
MAPS BETWEEN CERTAIN COMPLEX GRASSMANN MANIFOLDS

PRATEEP CHAKRABORTY AND PARAMESWARAN SANKARAN

Abstract. Let k, l,m, n be positive integers such that m− l ≥ l > k,m− l > n−k ≥ k
and m− l > 2k2 − k − 1. Let Gk(Cn) denote the Grassmann manifold of k-dimensional
vector subspaces of Cn. We show that any continuous map f : Gl(Cm) → Gk(Cn) is
rationally null-homotopic. As an application, we show the existence of a point A ∈
Gl(Cm) such that the vector space f(A) is contained in A; here Cn is regarded as a
vector subspace of Cm ∼= Cn ⊕ Cm−n.

1. Introduction

Let U(n) ⊂ GL(n,C) denote the unitary group and let Gk(Cn) denote the homoge-

neous space Gn,k = U(n)/U(k)× U(n− k). The smooth manifold Gk(Cn) is the complex

Grassmann manifold of k-dimensional vector subspaces of Cn. It is simply connected

and has the structure of a smooth projective variety of (complex) dimension is k(n− k).

To simplify notation we shall hereafter write Gn,k to mean Gk(Cn) since we will only be

concerned with complex Grassmann manifolds in this paper.

The purpose of this note is to prove the following theorem.

Theorem 1.1. Let 1 ≤ k ≤ bn/2c, 1 ≤ l ≤ bm/2c and k < l, where m,n are positive

integers such that m− l > n− k. Suppose that m− l ≥ 2k2 − k − 1 or 1 ≤ k ≤ 3. Then

any homomorphism of graded rings φ : H∗(Gn,k;Z) → H∗(Gm,l;Z) vanishes in positive

dimensions.

As a corollary to the above theorem we obtain the following result on the homotopy

classification of maps between the complex Grassmann manifolds.

Theorem 1.2. Let l, k,m, n be as in the above theorem. Then the set [Gm,l, Gn,k] of

homotopy classes of maps is finite and moreover each homotopy class is rationally null-

homotopic.

As another application of Theorem 1.1 we obtain the following invariant subspace the-

orem. See [13] for an analogous result for real Grassmann manifolds. We shall regard

Cn as a subspace of Cm consisting of vectors with last m − n coordinates zero. Thus, if

y ∈ Gn,k and x ∈ Gm,l it is meaningful to write y ⊂ x.

Theorem 1.3. Let f : Gm,l → Gn,k be any continuous map where l, k,m, n are as in

Theorem 1.1. Then there exists an element x ∈ Gm,l such that f(x) ⊂ x.
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We point out that the classification of self-maps of a complex Grassmann manifold

has been studied in terms of their induced endomorphisms of the cohomology algebra by

several authors. See [14], [2], [7], [9], [10]. Similar study of maps between two distinct

(real) Grassmann manifolds seems to have been initiated in [11]. Sankaran and Sarkar

[17] have studied the existence (or non-existence) of maps of non-zero degree between two

different complex (resp. quaternionic) Grassmann manifolds of the same dimension. The

same problem for oriented real Grassmann manifolds has been settled by Ramani and

Sankaran [16].

Our methods are straightforward. To prove Theorem 1.1, we reduce the problem to one

about endomorphism of the cohomology of a certain Grassmann manifold and appeal to

a well-known result of Glover and Homer [7]. Theorem 1.2 is proved using a result due to

Glover and Homer [8], namely, any map between any two complex Grassmann manifolds—

indeed complex flag manifolds—is formal. Our approach to the proof of Theorem 1.3 is

similar in spirit to that of [13, Theorem 1.1].

It has been conjectured that if φ is any endomorphism of the graded Q-algebraH∗(Gn,k;Q)

which is vanishes on H2(Gn,k;Z), then φ vanishes in all positive degree. See [7]. Our proof

shows that the conjecture implies the validity of Theorems 1.1 and 1.2 hold without the

restriction m− l ≥ 2k2 − k − 1.

2. Proofs

The cohomology ring H∗(Gn,k;Z) of Gn,k is well-known to be generated by the Chern

classes ci(γn,k) ∈ H2i(Gn,k;Z), 1 ≤ i ≤ k, of the canonical complex k-plane bundle γn,k.

Indeed, the cohomology ring has a presentation

H∗(Gn,k;Z) = Z[c1, . . . , ck]/〈hn−k+1, . . . , hn〉

as the quotient of the polynomial ring modulo the ideal generated by the elements hj, n−
k + 1 ≤ j ≤ n, where |ci| = 2i; here hr is defined as the 2r-th degree term in the

expansion of (1 + c1 + · · · + ck)
−1. Under the above isomorphism ci corresponds to the

element ci(γn,k) ∈ H2i(Gn,k;Z), 1 ≤ i ≤ k. We shall denote by Rk the polynomial algebra

Z[c1, . . . , ck] and

The following are well-known facts concerning the cohomology ring:

(1) The cohomology group Hr(Gn,k;Z) is a free abelian group. It is zero when r is

odd. This follows from the fact that Gn,k admits a cell-structure with cells only in even

dimensions. See, for example, [5].

(2) The elements hj, n − k + 1 ≤ j ≤ n, form a regular sequence in the polynomial

algebra Rk := Z[c1, . . . , ck] for any n ≥ 2k. That is, hn−k+1 6= 0 and hn−k+r is a not a

zero divisor in Rk/〈hn−k+1, · · · , hn−k+r−1〉, 2 ≤ r ≤ k. See for example [1].

(3) The element cd1 6= 0 where d = dimCGn,k = k(n − k). This follows immediately

from the fact that Gn,k has the structure of a Kähler manifold with second Betti number
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1. In fact it is known H2d(Gn,k;Z) is generated by the element cn−kk and that cd1 = Ncn−kk

where N = (d!1!2! · · · (k − 1)!)/((n− k)! · · · (n− 1)!). See [4, §14].

(4) The natural imbedding i : Gn,k ⊂ Gn+1,k and j : Gn,k ⊂ Gn+1,k+1, defined by the

natural inclusion of U(n) in U(n+1), induce surjections i∗ : H∗(Gn+1,k;Z)→ H∗(Gn,k,Z)

and j∗ : H∗(Gn+1,k+1;Z) → H∗(Gn,k;Z) where i∗(cr(γn+1,k)) 7→ cr(γn,k), 1 ≤ r ≤ k and

j∗(cr(γn+1,k+1)) = cr(γn,k) when r ≤ k and j∗(ck+1(γn+1,k+1)) = 0. The homomorphism

i∗ induces isomorphisms in cohomology in dimensions up to 2(n − k) and j∗ induces

isomorphisms in cohomology in dimensions up to 2k.

Proof of Theorem 1.1: One has an inclusion U(m − l + k) ⊂ U(m) where a matrix X ∈
U(m−l+k) corresponds to the matrix in block diagonal form with diagonal blocks X, Ik−l.

(Here Ik−l denotes the identity matrix.) This induces an imbedding Gm−l+k,k ⊂ Gm,l.

Similarly, since m− l > n− k, we have the inclusion U(n) ⊂ U(m− l+ k) which induces

an imbedding Gn,k ⊂ Gm−l+k,k. These inclusions are merely compositions of appropriate

inclusions considered in Fact (4) above. Let α : H∗(Gm,l,Z) → H∗(Gm−l+k,k;Z) and

β : H∗(Gm−l+k,k;Z) → H∗(Gn,k;Z) be the inclusion-induced homomorphisms. It follows

from Fact (4) that β(ci(γm−l+k,k)) = ci(γn,k), i ≤ k. Also, α(ci(γm,l)) = ci(γm−l+k,k), i ≤ k.

Then we obtain an endomorphism of the graded ring α ◦ φ ◦ β of H∗(Gm−l+k,k) where φ :

H∗(Gn,k;Z)→ H∗(Gm,l;Z) is any graded ring homomorphism. Note that our hypothesis

on k, l,m, n implies that dimGn,k < dimGm,l. Hence by Fact (3) above, φ(c1(γn,k)) = 0.

Therefore α ◦ φ ◦ β(c1(γm−l+k,k)) = 0. Tensoring with Q we obtain a graded Q-algebra

endomorphism H∗(Gm−l+k,k;Q)
α◦φ◦β−→ H∗(Gm−l+k,k;Q) which vanishes in degree 2. Our

hypothesis that m− l ≥ 2k2 − k − 1 or k ≤ 3 implies, by [7], that this endomorphism is

zero in positive dimensions. �

We remark that Theorem 1.1 and the above proof hold when the coefficient ring Z is

replaced by any subring of Q through out. If φ is induced by a continuous map f , then

H∗(f ;R) is zero for any commutative ring R.

Before taking up the proof of Theorem 1.2, we recall the relation between the homotopy

class of a map and the homomorphism it induces in cohomology with rational coefficients.

We assume familiarity with basic notions in the theory of rational homotopy as in [6].

(For a comprehensive treatment see [3].)

Let X be any simply connected finite CW complex and let X0 denote its rationalization.

Thus H̃∗(X0;Z) ∼= H̃∗(X;Q). If f : X → Y is a continuous map of such spaces, then

there exists a rationalization of f , namely a continuous map f0 : X0 → Y0 such that

f ∗0 : H̃∗(Y0;Z) → H̃∗(X0;Z) is the same as f ∗ : H̃∗(Y ;Q) → H̃∗(X;Q). Denoting the

minimal model of X byMX , one has a bijection [X0, Y0] ∼= [MY ,MX ], [h] 7→ [Φh] where

on the left we have homotopy classes of continuous maps X0 → Y0 and on the right we

have homotopy classes of differential graded commutative algebra homomorphisms of the

minimal models MY → MX . In the case when X = U(n)/(U(n1) × · · · × U(nr)) is a

complex flag manifolds, one knows that X is Kähler and hence is formal, that is, there
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exists a morphism of differential graded commutative algebras ρX : MX → H∗(X;Q)

which induces isomorphism in cohomology, where H∗(X;Q) is endowed with the zero

differential. Moreover, it is known that when both X and Y are complex flag manifolds,

any continuous map f : X → Y is formal, that is, the homotopy class of the morphism

f0 : X0 → Y0 is determined by the graded Q-algebra homomorphisms h∗ : H∗(Y ;Q) →
H∗(X;Q). More precisely, we have the following result.

Theorem 2.1. ([8, Theorem 1.1]) Let X, Y be complex flag manifolds. Then [h] 7→
H∗(h;Q) establishes an isomorphism from [X0, Y0] to the set of graded Q-algebra homo-

morphisms H∗(Y ;Q)→ H∗(X;Q). �

We now turn to the proof of Theorem 1.2.

Proof of Theorem 1.2: By Theorem 1.1 we know that any such f ∗ is the trivial homo-

morphism (which is identity in degree zero and is zero in positive dimensions). By the

above theorem f0 is null-homotopic. This proves the second statement of Theorem 1.2.

The first statement follows from the second since there exists, up to homotopy, at most

finitely many continuous map f : Gm,l → Gn,k having the same rationalisation f0. (See

[19, §12].) This completes the proof of Theorem 1.2. �

Next we turn to the proof of Theorem 1.3. In the following proof, we use cohomology

with rational coefficients although one may use integer coefficients.

We shall write M,N respectively for Gm,l and Gn,k. Suppose that 1 ≤ k < l, m− l ≥
n − k. As usual we assume that 2k ≤ n, 2l ≤ m. Let V ⊂ M × N be the subspace

V := {(x, y) ∈ M ×N | y ⊂ x} ⊂ M ×N . (Recall that Cn = Cn ⊕ 0 ⊂ Cm.) One has a

map π : V → N that sends (x, y) ∈ V to y ∈ N . This is the projection of a fibre bundle

over N with fibre space Gm−k,l−k. To see this, regard V as a submanifold of the complex

flag manifold F = U(m)/U(k)× U(l − k)× U(m− l) = {(A,B) | dimCA = k, dimCB =

l− k,A ⊥ B,A,B ⊂ Cm} where a point (x, y) ∈ V is identified with the point (y, x′) ∈ F
where x′ is the orthogonal complement of y in x so that x′ ⊥ y and x = x′ + y. The

projection map p : F → Gm,k, defined as (A,B) 7→ A ∈ Gm,k, of the Gm−k,l−k-bundle θ

over Gm,k maps V onto Gn,k ⊂ Gm,k. In fact V = p−1(Gn,k) and so π : V → Gn,k is the

projection of the bundle θ|Gn,k
.

As usual we denote by [N ] the generator of the top cohomology group H2k(n−k)(N ;Q).

Lemma 2.2. Let c = codimM×NV = 2k(m − l). Let v ∈ Hc(M × N ;Q) denote the

cohomology class dual to j : V ↪→M ×N . Then v ∪ [N ] 6= 0 in H∗(M ×N ;Q).

Proof. The cohomology class [N ] is dual to the submanifold i : M ↪→ M × N where

i(x) = (x,Ck), x ∈ M . First we shall show that i(M) intersects V transversely. Note

that i(M) ∩ V = {(x,Ck) | Ck ⊂ x ⊂ Cm} ∼= Gm−k,l−k, which is the fibre over the point

Ck ∈ N of the bundle projection π : V → N . Therefore Ti(x)V/Ti(x)(V ) ∩ Ti(x)i(M)) ∼=
TClN . Since Ti(x)(M × N)/Ti(x)M ∼= TClN , follows that i(M) intersects V transversely.

Therefore v ∪ [N ] is dual to the submanifold V ∩ i(M) ⊂ M × N . Since V ∩ i(M) ∼=
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Gm−k,l−k ⊂ Gm,l = M represents a non-zero homology class in H2(l−k)(m−l)(M ;Q) ∼=
H2(l−k)(m−l)(M ;Q)⊗H0(N ;Q) ⊂ H2(l−k)(m−l)(M ×N ;Q), its Poincaré dual, which equals

v∪[N ], is a non-zero cohomology class in H2d(M×N ;Q) where d = k(m−l)+k(n−k). �

Proof of Theorem 1.3: Consider the map φ := id × f : M ×M → M × N defined as

φ(x, y) = (x, f(y)). Denote by δ : M →M ×M the diagonal map.

We need to show that φ(δ(M)) ∩ V 6= ∅.
Let v ∈ H∗(M ×N ;Q) denote the cohomology class dual to the manifold V ⊂M ×N

and let ∆ ∈ H∗(M × M ;Q) denote the diagonal class, i.e., the class dual to δ(M) ⊂
M × M . As is well-known v is in the image of the inclusion-induced homomorphism

H∗(M ×N,M ×N \ V ;Q)→ H∗(M ×N ;Q). (See for example [12, Chapter 11].) Using

the naturality of cup-products and by considering the bilinear map H∗(M ×N,M ×N \
φ(δ(M));Q) ⊗ H∗(M × N,M × N \ V ;Q)

∪→ H∗(M × N,M × N \ (V ∩ φ(δ(M)));Q)

induced by the inclusion maps, it follows that if V ∩φ(δ(M)) = ∅, then v ∪w = 0 for any

w ∈ H+(M ×N,M ×N \φ(δ(M));Q). (See [18, §6, Chapter 5].) In particular, this holds

for the class w that maps to the cohomology class αf dual to the submanifold φ(δ(M)) ↪→
M × N under the inclusion-induced map H2k(n−k)(M × N,M × N \ φ(δ(M));Q) →
H2k(n−k)(M ×N ;Q). Thus v ∪ αf = 0.

On the other hand, µM×N ∩ αf = φ∗(δ∗(µM)). Our hypothesis on k, l,m, n implies, by

Theorem 1.1, that φ∗ does not depend on f . In particular, taking f = c, the constant

map sending M to Ck ∈ N , we obtain φ ◦ δ = i : M ↪→M ×N considered in the previous

lemma. So φ∗δ∗(µM) = i∗(µM) and we have αf = [N ]. By the above lemma we have

v ∪ αf = v ∪ [N ] 6= 0, a contradiction. This completes the proof. �

We conclude this paper with the following remark. Suppose that dim(Gn,k) ≤ dimGm,l

and let f : Gm,l → Gn,k be a holomorphic map where we assume that k ≤ n/2, l ≤ m/2.

When dim(Gn,k) = dimGm,l and k > 1, so that Gn,k is not the projective space, it is was

proved by Paranjape and Srinivas [15] that if f is not a constant map, then (n, k) = (m, l)

and f is an isomorphism of varieties.

Suppose that dimGn,k < dimGm,l. We claim that any holomorphic map f : Gm,l →
Gn,k is a constant map. Indeed, the Picard group Pic(Gm,l) of Gm,l of the isomorphism

classes of complex (equivalently algebraic or holomorphic) line bundles is isomorphic to

H2(Gm,l;Z) ∼= Z via the first Chern class. It is generated by the bundle ξm,l := det(γm,l).

The dual bundle ξ∨m,l is a very ample bundle (or a positive line bundle in the sense

of Kodaira). Note that any holomorphic map between non-singular complex projective

manifolds is a morphism of algebraic varieties. Now our claim is a consequence of the

following more general observation.

Lemma 2.3. Let f : X → Y be a morphism between two complex projective varieties

where Pic(X), group of isomorphism class of algebraic line bundles over X, is isomorphic

to the infinite cyclic group. If dimX > dimY , then f is a constant morphism.
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Proof. Suppose that f is a non-constant morphism. Then there exists a projective curve

C ⊂ X such that f |C is a finite morphism. Let ξ be a very ample line bundle over Y and

let η = f ∗(ξ). Since ξ is very ample, it is generated by its (algebraic) sections and so it

follows that η is also generated by sections. Since f |C is a finite morphism, we see that

η|C is ample, that is, some positive tensor power of η|C is very ample. In particular η is

not trivial. Denote by ω the ample generator of Pic(X) ∼= Z and let η = ω⊗r for some

r. Since η is generated by its sections, we have r ≥ 0. Since η is non-trivial, r 6= 0. It

follows that r > 0 and η is ample.

On the other hand, since dimX > dimY , some fibre Z of f is positive dimensional and

the bundle η|Z is trivial. This is a contradiction since the restriction of an ample bundle

to a positive dimensional subvariety is ample and non-trivial. �

Acknowledgments: We thank Prof. D. S. Nagaraj for his help in the formulation of

Lemma 2.3.
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