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Abstract. We characterize groups which can act chaotically on
Q. We show that there are 2ℵ0 many distinct conjugacy classes
of chaotic actions on Q of certain families of groups.

1. Introduction

The notion of chaotic action of a group on a Hausdorff topological

space X was introduced by Cairns et al. [2], generalizing Devaney’s

notion of chaotic maps in topological dynamics [5]. (See also [1]). It

was shown in [2] that, given a group G, there exists a Hausdorff topo-

logical space on which G acts chaotically if and only if G is residually

finite; in fact the space can be assumed to be compact. Interesting

examples of chaotic group actions on manifolds have been constructed

by Cairns et al. in [2], [3],[4]. See also [10]. In this paper, we study

chaotic group actions on Q, the space of rational numbers, with its

usual topology.

Definition (Cf. [10])Let S be a collection of subgroups of a group G.

We say that S satisfies condition C if it is a countable collection of

finite index subgroups of G such that
⋂
H∈S H = {1}. We say that

G satisfies condition C if G has a collection of subgroups satisfying

condition C.

The definition of chaotic group action will be recalled in §2. We

now state the main results of this paper.
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Theorem 1. Let G be an infinite group. Then G satisfies condition

C if and only if there exists an effective action of G on Q which is

chaotic.

P. M. Neumann [11, §4] has shown that there are 2ℵ0 distinct con-

jugacy classes of self-homeomorphisms of the rationals which permute

the points in a single cycle. Using the construction in the proof of

Theorem 1 we establish the following.

Theorem 2. There are 2ℵ0 distinct conjugacy classes of chaotic G

actions on Q where G is one of the following groups: (i) any finitely

generated infinite abelian group, (ii) direct sum and direct product of

countably many copies of Z, (iii) any finitely generated torsion-free

nilpotent group, (iv) free groups of rank at most 2ℵ0, and, (v) the

groups F2 ∗H, Fn×H,n ≥ 2, where Fn denotes the free group of rank

n and H is any group that acts chaotically on Q.

The following remarkable theorem, whose proof can be found in [11],

will be exploited in our proofs.

Sierpiński’s Theorem: If X is a countable metrizable topological

space with no isolated points, then X is homeomorphic to Q.

Theorem 1 subsumes that part of Theorem 3.7 of [10] whose proof

was omitted. Theorems 1 and 2 are proved in §2. We study in §3
some closure properties of the class of all groups satisfying condition

C.

2. Proof of main results

We begin by recalling the definition of chaotic group action.

Definition 3. [1]. Let G be a group which acts on a Hausdorff topo-

logical space X. We say that the action of G is chaotic if the action

is effective and following properties hold:

(i) Topological transitivity: Given any two non-empty sets U, V ⊂ X

there exists an element g ∈ G such that g(U)
⋂
V 6= ∅.

(ii) Density of finite orbits: The set of all x ∈ X whose G-orbit is

finite is dense in X.
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For example, the usual action of SL(2,Z) on the torus R2/Z2 is

chaotic.

We now prove Theorem 1.

Proof of Theorem 1: Suppose that G acts chaotically on Q. Let S ⊂ Q
be the set of all periodic points (i.e., points whose G-orbits are finite).

For each x ∈ S, let Gx ⊂ G denote the isotropy at x. Then S := {Gx |
x ∈ S} satisfies condition C.

Conversely, suppose that S is a countable collection of finite index

subgroups of G satisfying condition C. Since any finite index subgroup

of G is contained in a finite index normal subgroup of G, we assume

without loss of generality, that every member of S is normal in G.

Furthermore, by expanding the collection S if necessary, the cardi-

nality of the resulting collection remains countable and so we may

(and do) assume that S is closed under finite intersections. Write

S = {Ni | i ∈ N}.
We begin with the G-space X := {0, 1}G considered in [2]. Cairns

et al. showed that the usual G-action on X, defined as (γ.f)(x) =

f(γ−1x), f ∈ X, γ, x ∈ G, is chaotic.

Let Q be the space of all f ∈ X such that f is constant on the

Ni-cosets for some i ≥ 1. Observe that Q is countable. Indeed,

denoting by ηi the canonical quotient map G −→ G/Ni, one has Q =⋃
i∈N η

∗
i ({0, 1}G/Ni). Here η∗i (f) = f ◦ ηi for f : G/Ni −→ {0, 1}. The

above expression for Q exhibits Q as a union of finite G-stable sets.

Hence Q consists entirely of points whose G-orbits are finite.

Next we establish topological transitivity of the G-action on Q. As

observed in [2] it is easily seen that the G-action on X is topologically

transitive. So the assertion would follow if we show that Q is dense in

X. This will also prove that the action of G on Q is effective. Let U

be a basic open set which consists of f ∈ X with prescribed values at

finitely many distinct elements, say, x1, . . . , xn ∈ G. Since
⋂
i∈NNi =

{1}, and since S is closed under finite intersections, there exists a

natural number k such that x−1
i xj /∈ Nk, for i 6= j. Thus x1, . . . , xn

belong to distinct Nk-cosets of G. Let h : G/Nk −→ {0, 1} be any
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set-map such that h(xiNk) = f(xi), 1 ≤ i ≤ n. Then η∗k(h) ∈ Q ∩ U .

Thus G acts chaotically on Q.

It remains to show that Q is metrizable. (This is obvious if G is

countable, because in this case X is a Cantor space.) Let Si ⊂ G be a

complete set of pairwise distinct coset representatives for G/Ni. Thus

Si is finite for each i. Now let S =
⋃
i∈N Si. Let XS = {0, 1}S and let

π : X −→ XS denote the restriction map f 7→ f|S. Note that XS is

metrizable—indeed it is a Cantor space—and that π is an open map.

We claim that π|Q is an imbedding. Metrizability of Q follows from the

claim as XS is metrizable. To establish the claim, first we show that π

is one-to-one. Suppose that π(f) = π(f ′), f, f ′ ∈ Q. Thus f|S = f ′|S.

We must show that f = f ′. Let f = h ◦ ηi, f ′ = h′ ◦ ηj for some i, j.

Since S is closed under finite intersections, Ni ∩Nj = Nk for some k.

Since S contains Sk and since f|S = f ′|S, we see that f|Sk
= f ′|Sk

. Since

f and f ′ are constant on Nk-orbits, it follows that f = f ′. Clearly

π|Q is continuous and, since π is open, π|Q is also open. Therefore

π|Q : Q −→ π(Q) is a homeomorphism, establishing the claim.

It is readily observed that there are no isolated points in Q. Thanks

to Sierpiński’s theorem, we have Q ∼= Q and the proof is complete. �

Remark 4. Let H = {Hj} be a countable collection of subgroups of

countably infinite index in G such that no two of them are conjugate in

G. The above proof can be modified to allow for infinite G-orbits Gfj
in our model space for Q, where the isotropy at fj equals Hj. We shall

only outline the changes needed to allow in our model space when H is

a singleton {H}. Let T be a complete set of pairwise distinct left coset

representatives for G/H. Replacing the set S in the above proof by

S̃ := S ∪ T , note that the resulting space XeS is again a Cantor space.

Denote by χH : G −→ {0, 1} the indicator function of H ⊂ G. Then

the isotropy at χH ∈ X equals H. The same proof as above shows

that G-action on the space Q̃ := Q ∪ GχH ⊂ X is chaotic. Again,

by Sierpiński’s theorem, Q̃ is homeomorphic to Q. Observe that the

G-space Q̃ has exactly one infinite orbit.

We now turn to proof of Theorem 2.



CHAOTIC GROUP ACTIONS ON THE RATIONALS 5

Proof of Theorem 2. (i) Let P be any non-empty set of primes which

contains the finite set F of primes which divide the orders of torsion

elements of G. An integer n is called P -primary if all its prime divisors

are in P . We keep the notations used in the proof of Theorem 1.

Let SP denote the family of all subgroups of G having (finite) P -

primary index. Note that SP satisfies condition C. Denote the chaotic

G-action on Q, obtained as in the proof of Theorem 1, corresponding

to SP by φP . It has the property that the cardinality of each orbit is

P -primary. Conversely, if n is P -primary, then there exists a subgroup

H ⊂ G of index n. The orbit of the point in Q ∼= Q ⊂ X corresponding

to the indicator function χH has cardinality n. In particular, there

exists an orbit of cardinality a prime p if and only if p ∈ P . Since

the existence of an orbit of a given cardinality depends only on the

conjugacy class of φP , we see that φP is not conjugate to φP ′ if P ′ 6= P

is another set of primes containing F , completing the proof in this case.

(ii) The proof is similar to (i) above and so we omit the details.

(iii) First let G = N(n,Z) the group of unipotent upper triangular n×
n matrices over Z. For any non-empty set of primes P , the collection

SP := {Γk | k is P -primary}, where Γk := ker(G −→ N(n,Z/kZ)),

satisfies condition C. Again, as in the proof of Theorem 1, we obtain

a chaotic G-action φP on Q corresponding to the collection SP . As in

the proof of (i) we see that, if P ′ 6= P is another set of prime, then φP
is not conjugate to φP ′ .

If G is an arbitrary finitely generated torsion-free nilpotent group,

by a theorem of P. Hall [9, Ch. 2 §4.2], it can be imbedded in N(n,Z)

for some n. Thus, we may regard G as a subgroup of N(n,Z). Let P

be any non-empty set of primes. Intersecting G with the subgroups

Γk ∈ SP of N(n,Z), we get a collection NP of subgroups of G which

satisfies condition C. The rest of the proof is similar to the case of

N(n,Z) and omitted.

(iv) Recall that there exist pairwise non-isomorphic two generator in-

finite groups Hα, α ∈ R (see [8, Ch. 4, §3]). Thus there exist normal

subgroups Nα ⊂ G,α ∈ R, such that G/Nα
∼= Hα. Note that there is

no automorphism of G which maps Nα onto Nβ for α 6= β.
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Now let φ be a chaotic G action on Q consisting only of points

having finite G-orbits. By Remark 4, for each α ∈ R, there exists a

chaotic G-action φα on Q having exactly one infinite orbit, say Gxα,

with isotropy at xα ∈ Q being equal to Nα. Since Nα 6= γ(Nβ) ∀γ ∈
Aut(G) for α 6= β, a straightforward argument shows that the images

of the monomorphisms φα, φβ : G −→ Homeo(Q) determine distinct

conjugacy classes of subgroups of Homeo(Q), completing the proof in

this case.

(v) Observe that, with notation as in (iv) above, there exist surjections

ηα : G −→ Hα, α ∈ R, where G = F2 × H or F2 ∗ H. It can be seen

that G satisfies property C. We set Nα := ker(ηα) and proceed as in

the proof of (iv) above to complete the proof. �

Remark 5. I do not know if, any infinite group G satisfying condition

C admits continuously many chaotic actions on Q which belong to dis-

tinct conjugacy classes. In particular, I could not settle this question

when G is the group of p-adic integers, or the group (Z/pZ)ω, the di-

rect product of ℵ0 many copies of Z/pZ where p is a prime. However,

it is clear that arguments used in the proofs can be suitably modified

and applied to other examples of groups for which the answer is in the

affirmative.

3. Groups satisfying condition C

Denote by G the class of all groups satisfying condition C. In view

of Theorem 1, infinite groups belonging to G act chaotically on Q. In

this section we establish certain closure properties of G. Note that all

finite groups are in G and, if G ∈ G, so does any subgroup of G.

We begin by establishing the following lemma.

Lemma 6. (i) A group G belongs to G if and only if G can be embedded

in a direct product of countably many finite groups.

(ii) G contains all countable residually finite groups.

(iii) Let Gn ∈ G, n ∈ N. Then the direct product
∏

n≥1Gn is in G.

(iv) G contains a free group of rank 2ℵ0 .

Proof. Statements (i) and (ii) are easy to prove.
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(iii) The assertion follows immediately from (i) because ifH :=
∏

i≥1Hi

where each Hi =
∏

j≥1Hi,j is a countable direct product of finite

groups, then H =
∏

i,j≥1Hi,j itself is a direct product of a countable

family of finite groups.

(iv) Let F∞ be a free group of rank ℵ0. Then F∞ is countable and is

residually finite. By (ii) and (iii), it follows that the group F ω
∞, the

countable direct product of a countably infinitely many copies of F∞,

belongs to G. It is known that F ω
∞ contains a free group Fc of rank

c := 2ℵ0 (cf. [12]). For the sake of completeness we sketch a proof of

this fact in the remark below. Hence Fc is in G. �

Remark 7. (1) We now sketch the proof that Fc imbeds in F ω
∞. This

result seems to be folkloric and is certainly well-known to experts.

The proof given here is, as far as I am aware, due to A. Blass. Let

{xj | j ∈ N} be a basis for F∞. If a = (an) is a sequence of natural

numbers, we set xa := (xan) ∈ F ω
∞. For each real number α > 1 in

R let a(α) be the sequence (b10nαc)n≥1. Given any finite collection

of real numbers, α1, . . . , αk, the n-th terms of a(α1), . . . , a(αk) are all

distinct for sufficiently large n. For such an integer n, the n-th coor-

dinates of xa(α1), . . . , xa(αk) ∈ F ω
∞ are pairwise distinct basis elements

of F∞. We claim that S = {xa(α) | α ∈ R} ⊂ F ω
∞ generates a sub-

group F with basis S. Indeed, if w is any reduced (non-vacuous) word

in the xa(α)’s, then there exists an n large such that the composition

F ⊂ F ω
∞

ηn−→ F∞, where ηn is the projection onto the n coordinate,

sends w to the same word in certain basis elements xj’s of F∞. There-

fore w 6= 1 in F and hence F is free with basis S.

(2) It is clear that assertion (i) in the above proposition can be refor-

mulated as:

(i)’ G ∈ G if and only if G is a subgroup of
∏

n≥2 Sn where Sn is the

symmetric group on n letters.

(3) Assertion (ii) yields plenty of examples of groups in G. For exam-

ple, any finitely generated subgroup of SL(n,F) for any field F is in G.

A theorem of Baumslag asserts that the automorphism group Aut(G)

of a finitely generated residually finite group G is again residually fi-

nite. Since Aut(G) is also countable we see that Aut(G) ∈ G. See

[8] for proofs of these statements. There are also interesting examples
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arising in geometric topology. The mapping class group of any closed

oriented surface [6] and fundamental groups of a large class of compact

three dimensional manifolds which includes Haken manifolds [7] are

all residually finite and countable hence belong to G.

Another example of a group belonging to G is the absolute Galois

group Gal(Q̄/Q). Indeed it is the inverse limit of the finite Galois

groups Gal(K/Q) as K varies over (the countable family of) finite

Galois extensions of Q.

We shall now establish the following

Proposition 8. (i) Let Gn ∈ G, n ∈ N. Then the free product G :=

∗n≥1Gn is in G.

(ii) If G is in G then so is the free product of ∗α∈RGα where each

Gα
∼= G.

Proof. (i) Denote by Γn the kernel of the canonical retraction ηn : G −→
Hn := G1 ∗ · · · ∗Gn. Then

⋂
n∈N Γn is trivial. We shall show that each

Hn is in G. This implies that G itself is in G. To see this, let Sn
be a collection of finite index subgroups of Hn satisfying condition C.
Set S =

⋃
n≥1{η−1

n (N) | N ∈ Sn}. Then each subgroup K in S has

finite index in G and furthermore,
⋂
K∈S K =

⋂
n≥1 η

−1
n (

⋂
N∈Sn

N) =⋂
n≥1 Γn = {1}. Thus S satisfies condition C and so G ∈ G.

It remains to show that Hn = G1 ∗ · · · ∗Gn is in G for each n. Let

Nj = {N j
i | i ≥ 1} be a collection of finite index normal subgroups of

Gj satisfying condition C for each 1 ≤ j ≤ n. For i = (i1, . . . , in) ∈ Nn,

denote by Hn,i the group G1/N
1
i1
∗· · ·∗Gn/N

n
in and by ηn,i : Hn −→ Hn,i

the canonical quotient map. Let Γn,i be the kernel of ηn,i. It is clear

that
⋂

i∈Nn Γn,i = {1}.
By Lemma 6(ii), Hn,i ∈ G. Let Si be a collection of subgroups

of Hn,i satisfying condition C. Set Sn := {η−1
n,i (N) | N ∈ Si, i ∈

Nn}. Then
⋂
K∈Sn

K =
⋂

i∈Nn

⋂
N∈Si η

−1
n,i (N) =

⋂
i∈N η

−1
n,i (

⋂
N∈Si N) =⋂

i∈Nn Γn,i = {1}. Thus Sn satisfies condition C and so Hn ∈ G.
(ii) Since Fc ∈ G by Lemma 6(iv), we see that G ∗ Fc ∈ G for any

G ∈ G. Choose a basis xα, α ∈ R, for Fc and set Gα := xαGx
−1
α
∼= G.
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Then the subgroup of G∗Fc generated by Gα, α ∈ R, which is the free

product ∗α∈RGα, is also in G. �
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