CHAOTIC GROUP ACTIONS ON THE RATIONALS

PARAMESWARAN SANKARAN

Dedicated to Professor Peter Zvengrowski on the occasion of his seventieth birthday

ABSTRACT. We characterize groups which can act chaotically on \mathbb{Q} . We show that there are 2^{\aleph_0} many distinct conjugacy classes of chaotic actions on \mathbb{Q} of certain families of groups.

1. INTRODUCTION

The notion of chaotic action of a group on a Hausdorff topological space X was introduced by Cairns et al. [2], generalizing Devaney's notion of chaotic maps in topological dynamics [5]. (See also [1]). It was shown in [2] that, given a group G, there exists a Hausdorff topological space on which G acts chaotically if and only if G is residually finite; in fact the space can be assumed to be compact. Interesting examples of chaotic group actions on manifolds have been constructed by Cairns et al. in [2], [3], [4]. See also [10]. In this paper, we study chaotic group actions on \mathbb{Q} , the space of rational numbers, with its usual topology.

Definition (Cf. [10]) Let S be a collection of subgroups of a group G. We say that S satisfies condition C if it is a countable collection of finite index subgroups of G such that $\bigcap_{H \in S} H = \{1\}$. We say that G satisfies condition C if G has a collection of subgroups satisfying condition C.

The definition of chaotic group action will be recalled in §2. We now state the main results of this paper.

1

AMS Subject Classification: 54H20, 20E26

Theorem 1. Let G be an infinite group. Then G satisfies condition C if and only if there exists an effective action of G on \mathbb{Q} which is chaotic.

P. M. Neumann [11, §4] has shown that there are 2^{\aleph_0} distinct conjugacy classes of self-homeomorphisms of the rationals which permute the points in a single cycle. Using the construction in the proof of Theorem 1 we establish the following.

Theorem 2. There are 2^{\aleph_0} distinct conjugacy classes of chaotic G actions on \mathbb{Q} where G is one of the following groups: (i) any finitely generated infinite abelian group, (ii) direct sum and direct product of countably many copies of \mathbb{Z} , (iii) any finitely generated torsion-free nilpotent group, (iv) free groups of rank at most 2^{\aleph_0} , and, (v) the groups $F_2 * H$, $F_n \times H$, $n \geq 2$, where F_n denotes the free group of rank n and H is any group that acts chaotically on \mathbb{Q} .

The following remarkable theorem, whose proof can be found in [11], will be exploited in our proofs.

Sierpiński's Theorem: If X is a countable metrizable topological space with no isolated points, then X is homeomorphic to \mathbb{Q} .

Theorem 1 subsumes that part of Theorem 3.7 of [10] whose proof was omitted. Theorems 1 and 2 are proved in §2. We study in §3 some closure properties of the class of all groups satisfying condition C.

2. Proof of main results

We begin by recalling the definition of chaotic group action.

Definition 3. [1]. Let G be a group which acts on a Hausdorff topological space X. We say that the action of G is chaotic if the action is effective and following properties hold:

(i) Topological transitivity: Given any two non-empty sets $U, V \subset X$ there exists an element $g \in G$ such that $g(U) \cap V \neq \emptyset$.

(ii) Density of finite orbits: The set of all $x \in X$ whose G-orbit is finite is dense in X.

For example, the usual action of $SL(2,\mathbb{Z})$ on the torus $\mathbb{R}^2/\mathbb{Z}^2$ is chaotic.

We now prove Theorem 1.

Proof of Theorem 1: Suppose that G acts chaotically on \mathbb{Q} . Let $S \subset \mathbb{Q}$ be the set of all periodic points (i.e., points whose G-orbits are finite). For each $x \in S$, let $G_x \subset G$ denote the isotropy at x. Then $S := \{G_x \mid x \in S\}$ satisfies condition \mathcal{C} .

Conversely, suppose that S is a countable collection of finite index subgroups of G satisfying condition C. Since any finite index subgroup of G is contained in a finite index *normal* subgroup of G, we assume without loss of generality, that every member of S is normal in G. Furthermore, by expanding the collection S if necessary, the cardinality of the resulting collection remains countable and so we may (and do) assume that S is closed under finite intersections. Write $S = \{N_i \mid i \in \mathbb{N}\}.$

We begin with the *G*-space $X := \{0, 1\}^G$ considered in [2]. Cairns et al. showed that the usual *G*-action on *X*, defined as $(\gamma \cdot f)(x) = f(\gamma^{-1}x), f \in X, \gamma, x \in G$, is chaotic.

Let Q be the space of all $f \in X$ such that f is constant on the N_i -cosets for some $i \geq 1$. Observe that Q is countable. Indeed, denoting by η_i the canonical quotient map $G \longrightarrow G/N_i$, one has $Q = \bigcup_{i \in \mathbb{N}} \eta_i^*(\{0, 1\}^{G/N_i})$. Here $\eta_i^*(f) = f \circ \eta_i$ for $f : G/N_i \longrightarrow \{0, 1\}$. The above expression for Q exhibits Q as a union of finite G-stable sets. Hence Q consists entirely of points whose G-orbits are finite.

Next we establish topological transitivity of the *G*-action on *Q*. As observed in [2] it is easily seen that the *G*-action on *X* is topologically transitive. So the assertion would follow if we show that *Q* is dense in *X*. This will also prove that the action of *G* on *Q* is effective. Let *U* be a basic open set which consists of $f \in X$ with prescribed values at finitely many distinct elements, say, $x_1, \ldots, x_n \in G$. Since $\bigcap_{i \in \mathbb{N}} N_i =$ {1}, and since *S* is closed under finite intersections, there exists a natural number *k* such that $x_i^{-1}x_j \notin N_k$, for $i \neq j$. Thus x_1, \ldots, x_n belong to distinct N_k -cosets of *G*. Let $h: G/N_k \longrightarrow \{0, 1\}$ be any set-map such that $h(x_iN_k) = f(x_i), 1 \le i \le n$. Then $\eta_k^*(h) \in Q \cap U$. Thus G acts chaotically on Q.

It remains to show that Q is metrizable. (This is obvious if G is countable, because in this case X is a Cantor space.) Let $S_i \subset G$ be a complete set of pairwise distinct coset representatives for G/N_i . Thus S_i is finite for each i. Now let $S = \bigcup_{i \in \mathbb{N}} S_i$. Let $X_S = \{0, 1\}^S$ and let $\pi : X \longrightarrow X_S$ denote the restriction map $f \mapsto f_{|S}$. Note that X_S is metrizable—indeed it is a Cantor space—and that π is an open map. We claim that $\pi_{|Q}$ is an imbedding. Metrizability of Q follows from the claim as X_S is metrizable. To establish the claim, first we show that π is one-to-one. Suppose that $\pi(f) = \pi(f')$, $f, f' \in Q$. Thus $f_{|S} = f'_{|S}$. We must show that f = f'. Let $f = h \circ \eta_i$, $f' = h' \circ \eta_j$ for some i, j. Since S is closed under finite intersections, $N_i \cap N_j = N_k$ for some k. Since S contains S_k and since $f_{|S} = f'_{|S}$, we see that $f_{|S_k} = f'_{|S_k}$. Since f and f' are constant on N_k -orbits, it follows that f = f'. Clearly $\pi_{|Q}$ is continuous and, since π is open, $\pi_{|Q}$ is also open. Therefore $\pi_{|Q}: Q \longrightarrow \pi(Q)$ is a homeomorphism, establishing the claim.

It is readily observed that there are no isolated points in Q. Thanks to Sierpiński's theorem, we have $Q \cong \mathbb{Q}$ and the proof is complete. \Box

Remark 4. Let $\mathcal{H} = \{H_j\}$ be a countable collection of subgroups of countably infinite index in G such that no two of them are conjugate in G. The above proof can be modified to allow for infinite G-orbits Gf_j in our model space for \mathbb{Q} , where the isotropy at f_j equals H_j . We shall only outline the changes needed to allow in our model space when \mathcal{H} is a singleton $\{H\}$. Let T be a complete set of pairwise distinct left coset representatives for G/H. Replacing the set S in the above proof by $\widetilde{S} := S \cup T$, note that the resulting space $X_{\widetilde{S}}$ is again a Cantor space. Denote by $\chi_H : G \longrightarrow \{0, 1\}$ the indicator function of $H \subset G$. Then the isotropy at $\chi_H \in X$ equals H. The same proof as above shows that G-action on the space $\widetilde{Q} := Q \cup G\chi_H \subset X$ is chaotic. Again, by Sierpiński's theorem, \widetilde{Q} is homeomorphic to \mathbb{Q} . Observe that the G-space \widetilde{Q} has exactly one infinite orbit.

We now turn to proof of Theorem 2.

Proof of Theorem 2. (i) Let P be any non-empty set of primes which contains the finite set F of primes which divide the orders of torsion elements of G. An integer n is called P-primary if all its prime divisors are in P. We keep the notations used in the proof of Theorem 1.

Let S_P denote the family of all subgroups of G having (finite) Pprimary index. Note that S_P satisfies condition C. Denote the chaotic G-action on \mathbb{Q} , obtained as in the proof of Theorem 1, corresponding to S_P by ϕ_P . It has the property that the cardinality of each orbit is P-primary. Conversely, if n is P-primary, then there exists a subgroup $H \subset G$ of index n. The orbit of the point in $\mathbb{Q} \cong Q \subset X$ corresponding to the indicator function χ_H has cardinality n. In particular, there exists an orbit of cardinality a prime p if and only if $p \in P$. Since the existence of an orbit of a given cardinality depends only on the conjugacy class of ϕ_P , we see that ϕ_P is not conjugate to $\phi_{P'}$ if $P' \neq P$ is another set of primes containing F, completing the proof in this case.

(ii) The proof is similar to (i) above and so we omit the details.

(iii) First let $G = N(n, \mathbb{Z})$ the group of unipotent upper triangular $n \times n$ matrices over \mathbb{Z} . For any non-empty set of primes P, the collection $\mathcal{S}_P := \{\Gamma_k \mid k \text{ is } P\text{-primary}\}$, where $\Gamma_k := \ker(G \longrightarrow N(n, \mathbb{Z}/k\mathbb{Z}))$, satisfies condition \mathcal{C} . Again, as in the proof of Theorem 1, we obtain a chaotic G-action ϕ_P on \mathbb{Q} corresponding to the collection \mathcal{S}_P . As in the proof of (i) we see that, if $P' \neq P$ is another set of prime, then ϕ_P is not conjugate to $\phi_{P'}$.

If G is an arbitrary finitely generated torsion-free nilpotent group, by a theorem of P. Hall [9, Ch. 2 §4.2], it can be imbedded in $N(n, \mathbb{Z})$ for some n. Thus, we may regard G as a subgroup of $N(n, \mathbb{Z})$. Let P be any non-empty set of primes. Intersecting G with the subgroups $\Gamma_k \in S_P$ of $N(n, \mathbb{Z})$, we get a collection \mathcal{N}_P of subgroups of G which satisfies condition \mathcal{C} . The rest of the proof is similar to the case of $N(n, \mathbb{Z})$ and omitted.

(iv) Recall that there exist pairwise non-isomorphic two generator infinite groups $H_{\alpha}, \alpha \in \mathbb{R}$ (see [8, Ch. 4, §3]). Thus there exist normal subgroups $N_{\alpha} \subset G, \alpha \in \mathbb{R}$, such that $G/N_{\alpha} \cong H_{\alpha}$. Note that there is no automorphism of G which maps N_{α} onto N_{β} for $\alpha \neq \beta$. Now let ϕ be a chaotic G action on \mathbb{Q} consisting only of points having finite G-orbits. By Remark 4, for each $\alpha \in \mathbb{R}$, there exists a chaotic G-action ϕ_{α} on \mathbb{Q} having exactly one infinite orbit, say Gx_{α} , with isotropy at $x_{\alpha} \in \mathbb{Q}$ being equal to N_{α} . Since $N_{\alpha} \neq \gamma(N_{\beta}) \forall \gamma \in$ $\operatorname{Aut}(G)$ for $\alpha \neq \beta$, a straightforward argument shows that the images of the monomorphisms $\phi_{\alpha}, \phi_{\beta} : G \longrightarrow \operatorname{Homeo}(\mathbb{Q})$ determine distinct conjugacy classes of subgroups of $\operatorname{Homeo}(\mathbb{Q})$, completing the proof in this case.

(v) Observe that, with notation as in (iv) above, there exist surjections $\eta_{\alpha}: G \longrightarrow H_{\alpha}, \alpha \in \mathbb{R}$, where $G = F_2 \times H$ or $F_2 * H$. It can be seen that G satisfies property \mathcal{C} . We set $N_{\alpha} := \ker(\eta_{\alpha})$ and proceed as in the proof of (iv) above to complete the proof. \Box

Remark 5. I do not know if, any infinite group G satisfying condition \mathcal{C} admits continuously many chaotic actions on \mathbb{Q} which belong to distinct conjugacy classes. In particular, I could not settle this question when G is the group of p-adic integers, or the group $(\mathbb{Z}/p\mathbb{Z})^{\omega}$, the direct product of \aleph_0 many copies of $\mathbb{Z}/p\mathbb{Z}$ where p is a prime. However, it is clear that arguments used in the proofs can be suitably modified and applied to other examples of groups for which the answer is in the affirmative.

3. Groups satisfying condition \mathcal{C}

Denote by \mathcal{G} the class of all groups satisfying condition \mathcal{C} . In view of Theorem 1, infinite groups belonging to \mathcal{G} act chaotically on \mathbb{Q} . In this section we establish certain closure properties of \mathcal{G} . Note that all finite groups are in \mathcal{G} and, if $G \in \mathcal{G}$, so does any subgroup of G.

We begin by establishing the following lemma.

Lemma 6. (i) A group G belongs to \mathcal{G} if and only if G can be embedded in a direct product of countably many finite groups. (ii) \mathcal{G} contains all countable residually finite groups. (iii) Let $G_n \in \mathcal{G}, n \in \mathbb{N}$. Then the direct product $\prod_{n\geq 1} G_n$ is in \mathcal{G} . (iv) \mathcal{G} contains a free group of rank 2^{\aleph_0} .

Proof. Statements (i) and (ii) are easy to prove.

(iii) The assertion follows immediately from (i) because if $H := \prod_{i\geq 1} H_i$ where each $H_i = \prod_{j\geq 1} H_{i,j}$ is a countable direct product of finite groups, then $H = \prod_{i,j\geq 1} H_{i,j}$ itself is a direct product of a countable family of finite groups.

(iv) Let F_{∞} be a free group of rank \aleph_0 . Then F_{∞} is countable and is residually finite. By (ii) and (iii), it follows that the group F_{∞}^{ω} , the countable direct product of a countably infinitely many copies of F_{∞} , belongs to \mathcal{G} . It is known that F_{∞}^{ω} contains a free group F_c of rank $c := 2^{\aleph_0}$ (cf. [12]). For the sake of completeness we sketch a proof of this fact in the remark below. Hence F_c is in \mathcal{G} .

Remark 7. (1) We now sketch the proof that F_c imbeds in F_{∞}^{ω} . This result seems to be folkloric and is certainly well-known to experts. The proof given here is, as far as I am aware, due to A. Blass. Let $\{x_j \mid j \in \mathbb{N}\}$ be a basis for F_{∞} . If $\mathbf{a} = (a_n)$ is a sequence of natural numbers, we set $x_{\mathbf{a}} := (x_{a_n}) \in F_{\infty}^{\omega}$. For each real number $\alpha > 1$ in \mathbb{R} let $\mathbf{a}(\alpha)$ be the sequence $(\lfloor 10^n \alpha \rfloor)_{n \geq 1}$. Given any finite collection of real numbers, $\alpha_1, \ldots, \alpha_k$, the *n*-th terms of $\mathbf{a}(\alpha_1), \ldots, \mathbf{a}(\alpha_k)$ are all distinct for sufficiently large *n*. For such an integer *n*, the *n*-th coordinates of $x_{\mathbf{a}(\alpha_1)}, \ldots, x_{\mathbf{a}(\alpha_k)} \in F_{\infty}^{\omega}$ are pairwise distinct basis elements of F_{∞} . We claim that $S = \{x_{\mathbf{a}(\alpha)} \mid \alpha \in \mathbb{R}\} \subset F_{\infty}^{\omega}$ generates a subgroup *F* with basis *S*. Indeed, if *w* is any reduced (non-vacuous) word in the $x_{\mathbf{a}(\alpha)}$'s, then there exists an *n* large such that the composition $F \subset F_{\infty}^{\omega} \xrightarrow{\eta_n} F_{\infty}$, where η_n is the projection onto the *n* coordinate, sends *w* to the same word in certain basis elements x_j 's of F_{∞} . Therefore $w \neq 1$ in *F* and hence *F* is free with basis *S*.

(2) It is clear that assertion (i) in the above proposition can be reformulated as:

(i)' $G \in \mathcal{G}$ if and only if G is a subgroup of $\prod_{n \geq 2} S_n$ where S_n is the symmetric group on n letters.

(3) Assertion (ii) yields plenty of examples of groups in \mathcal{G} . For example, any finitely generated subgroup of $\mathrm{SL}(n, \mathbb{F})$ for any field \mathbb{F} is in \mathcal{G} . A theorem of Baumslag asserts that the automorphism group $\mathrm{Aut}(G)$ of a finitely generated residually finite group G is again residually finite. Since $\mathrm{Aut}(G)$ is also countable we see that $\mathrm{Aut}(G) \in \mathcal{G}$. See [8] for proofs of these statements. There are also interesting examples

arising in geometric topology. The mapping class group of any closed oriented surface [6] and fundamental groups of a large class of compact three dimensional manifolds which includes Haken manifolds [7] are all residually finite and countable hence belong to \mathcal{G} .

Another example of a group belonging to \mathcal{G} is the absolute Galois group $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$. Indeed it is the inverse limit of the finite Galois groups $\operatorname{Gal}(K/\mathbb{Q})$ as K varies over (the countable family of) finite Galois extensions of \mathbb{Q} .

We shall now establish the following

Proposition 8. (i) Let $G_n \in \mathcal{G}, n \in \mathbb{N}$. Then the free product $G := *_{n \geq 1}G_n$ is in \mathcal{G} . (ii) If G is in \mathcal{G} then so is the free product of $*_{\alpha \in \mathbb{R}}G_{\alpha}$ where each $G_{\alpha} \cong G$.

Proof. (i) Denote by Γ_n the kernel of the canonical retraction $\eta_n \colon G \longrightarrow H_n \coloneqq G_1 \ast \cdots \ast G_n$. Then $\bigcap_{n \in \mathbb{N}} \Gamma_n$ is trivial. We shall show that each H_n is in \mathcal{G} . This implies that G itself is in \mathcal{G} . To see this, let \mathcal{S}_n be a collection of finite index subgroups of H_n satisfying condition \mathcal{C} . Set $\mathcal{S} = \bigcup_{n \ge 1} \{\eta_n^{-1}(N) \mid N \in \mathcal{S}_n\}$. Then each subgroup K in \mathcal{S} has finite index in G and furthermore, $\bigcap_{K \in \mathcal{S}} K = \bigcap_{n \ge 1} \eta_n^{-1}(\bigcap_{N \in \mathcal{S}_n} N) = \bigcap_{n \ge 1} \Gamma_n = \{1\}$. Thus \mathcal{S} satisfies condition \mathcal{C} and so $G \in \mathcal{G}$.

It remains to show that $H_n = G_1 * \cdots * G_n$ is in \mathcal{G} for each n. Let $\mathcal{N}_j = \{N_i^j \mid i \geq 1\}$ be a collection of finite index normal subgroups of G_j satisfying condition \mathcal{C} for each $1 \leq j \leq n$. For $\mathbf{i} = (i_1, \ldots, i_n) \in \mathbb{N}^n$, denote by $H_{n,\mathbf{i}}$ the group $G_1/N_{i_1}^1 * \cdots * G_n/N_{i_n}^n$ and by $\eta_{n,\mathbf{i}} \colon H_n \longrightarrow H_{n,\mathbf{i}}$ the canonical quotient map. Let $\Gamma_{n,\mathbf{i}}$ be the kernel of $\eta_{n,\mathbf{i}}$. It is clear that $\bigcap_{\mathbf{i}\in\mathbb{N}^n} \Gamma_{n,\mathbf{i}} = \{1\}$.

By Lemma 6(ii), $H_{n,\mathbf{i}} \in \mathcal{G}$. Let $\mathcal{S}_{\mathbf{i}}$ be a collection of subgroups of $H_{n,\mathbf{i}}$ satisfying condition \mathcal{C} . Set $\mathcal{S}_n := \{\eta_{n,\mathbf{i}}^{-1}(N) \mid N \in \mathcal{S}_{\mathbf{i}}, \mathbf{i} \in \mathbb{N}^n\}$. Then $\bigcap_{K \in \mathcal{S}_n} K = \bigcap_{\mathbf{i} \in \mathbb{N}^n} \bigcap_{N \in \mathcal{S}_{\mathbf{i}}} \eta_{n,\mathbf{i}}^{-1}(N) = \bigcap_{\mathbf{i} \in \mathbb{N}} \eta_{n,\mathbf{i}}^{-1}(\bigcap_{N \in \mathcal{S}_{\mathbf{i}}} N) = \bigcap_{\mathbf{i} \in \mathbb{N}^n} \Gamma_{n,\mathbf{i}} = \{1\}$. Thus \mathcal{S}_n satisfies condition \mathcal{C} and so $H_n \in \mathcal{G}$.

(ii) Since $F_c \in \mathcal{G}$ by Lemma 6(iv), we see that $G * F_c \in \mathcal{G}$ for any $G \in \mathcal{G}$. Choose a basis $x_{\alpha}, \alpha \in \mathbb{R}$, for F_c and set $G_{\alpha} := x_{\alpha}Gx_{\alpha}^{-1} \cong G$.

Then the subgroup of $G * F_c$ generated by $G_{\alpha}, \alpha \in \mathbb{R}$, which is the free product $*_{\alpha \in \mathbb{R}} G_{\alpha}$, is also in \mathcal{G} .

Acknowledgments: I am indebted to Grant Cairns who provided the initial impetus for this work. It is a pleasure to thank both Cairns and Aniruddha Naolekar for their interest and for their valuable comments. I thank the referees for pointing out many misprints. I thank the referee of an earlier version of this paper for his/her comments.

References

- J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey, On Devaney's definition of chaos. Amer. Math. Monthly 99 (1992), no. 4, 332–334.
- [2] G. Cairns, G. Davis, D. Elton, A. Kolganova, and P. Perversi, Chaotic group actions. Enseign. Math. (2) 41 (1995), no. 1-2, 123–133.
- [3] Grant Cairns and Alla Kolganova, Chaotic actions of free groups. Nonlinearity 9 (1996), no. 4, 1015–1021.
- [4] Grant Cairns and Thanh Duong Pham, An example of a chaotic group action on Euclidean space by compactly supported homeomorphisms, Topology Appl. 155,(2007), 161-164.
- [5] Robert L. Devaney, An introduction to chaotic dynamical systems. Second edition. Addison-Wesley, Redwood City, CA, 1989.
- [6] Edna K. Grossman, On the residual finiteness of certain mapping class groups. J. London Math. Soc. (2) 9 (1974/75), 160–164.
- John Hempel, Residual finiteness for 3-manifolds. Combinatorial group theory and topology (Alta, Utah, 1984), 379–396, Ann. of Math. Stud., 111, Princeton Univ. Press, Princeton, NJ, 1987.
- [8] Roger C. Lyndon, Paul E. Schupp, *Combinatorial group theory.* Reprint of the 1977 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001.
- [9] A. Yu. Ol'shankskij and A. L. Shmel'kin, Infinite groups, In Algebra IV, Encyclopedia of Mathematical Sciences 37, Springer-Verlag, Berlin, 1993.
- [10] Aniruddha C. Naolekar and Parameswaran Sankaran, Chaotic group actions on manifolds. Topology Appl. 107 (2000), no. 3, 233–243.
- [11] Peter M. Neumann, Automorphisms of the rational world. J. London Math. Soc. (2) 32 (1985), no. 3, 439–448.
- [12] P. Sankaran and K. Varadarajan, On certain homeomorphism groups. J. Pure Appl. Algebra **92** (1994), no. 2, 191–197. Corrections, **114** (1997), no. 2, 217– 219.

The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India

E-mail address: sankaran@imsc.res.in