P. SANKARAN

Theorem 3.3. With the above notations, the (additive) order of yr
2 ∈ H2r(Wn,k;m; Z)

is mr for 1 ≤ r ≤ n. In particular the height of y2 ∈ H2(Wn,k;m; Z) ∼= Zm is the

largest integer h, n− k < h ≤ n, such that mh > 1.

Proof. By our observation above, we need only consider the case r > n− k.

Let E be a contractible CW complex on which Γm acts freely so that the

quotient E/Γm = K(Γm, 1) has the same homotopy type as the infinite lens

space L∞(m). Then the fibre product W ′ := E ×Γm
Wn,k fibres over Wn,k;m

with fibre E. In particular, W ′ has the same homotopy type as Wn,k;m. Also

one has a fibre bundle with fibre Wn,k with projection W ′ −→ K(Γm, 1). We

choose E conveniently so that it is easier to determine the differential in the

Serre spectral sequence associated to the Wn,k-bundle over K(Γm, 1).

Let E := W∞,n =
⋃

r>nWr,n be the space of all unitary n-frames in C∞ =⋃
r>1 Cr. An element of C∞ is viewed as a column vector whose entries are

eventually 0. The space E is contractible since the inclusion Wr,n ⊂ Wr+1,n is

2(r − n)-connected for all r > n.

The group Γm acts on C∞ via scalar multiplication and hence one has the

diagonal action of Γm on W∞,n. The quotient W∞,n/Γm =: L has the homotopy

type of the infinite lens space L∞(m). The image of v = (v1, . . . , vn) ∈ W∞,n

in L under the quotient map q : W ′ −→ L will be denoted [v1, . . . , vn]m or [v].

The n-dimensional complex vector space Cv1 + . . . + Cvn will be denoted 〈v〉.
Denote by Wk(V ) the space of all unitary k-frames in the complex vector space

V ⊂ C∞.

Let W ′ := {([v]m;u1, . . . , uk) | v ∈W∞,n, (u1, . . . , uk) ∈Wk(〈v〉)}. The space

W ′ is just the Wn,k-bundle over L associated to the n-plane bundle nγ where

γ is the complex line bundle associated to the character π1(L) = Γm ⊂ S1.

Let f̃ : W ′ −→ E/U(n − k) = BU(n − k) be defined as f̃([v]m;u1, . . . , uk) =

(〈v〉;u1, . . . , uk). We let f : L −→ E/U(n) = BU(n) be the map [v]m 7→ 〈v〉.
One has the projection π : BU(n−k) −→ BU(n), defined as (〈u〉;u1, . . . , uk) 7→
〈u〉, of a fibre bundle with fibre Wn,k. This is just the projection of the Wn,k-

bundle associated to the universal n-plane bundle γ∞,n. Clearly π ◦ f̃ = f ◦ q
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and f∗(γ∞,n) ∼= nγ. Thus the following diagram commutes:

W ′
ef−→ BU(n− k)

q ↓ ↓ π
L

f−→ BU(n).

The Wn,k-bundle W ′ −→ L is the pull-back of the bundle BU(n−k) −→ BU(n).

In particular the former bundle is Z-orientable. We consider the Serre spectral

sequence of the Wn,k-bundle q : W ′ −→ L which converges to H∗(W ′; Z) ∼=
H∗(Wn,k;m; Z). We have Ep,q

2 = Hp(L;Hq(Wn,k; Z)) = Hp(L∞(m); Z)⊗Hq(Wn,k; Z)

since H∗(Wn,k; Z) = ΛZ(y2n−2k+1, . . . , y2n−1) is free abelian. It is well-known

that H∗(L∞(m); Z) ∼= Z[y2]/〈my2〉. By comparing the Serre spectral sequence of

π : BU(n− k) −→ BU(n), we see that the cohomology classes y2n−2k+2j−1, 1 ≤
j ≤ k, are transgressive. Indeed τ(y2n−2k+2j−1) = c2n−2k+2j(nγ) ∈ H∗(L; Z), 1 ≤
j ≤ k. That is τ(y2n−2k+2j−1) =

(
n

k−j

)
yn−k+j

2 . It follows that
(
n
j

)
yr

2 = 0 in

H2r(W ′; Z) for n − k < j ≤ r and so, since my2 = 0, we see that the order of

yr
2 ∈ H2n−2k+2j(W ′; Z) equals mr. In particular, the height h of y2 is as stated

in the theorem. �

A complete description of the ring structure of H∗(Wn,k;m; Z) appears to

be more intricate. However, it is clear from the above proof that the torsion

subgroup in H∗(Wn,k;m; Z) is generated by the yj
2, 1 ≤ j < h. Also, it can be

seen readily that there exist classes v2n−2k+2j−1 ∈ H∗(Wn,k;m; Z), 1 ≤ j ≤ k,

which generate a free abelian group of rank k. Furthermore, their reduction

mod any prime p not dividing m are the generators of H∗(Wn,k;m; Zp) given in

Theorem 3.1(i). They arise from the generators of the kernel of the transgression

in the spectral sequence in the above proof.

As an application we have the following theorem. We write p(M) (resp. w(M)

for the total Pontrjagin class (resp. total Stiefel-Whitney class) of a differentiable

manifold M . (See [16].)

Proposition 3.4. Let 2 ≤ k ≤ n − 2. and let m ≥ 2. One has p(Wn,k;m) =

(1+y2
2)nk for all r ≥ 1. The total Stiefel-Whitney class w(Wn,k;m) = (1+y2

1)nk,

where it is understood that y1 = 0 when m is odd.
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Proof. Consider the complexified tangent bundle τC := τWn,k;m ⊗R εC. From

(4), τC is stably equivalent to the complex vector bundle nk(ξn,k;m ⊕ ξ∨n,k;m).

Therefore c(τC) = (1 + y2)nk(1 − y2)nk = (1 − y2
2)nk. It follows that the j-th

Pontrjagin class pj(Wn,k;m) =
(
nk
j

)
y2j

2 .

Using (4) we get w(Wn,k;m) = w(ξn,k;m)nk = (1 + y2
1)nk. �

Recall from Theorem 2.4 that Wn,n−1;m is parallelizable for all m. The rest

of the Wn,k;m are not stably parallelizable for most values of m.

Theorem 3.5. Let 1 < k ≤ n − 2 and m ≥ 2. If there exists an r ≥ 1 such

that
(
nk
r

)
is not divisible by m2r, then Wn,k;m is not stably parallelizable. In

particular, if Wn,k;m is stably parallelizable, then m divides nk.

Proof. If
(
nk
r

)
is not divisible by m2r, then m2r > 1 and so h > 2r. Therefore

pr(Wn,k;m) =
(
nk
r

)
y2r 6= 0 by Proposition 3.4. It follows that Wn,k;m is not

stably parallelizable (cf. [16, Lemma 15.2]).

As for the second assertion, since h > n − k ≥ 2, one has y2
2 6= 0. If Wn,k;m

is stably parallelizable, then p1(Wn,k;m) = nky2
2 = 0 and hence m2 = m divides

nk. �

Remark 3.6. The above theorem does not settle completely the question of

stable parallelizability of Wn,k;m. Suppose that n, k are powers of a prime p

and m = p. Then h = n and mr = p,∀r < n. In this case, pj(Wn,k;m) =

0, wj(Wn,k;m) = 0 for all j > 0. We remark that in the case of lens spaces Ln(p)

where p is an odd prime, Kambe [9] has obtained non-immersion results using

K-theory calculations. Combined with the work of Adams [1] on the order of

the Hopf bundle ξn,1;2, one obtains that for a fixed n, for all but finitely many

m > 1, the lens spaces are not stably parallelizable.

Acknowledgment: We thank Július Korbaš for a careful reading of an earlier

version of this paper and for his valuable comments. Also We thank the refer-

ees for their valuable comments and suggestions. We owe Remark 2.6 and an

improved Theorem 2.4(i) to one of them. The first named author thanks the

Institute of Mathematical Sciences, Chennai, for its hospitality where this work

was carried out.



QUOTIENTS OF COMPLEX STIEFEL MANIFOLDS 15

References

[1] ADAMS, J. F.: Vector fields on spheres, Ann. Math. 75, (1962), 603–632.

[2] ASTEY, L.— GITLER, S.— MICHA, E. —PASTOR, G: Cohomology of complex projec-
tive Stiefel manifolds, Canad. J. Math. 51, (1999), 897–914.

[3] BARUFATTI, N.— HACON, D— LAM, K.-Y.— SANKARAN, P.—ZVENGROWSKI,
P.: The order of real line bundles, Bol. Soc. Mat. Mexicana 10 (2004), 149–158.

[4] BOREL, A: Sur la cohomologie des espaces fibrés principaux et des espaces homogènes
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