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1 Toric varieties

Let T denote the algebraic torus (C∗)n. Set M = Hom(T,C∗) ∼= Zn, the
character group of T and N = Hom(C∗,T) ∼= Zn the group of 1-parameter
subgroups of T. Note that there is a non-degenerate pairing 〈., .〉 : M×N −→
Z defined by (u ◦ v)(z) = z〈u,v〉.

Observe that the group ring Z[M ] is isomorphic to the Laurent polynomial
Z[X±1

1 , · · · , X±1
n ]. The ring Z[M ] is also the (complex) representation ring



of T. Indeed any monomial χ = Xa1
1 . . . Xan

n , ai ∈ Z may be viewed as a
character χ : T −→ C where χ(t) = ta1

1 . . . tan
n , ∀t = (t1, . . . , tn) ∈ T. Hence χ

defines a 1-dimensional T-module Uχ where t.u = χ(t)u for u ∈ Uχ and t ∈ T.
Also, any T-module can be expressed as a direct sum of one-dimensional T-
modules. Thus, an element χ =

∑
cjχj ∈ Z[M ] corresponds to the element∑

cj[Uχj
] in the representation ring of T. This establishes an isomorphism

of Z[M ] with the representation ring of T.

Let χ1, · · · , χn be any basis for M . Let U = Uχ1 ⊕ · · · ⊕ Uχn and let
ei ∈ Uχi

be any non-zero vector. We observe the following properties:
(i) the T-action on U is effective, (ii) one has an imbedding T −→ U where
t 7→

∑
1≤i≤n χi(t)ei; the image of T under this imbedding equals the unique

dense T-orbit of U , (iii) the T-action on U extends the multiplication in T on
identifying T with its image under the above imbedding: tt′ 7→

∑
χi(tt

′)ei =∑
χi(t).χi(t

′)ei = t.
∑
χi(t

′)ei.

The closures of T-orbits in U are the ‘coordinate planes’ UI = {p =∑
pjej ∈ U | pi = 0, i /∈ I}, where I ⊂ {1, . . . , n}. Note that U∅ equals U

and that 0, the unique T-fixed point, corresponds to I = {1, . . . , n}. The
isotropy at any point p =

∑
pjej is the sub torus {t ∈ T | χi(t) = 1, i ∈ Ip}

where Ip = {i | pi 6= 0}.
A T-toric variety1 X, by definition, is a normal complex variety on which

T-acts in such a manner that T imbeds in X as a dense open subset and
the T-action on X is an extension of the multiplication on T. We shall be
concerned only with the case where X is smooth, and, most often compact.
Any such toric variety is expressible as a finite union of open sets of the form
U above for appropriate choices of bases of M . The various copies of T ↪→ U
are all identified in X which results in a unique dense orbit isomorphic to T.
Note that X has only finitely many T-fixed points; in fact they are precisely
the T-fixed points of various open patches U .

Example 1.1. The complex projective n-space Pn = {[z0 : · · · : zn] | 0 6=
(z0, . . . , zn) ∈ Cn+1} is acted on by T = (C∗)n where t.[z] = [z0 : t1z1 : · · · :
tnzn]. Also Pn is the union of T-stable open sets U ′i = {[z] ∈ Pn | zi =
1}, 0 ≤ i ≤ n. Denote by χi : T −→ C∗ the ith projection. Then U ′0

∼=
U0 = Cn under the T-isomorphism [1 : z1 : · · · : zn] 7→ (z1, . . . , zn), where
the characters of the T-action on Cn are χ1, . . . , χn. (Thus t.(z1, . . . , zn) =

By a ‘variety’ we mean an irreducible, reduced and separated algebraic scheme of finite
type.
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(t1z1, . . . , tnzn) ∀t ∈ T.) Similarly, for 1 ≤ i ≤ n, U ′i is isomorphic as a T-
space to the n-dimensional T-module Ui = Cn with character χ−1

i , χjχ
−1
i , 1 ≤

j ≤ n, j 6= i. Suppose that p = [z0 : · · · : zn] ∈ U ′0 ∩ U ′1. Thus z0 6= 0 and
z1 6= 0. Under our isomorphisms U ′0

∼= U0 and U ′1
∼= U1, p corresponds to the

points (z1/z0, . . . , zn/z0) ∈ U0 and (z0/z1, z2/z1 . . . , zn/z1) ∈ U1. This means
that U0 and U1 are glued along the open sets the open subsets {(ζ1, . . . , zn) ∈
U0 | ζ1 6= 0} ⊂ U0 and {(ω0, ω2, . . . , ωn) ∈ U1 | ω0 6= 0} ⊂ U1 via the maps
ω0 = ζ−1

1 , ωj = ζjζ
−1
i , j > 1, and ζ1 = ω−1

0 , ζj = ωjω
1
0, j > 1.

In general any T-toric variety X which is compact and smooth can be
expressed as a finite union of certain T-modules Uj each of whose characters
form a basis for M . For any two j, k, one identified certain dense T-stable
open subsets Uj,k ⊂ Uj and Uk,j ⊂ Uk in a manner that there is an auto-
morphism T-which intertwines the T-action on Ujk and that on Ukj. One
can encode characters of the various T-modules and the patching data using
a combinatorial data known as fans. We shall briefly explain these com-
binatorial objects. For a systematic development the reader should study
[7].

LetNR denote the real vector spaceN⊗ZR. Note thatN is a lattice inNR.
A rational polyhedral cone σ is a cone spanned by a finite set of elements—
called a generating set of σ— v1, . . . , vk ∈ N , i.e., σ consists of non-negative
real linear combination of v1, . . . , vk. Formally, one distinguishes between σ
and the cone |σ| thought of as a subset of NR. It is called strongly convex
if |σ| does not contain a positive dimensional vector subspace of NR. The
dimension of σ is the dimension of the vector space spanned by |σ| (or a
generating set of σ). A one-dimensional cone is called an edge.

Note that MR = M ⊗Z R is the dual of NR. Let u ∈ M and let u⊥ =
{v ∈ NR | 〈u, v〉 = 0}. We say that u⊥ is a supporting hyperplane if u does
not change sign on |σ|. In this case u⊥ ∩ σ is a cone, which is a face of σ and
is spanned by a subset of the generators of σ. Note that 0 and σ are always
faces of σ. Any polyhedral cone has only finitely many faces. If τ is a face of
σ we shall write τ ≤ σ. Strict inequality τ < σ indicates that τ is a proper
face of σ, i.e., τ 6= σ.

An N - fan ∆ in NR is a non-empty finite collection of strongly convex
rational polyhedral cones such that (i) if τ is a face of σ ∈ ∆ then τ ∈ ∆,
(ii) if σ, σ′ ∈ ∆, then σ ∩ σ′ is a face of both σ and σ′.

We shall denote by ∆(r) the set of all r-dimensional cones in ∆.
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We say that σ is regular if it is spanned a set v1, . . . , vk which forms a
part of a Z-basis for N . We say that ∆ is complete if ∪σ∈∆|σ| = NR and that
it is regular if each cone in ∆ is regular.

Let σ be an n-dimensional regular cone, generated by a basis v1, . . . , vn
of N . Let u1, . . . , un ∈ M be the dual basis (with respect to the canonical
pairing). One has the T-module Uσ whose characters are u1, . . . , un.

More generally, let τ be a regular cone in N . Let Nτ be the linear span of
|τ |. Define Tτ to be the algebraic torus obtained as quotient of T by the sub
torus generated by 1-parameter subgroups corresponding to elements of Nτ .
Tτ is a torus of (complex) dimension the codimension of τ in NR. The group
of 1-parameter subgroups of Tτ is just the quotient N/Nτ . Note that τ is
a maximal dimensional cone in Nτ ⊗Z R and so we have the Tτ -module U τ .
We set Uτ := U τ ×Tτ with diagonal T-action where T acts on each factor is
via the projection T−→Tτ .

If τ is a proper face of γ, then there is a canonical T-equivariant imbedding
jη,τ : Uτ ↪→ Uσ. Moreover, if τ < γ < η, then jη,γ ◦ jγ,τ = jη,τ . We shall
explain the imbedding jγ,τ (assuming that γ is regular). Write τ = γ ∩ u⊥
where u ∈ M is non-negative on |γ|. Then the coordinate ring of Uτ is just
the coordinate ring of Uγ localized at χu. Thus χu : Uγ−→C is a regular
function and Uτ is the complement of {z ∈ Uγ | χu(z) = 0}.

Let ∆ be a regular fan. Define X(∆) to be the union ∪σ∈∆Uσ, where we
identify Uτ with jγ,τ (Uτ ) ⊂ Uγ via jγ,τ . Then X(∆) is a smooth algebraic
variety and admits a well-defined T-action such that T imbeds in X(∆) as
the dense orbit, the action map being an extension of the multiplication of
T. It is compact if ∆ is complete.

Any toric variety (not necessarily compact or smooth) arises as X(∆)
for a suitable fan ∆; the variety is regular (resp. compact) if and only if
the corresponding fan ∆ is regular (resp. complete). One hopes to answer
questions concerning topology or geometry of a toric variety in terms of the
combinatorial properties of the corresponding fan.

Orbits
The T-orbits of X(∆) are in bijective correspondence with the cones of ∆.
Although this statement is valid more generally, we shall elucidate this only
in the case where X(∆) is smooth and compact. Note that X(∆) is covered
by the T-stable open sets Uσ where σ ∈ ∆ is n-dimensional, and so any orbit
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is contained in Uσ for a suitable σ ∈ ∆. Let e1, . . . , en be a basis of Uσ where
each ej is an eigenvector for the T-action, and let p ∈ Uσ. Write p =

∑
pjej

and let J be the set of all indexes j for which pj 6= 0. Then it is readily
seen that the orbit through p is the set {z =

∑
j∈J zjej | zj ∈ C∗ ∀j ∈ J}.

The isotropy at p is the subtorus Tp := {t ∈ T | χj(t) = 1 ∀j ∈ J}. Thus
the action of T on the orbit through p passes to the quotient T/Tp. It is
not difficult to see that T/Tp = Tτ for a unique face τ ≤ σ (with equality if
and only if p = 0). The face τ evidently depends only on the orbit through
p. Conversely, let τ < σ. Suppose that τ = σ ∩ u⊥, where we assume
that u is non-negative on |σ|. Then u is a positive linear combination of
the characters, say, χ1, . . . , χk which occur in the T-module Uσ. Set p(τ) :=
e1 + · · · + ek. Then it can be verified that T/Tp(τ) = Tτ . This establishes a
bijective correspondence between T-orbits in Uσ and the faces of σ.

The closure of the orbit of p(τ) is the union of orbits through p(γ) as γ
varies over faces of σ which contain τ . Since X(∆) is the union of Uσ as σ
varies over n-dimensional cones in ∆, it follows that the closure of the orbit
through p(τ)—we denote it by V (τ)—is the union of the orbits of p(γ) as γ
varies over all cones γ ∈ ∆ of which τ is a face. Note that V (τ) contains
V (γ) if τ < γ.

Example 1.2. Let ∆ be the N -fan whose n-dimensional cones σ0, · · · , σn
where σi is spanned by e0, · · · , ei−1, ei+1, · · · , en where e1, · · · , en is the stan-
dard basis of N = Zn and e0 = −

∑
1≤i≤n ei. It may be verified that Uσi

= Ui
in the notation of 1.1. The orbit closures corresponding the edge spanned by
ei is verified to be Pi = {[z0 : · : zn] | zi = 0}. If τ is spanned by ei, i ∈ I,
where I is a proper subset of {0, 1, · · · , n}, then V (τ) = {[z] | zi = 0 ∀i ∈ I}.

It turns out that the orbit closure V (τ) is itself a compact smooth Tτ -
toric variety. In particular, the codimension of V (τ) in X(∆) equals the
dimension of τ . Observe also that V (σ) = {p(σ)}, the origin of Uσ if σ ∈ ∆
is n-dimensional. Indeed the p(σ), σ ∈ ∆(n), are precisely the T-fixed points
of ∆.

An important but rather trivial observation is that V (τ) ∩ V (γ) = ∅ if
there exists no cone in ∆ of which both τ and γ are faces. On the other hand
V (τ)∩ V (γ) = V (η) if η ∈ ∆ is the smallest cone which contains both τ and
γ.

Cohomology of toric varieties Let X be a smooth compact toric variety
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associated to a fan ∆. We shall now describe the integral cohomology of X
in terms of the geometry of the fan ∆.

Suppose that V ⊂ X is a compact complex submanifold of X. Let k
be the complex dimension of V . Recall that V is canonically oriented and
so H2k(V ; Z) ∼= Z. Denote the fundamental class, which is the ‘positive
generator of H2k(V ; Z), by µV . One has the cohomology class ‘dual’ to V ,
denoted [V ] ∈ H2n−2k(X; Z). It is the class Poincaré dual to the image
of the fundamental class µV ∈ H2k(V ; Z) under the inclusion induced map
H2k(V ; Z) −→ H2k(X; Z). If W is another such submanifold of X of complex
dimension l, and if V and W intersect transversely1, then the cohomology
class dual to Z := V ∩W is the cup-product [V ] ∪ [W ], i.e., [Z] = [V ][W ]
in H∗(X; Z). Note that, as the manifolds are all even dimensional (over R),
[V ][W ] = [W ][V ].

Theorem 1.3. Let X(∆) be a compact smooth toric variety. The cohomology
ring H∗(X; Z) is generated by [V (ρ)] ∈ H2(X; Z), ρ ∈ ∆(1). The following
relations hold:
(i) If ρ1, . . . , ρk do not span a cone of ∆(1), then

[V (ρ1)] · · · [V (ρk)] = 0.

(ii) Let vρ ∈ N denote the primitive vector along the edge ρ ∈ ∆(1). For any
u ∈M , one has ∑

ρ∈∆(1)

〈u, vρ〉[V (ρ)] = 0.

All relations among the generators [V (ρ)], ρ ∈ ∆(1) are consequences of the
above relations.

The above theorem was established in the case when X(∆) is a smooth
projective variety by J. Jurkiewicz. Proof in the case of an arbitrary smooth
compact toric variety is due to Danilov [5].

Let S be the unit sphere in NR. The intersection of S with the cones of ∆
yield a simplicial decomposition of the sphere. Call the resulting simplicial
complex Q = Q(∆). Note that the set of vertices Q0 of Q are in bijection
with the set of edges of ∆ and that collection of edges in ∆ determine a
simplex of Q if and only if the edges span a cone of ∆.

1. We say that V ⊂ X and W ⊂ X intersect transversely if, for any x ∈ V ∩W =: Z,
the canonical map TxX/TxV ⊕ TxX/TxW−→TX/TxZ is an isomorphism.

6



For any (finite) simplicial complex K, recall that the Stanley-Reisner ring
of K, denoted Z[K], is the polynomial ring Z[x(v); v ∈ K0] modulo the ideal
generated by the monomials x(v1) · · ·x(vr) whenever v1, · · · , vr are not ver-
tices of a simplex of K. Thus we see that the cohomology of X(∆) is the
quotient of the Stanley-Reisner ring of Q(∆) modulo the ideal generated by
the relation 1.3(ii). Danilov shows that Z[Q(∆)] is Cohen-Macauley (assum-
ing ∆ is regular and complete.)

2 Quasi-toric manifolds and torus manifolds

Quasi-toric1 manifolds are a topological generalization of smooth projective
toric manifold introduced by Davis and Januskiewicz [6]. The notion of
torus manifolds was introduced by Masuda and Panov. The class of torus
manifolds are much more general than that of quasi-toric manifolds. While
the class of torus manifolds includes all compact smooth toric varieties, it
should be remarked that there exist compact smooth toric varieties which
are not quasi-toric manifolds. See [4].

Recall, from Example 1.1, that Pn is a smooth compact toric variety. Let
T ⊂ T denote the compact torus; thus T ∼= (S1)n. The compact torus acts
on Pn by restriction. One has the ‘moment map’

µ: Pn−→MR ∼= Rn

defined as µ([z0 : · · · : zn]) = (1/
∑
|zi|)(|z1|, . . . , |zn|). Note that (i) µ is

constant on T -orbits, and, moreover, µ([z]) = µ([w]) if and only if [z] = [w] ∈
Pn; (ii) the image of µ is the n-simplex P in MR with vertices 0, e1, · · · , en.
This shows that Pn/T ∼= P . Furthermore, one has a natural imbedding
j : P ↪→ Pn given by (x1, . . . , xn)µ[1 −

∑
xi : x1 : · · · : xn]. Note that

ν ◦ j = idP . The vertices of P correspond bijectively to fixed points of the
T -action (indeed even for T-action). The facets (i.e., faces of codimension) of
P correpond to the orbit-closures Pi (cf. Example 1.2). Observe that exactly
n facets meet at each vertex. Take any general point pi = (z0 : · · · : zn) ∈ Pi
(i.e. a point with zj 6= 0 ∀j 6= i). An element t = (t1, . . . , tn) is in the
isotropy subgroup at this point if and only if [z0 : t1z1 : · · · : tnzn] = pi. If

Actually Davis and Januszkiewicz called them toric manifolds. Since ‘toric manifolds’
often refers to the underlying manifold of a smooth toric variety, the term ‘quasi-toric
manifolds’ is used instead.
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i = 0, this readily implies that all the tj, j 6= 0, are equal. That is, t is in
the image of the 1-parameter subgroup ±(e1 + · · ·+ en) ∈ N . If i > 0, then
it is clear that all the tj except ti must be 1 and so t is in the image of the
1-parameter subgroup ±ei ∈ N . In this manner, one recovers, upto sign, the
primitive vectors along the edges of ∆, the fan correspoinding to Pn. The
sign can be fixed once a choice of orientation on all the Pi are fixed. Observe
that the fan corresponding to Pn can be now be recovered in this case.

If X is an arbitrary compact smooth toric variety of complex dimension
n which admits a complex analytic imbedding into Pd for some d, then we
say that X is a projective complex manifold. In this case one has a moment
map µ:X−→MR which is T -invariant and it turns out that the image of the
moment map is a simple polytope P . (A simple polytope is one in which
exactly n facets meet at each vertex. For example a cube a simple polytope
but not an octahedron.) Combinatorially, polytope P is isomorphic to dual
of the ‘polytope’ obtained by intersecting the cones of ∆ with the unit disk.
It turns out that the polytope P together with the collection of 1-dimensional
subgroups corresponding to each facet of P , with due care in choosing the
sign of the primitive vector in N (more about this point later), can be used
to reconstruct the manifold X.

Irrespective of whether a compact smooth toric variety X is projective or
not one can still consider the space X/T . It is an example of a manifold with
corners modeled on the space Rn

+.

Now we shall define a quasi-toric manifold.

Definition 2.1. Let M be a 2n-dimensional compact manifold on which
T = (S1)n acts effectively in such a manner that the following properties
hold:
(i) The action is locally standard, that is, any p ∈ M has a T -stable open
neighbourhood U which is equivariantly homeomorphic to a T -stable open
set in a T -module whose characters u1, . . . , un form a Z-basis for the group
Hom(T,S1) ∼= Zn,
(ii) Denote by π the quotient map M−→M/T =: P . Then P has the struc-
ture of a simple polytope such that for any face F of P , the inverse image
MF := π−1(F ) a 2k-dimensional connected submanifold M pointwise fixed by
a k-dimensional sub torus TF of T . Then M is called a quasi-toric manfold
over P .

Smooth projective toric manifolds are examples quasi-toric manifolds.
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It turns out that theM has the structure of a smooth manifold making the
T -action smooth. (This follows from the local standardness of the action.)
M is simply-connected and hence orientable. Furthermore, M has a CW-
structure having cells only in even dimensions.

Note that T -fixed points of M are in bijective correspondence with the
vertices of P under the projection map π : M−→P . Denote by P the set
of facets of P . The submanifolds VF , F ∈ P , are called characteristic sub-
manifolds of M . If a face F of P is the intersection of facets F1, . . . , Fk
then MF equals the intersection VF1 ∩ . . . VFk

. Each MF is itself a quasi-toric
manifold over F under the action of the torus T/TF . In particular MF is
simply-connected and hence orientable.

Fix an orientation on M and as well as on each of its characteristic sub-
manifolds. Any such collection of orientations is called an omni-orientation.
In case M is a smooth complex projective variety there is a natural choice of
an omni-orientation, namely, that given by the complex structure; in general,
however, there are 2d+1 possible omni-orientations where d = #P .

Let VF be a characteristic submanifold of M and let S be the one-
dimensional subgroup of T which pointwise fixes VF . The S there are exactly
two ways to parametrize (i.e. realise as image of a primitive 1-parameter sub-
group of T ) which differ by orientation corresponding to the two orientations
of S. An orientation on S determines an orientation on the normal bundle
to the imbedding VF ↪→ M , and hence on M itself (as an equivariant tubu-
lar neighbourhood of VF can be identified with a disk bundle of the normal
bundle). Having fixed an orientations on VF and M , there is precisely one
orientation of S which by the above procedure yields the chosen orienation on
M . This implies that there is exactly one primitive vector, which we denote
by λ(F ), in N := Hom(S1, T ) whose image is S and determines the correct
orientation on it. We obtain, therefore, a function

λ:P−→N

known as the characteristic function of the quasi-toric manifold.

Recall that if M is a non-singular projective variety, then P is dual to
the simplicial decomposition of the unit disk in NR obtained by intersecting
with the disk the cones of ∆. Note that λ associates to each facet of P the
primitive vector along the edge of ∆ which is ‘daul’ to it.

The characteristic function λ satisfies the following important property,
which we shall call property (∗): if F1, · · · , Fn are distinct facets which meet
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at a vertex of P then λ(F1), · · · , λ(Fn) is a Z basis for N .

In the context of smooth projective toric varieties, this property translates
into in the statement that the primitive vectors in N along the edges of an
n dimensional cone is a Z-basis.

Starting with any n-dimensional simple polytope P and a map λ : P−→N
which satisfies the property (∗), it turns out that one can construct a smooth
quasi-toric manifold M as a quotient space of T × P whose orbit space is P
and characteristic map is λ. In case P and λ are obtained as above from a
quasi-toric manifold M , this procedure results in the manifold M we started
with.

Theorem 2.2. (Davis-Januszkiewicz [6]) The cohomology ring of a quasi-
toric manifold M over a simple polytope P is isomorphic to the quotient of
the polynomial ring in indeterminates xF , F ∈ P, modulo the ideal generated
by the following elements:
(i) xF1 · · ·xFk

whenever F1 ∩ · · · ∩ Fk = ∅.
(ii) For each u ∈ Hom(T,S1), the element zu :=

∑
F∈P〈u, λ(F )〉xu.

The element xF corresponds to the cohomology class [VF ] ∈ H2(M ; Z) dual
to the characteristic submanifold VF .

Torus manifolds
Masuda and Panov [15] introduced the notion of torus manifolds as a gen-
eralization of the concept of quasi-toric manifolds. This is also more general
than the notion, introduced by Masuda, of unitary toric manifolds in [14].
See also [8].

Definition 2.3. A torus manifold M is a compact connected oriented smooth
manifold of dimension 2n with an effective action of an n-dimensional com-
pact torus T ∼= (S1)n such that the T -fixed point set is non-empty.

By considering the tangential representation at a T -fixed point of M , it
can be seen that MT is a discrete set and hence finite. A codimension-2
closed connected T -invariant submanifold of M called a characteristic sub-
manifold. There are only finitely many characteristic submanifold of M and
each of them is again orientable. An omni-orientation of M is a choice of
an orientation on M as well as on each of its characteristic submanifolds.
Note that there corresponds to each characteristic submanifold V of M a
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one-parameter subgroup v ∈ Hom(S1, T ) such that the image of v is the
isotropy at a general point of V . We shall denote this element by λ(V ).

We shall that the T action on M is locally standard (see Definition 2.1).
An immediate consequence is that if V1, · · · , Vn are characteristic submani-
folds of M such that ∩1≤i≤nVi is a T -fixed point, then λ(V1), · · · , λ(Vn) is a
Z-basis for Hom(S1, T ).

Now let Q := M/T the orbit space of M under the T -action with quotient
topology. It is an n-dimensional manifold-with-corners. The boundary of Q,
denoted ∂Q, is the set of all points which do not have a neighbourhood
homeomorphic to an open set of Rn. It is the union of facets of Q, which
are images of characteristic submanifolds under the quotient map M−→Q.
Intersection of a collection of facets is called a pre-face and each connected
component of a pre-face is called a face. Local standardness of the action
implies that every pre-face is a face.

We say that Q is a homology polytope if Q and all its non-empty pre-
faces are acyclic, i.e., have the (singular integral) homology of a point. Thus
non-empty pre-faces are path connected.

We shall denote by Q the set of all facets of Q. One has the characteristic
function λ : Q −→ N which associates to each F ∈ Q the element λ(VF ) ∈ N ,
where VF is the characteristic submanifold which maps to F under M−→Q.

As in the case of quasi-toric manifolds, the torus manifold M can be
reconstructed starting with the data (Q, λ). Also, given any n-dimensional
homology polytope Q and a characteristic function λ : Q−→N whcih satisfies
the condition that λ(F1), · · · , λ(Fn) is a Z-basis for N whenever F1∩ · · ·∩Fn
is a vertex of Q, there exists a torus manifold with quotient M/T = Q and
λ as its characteristic map.

Theorem 2.4. (Masuda-Panov [15]) The cohomology of the T -torus mani-
fold M with locally standard action and quotient space Q a homology polytope
is isomorphic to the polynomial ring generated by indeterminates xF , F ∈ Q
modulo the ideal generated by the elements
(i) the monomial xF1 · · ·xFr whenever ∩1≤j≤rFj = ∅,
(ii) for each u ∈ Hom(T,S1), the element

zu :=
∑
F∈Q

〈u, λ(F )〉xF ,

where λ is the characteristic map of M .
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The element xF corresponds to [VF ] ∈ H2(M ; Z) the cohomology class dual
to the characteristic submanifold VF .

3 K-theory, an introduction

Just as singular (integral) cohomology theory associates to each topological
space a ring H∗(X), K-theory is also a cohomology theory that associates
to each topological space X a negatively graded abelian group K∗(X) which
satisfies all the Eilenberg-Steenrod axioms of a cohomology theory except
the dimension axiom. (The dimension axiom demands that the cohomology
groups of a point be zero except in dimension 0.) The celebrated Bott pe-
riodicity theorem implies that Ki(X) ∼= Ki−2(X) for all i ≤ 0 (at least for
‘good spaces’), and so it suffices to compute K0(X) and K−1(X). There is
also the closely related KO-theory of real vector bundles which is periodic
of period 8; but we shall mostly discuss K-theory of complex vector bundles
in these notes. The subject of K-theory was initiated by Grothendieck in
algbraic geometry. The topological formulation of it leading to an extraor-
dinary cohomology theory was by Atiyah and Hirzebruch [2]. We refer the
reader to Karoubi’s book [11] for a detailed exposition.

Let X be a paracompact Hausdorff topological space. Consider the set
collection of all isomorphism classes of complex vector bundles1 over X.
Thanks to the classification theorem, this is a set; let us denote this by
V ect(X). In fact it is monoid under Whitney sum. Define K(X) to be
the free abelian group with basis V ect(X) modulo the subgroup generated
by the relations [E] − [E ′] − [E ′′] whenever 0 → E ′ → E → E ′′ → 0 is a
short exact sequence of complex vector bundles over X. (Indeed, since X is
assumed to be paracompact, such a sequence splits and one has an isomor-
phism E ∼= E ′⊕E ′′ of complex vector bundles.) Any element in K(X) can be
expressed as a difference [E] − [E ′] where E,E ′ are complex vector bundles
over X. Two elements [E]− [E ′] and [F ]− [F ′] are equal if and only if there
exists a complex vector bundle E ′′ such that E ⊕ F ′ ⊕ E ′′ and F ⊕ E ′ ⊕ E ′′
are isomorphic as vector bundles on X.

The group K(X) has the structure of a ring where [E].[E ′] = [E ⊗ E ′].
The class of the trivial line bundle ε1 is the identity element. Clearly, the
rank map K(X)−→Z is a ring homomorphism. Define K̃(X) to be the kernel

(1) We consider only vector bundles having constant rank.
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of the rank map; thus K̃(X) is an ideal in K(X).

Working with real vector bundles throughout, we also obtain KO(X) as
a quotient of the free abelian group with basis the isomorphism classes of
real vector bundles.

Note that there is a well-defined augmentation homomorphism
rank:K(X)−→Z (resp. KO(X)−→Z) which maps [E] to rank of E. The

kernel of this map is denoted K̃(X) (resp. K̃O(X)). In case (X, x0) is a based

topological space, one identifies K̃(X) with the kernel of the restriction of
K(X)−→K({x0}) ∼= Z.

Suppose that f : X−→Y is a continuous map. Then one has an in-
duced map f ∗ : K(Y )−→K(X) of rings defined by [E] 7→ [f ∗(E)]. Note
that f ∗ commutes with the augmentation K(X)−→Z and so induces a map

f ∗: K̃(Y )−→K̃(X). If f is homotopic to g, then it is clear that f ∗ = g∗.

Example 3.1. (i) Let n ≥ 1. Let [TSn] = [εn] in KO(Sn), where εr denotes
the trivial r-plane bundle. This follows from the observation that the normal
bundle ν to the imbedding Sn ↪→ Rn+1 is trivial and so TSn⊕ε1 = TSn⊕ν ∼=
TRn+1|Sn ∼= εn+1.

(ii) Consider the space S1. Any complex vector bundle S1 is trivial. Note
that since the unitary group U(n) is connected for any n ≥ 1, the classify-
ing space BU(n) is simply-connected. Now our assertion follows from the
classification theorem for complex vector bundles and the fact that any map
of any map of S1 into a simply-connected space is null-homotopic. Hence
K(S1) ∼= Z. It follows that K̃(S1) = 0.

By contrast K̃O(S1) is isomorphic to Z/2Z. Indeed double cover S1−→S1

defined as z 7→ z2 yields a line bundle ξ whose first Stiefel-Whitney class
w1 ∈ H2(S1; Z/2Z) ∼= Z/2Z is non-zero. This readily implies that [ξ] 6= 1.

Indeed it is not difficulty to see that K̃O(S1) is generated by the class [ξ]−1.

(iii) Consider the space S2. It turns out that any complex vector bundle
over E is a direct sum of line bundles. Let ξ be the line bundle with first
Chern class a generator of H2(S2; Z) ∼= Z. Using this fact, it can be shown

that K̃(S2) ∼= Z, generated by ξ − [ε1].

Let U(n) denote the unitary group and consider the natural inclusion
U(n) ⊂ U(n + 1), n ≥ 1. Set U = ∪n≥1U(n), with union topology. This
is a topological group and one has the classifying space BU for principal U -
bundles. Atiyah and Hirzebruch observed that (at least for ‘good’ topological
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spaces), K̃(X) is naturally isomorphic to the group [X,BU ], the homotopy
classes of maps of based topological space.

They used this to define higher K-groups which we shall now recall.

Let X be a locally compact paracompact Hausdorff space and let A be
a closed subset. Recall that X/A denotes the space obtained from X by
collapsing A to a point, with quotient topology. In case A is the empty set
X/A is the one-point compactification of X if X is non-compact. If X is
compact, /∅ denotes the space X+ which is X together with a point which
is isolated. Note that X/A has a distinguished point, namely {A}.

Recall that, for a based topological space (Y, y0), the reduced suspension
S(Y ) of Y is the topological space Y × I/(Y × ∂I ∪ y0× I). Note that S(Y )
is again a based topological space.

Definition 3.2. Let X be a finite CW complex and A a subcomplex. Define
K−i(X,A) to be K̃(Si(X/A)).

Note that since X is compact, then K0(X) = K̃(X+) ∼= K(X). In
view of the Bott periodicity theorem Ω2(BU) ' BU × Z, it follows that
[S2(Y ), BU ] ∼= [Y,Ω2(BU)] = [Y,BU × Z] which implies that K−n(Y ) ∼=
K−n+2(Y ). Using this, the definition of Ki(X,A)) may be extended to all
integers.

In particular, Ki(pt) ∼= Z if i is even and is 0 if i is odd.

There is a long exact sequence in K-theory associated to a pair (X,A),
which is established using Puppe sequence:

· · · −→Ki(X,A)−→Ki(X)−→Ki(A)−→Ki+1(X,A)−→· · · .

Observe that excision axiom holds, i.e., if U is an open set contained in A,
then clearly X/A ∼= (X −U)/(A−U) and so Ki(X,A) ∼= Ki(X −U,A−U).

It is convenient to set K∗(X,A) = K0(X,A)⊕K1(X,A).

The group of units in this ring is called the Picard group and denoted
Pic(X). Any element of Pic(X) is represented by a line bundle and that
[L] = [L′] if and only if L ∼= L′ as vector bundles. An important fact is
two line bundles L and L′ are isomorphic if and only if their first Chern
classes are equal. From this, we see that one has an isomorphism of groups
Pic(X) −→ H2(X; Z) defined as [L] 7→ c1(L). Note that the group operation
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on the Picard group is given by the tensor product of line bundles and the
operation on H2(X; Z) is, of course, the addition.

One immediate consequence of the Atiyah-Hirzebruch spectral sequence,
which relates the K-theory with singular (integral) cohomology is the follow-
ing theorem.

Theorem 3.3. (cf. Atiyah-Hirzebruch [2]) Suppose X is a finite CW com-
plex such that H i(X) = 0 for i odd and that Hk(X) is a free abelian group
for all k. Then K(X) is a free abelian group of rank χ(X), the Euler char-
acteristic of X.

Let E be any complex vector bundle of rank n over X and let ci :=
ci(E) ∈ H2i(X; Z) denote the ith Chern class of X. The Chern character of
E is defined as follows: Suppose that E is a line bundle so that ci = 0 for
i > 1. Then ch(E) = ec1 =

∑
k≥0 c

k
1/k! ∈ H∗(X; Q). Since X is assumed to

be a finite CW complex, ck1 = 0 for k > (1/2)dim(X). If E = E1⊕· · ·⊕⊕En
is a Whitney sum of line bundles, then ch(E) =

∑
1≤j≤n ch(Ei). In the more

general case, one expresses the total Chern class c(E) = 1+c1 · · ·+cn formally
as c(E) =

∏
(1 + xi) so that ci is the i-th elementary symmetric polynomial

in x1, · · · , xn. Now since xk1 + · · ·+xkn is symmetric in x1, · · · , xn, there it can
be expressed a polynomial uk(c1, · · · , cn) =: uk in the elementary symmetric
polynomials cj, 1 ≤ j ≤ n. Now uk ∈ H2k(X; Z) and so uk/k! ∈ H∗(X; Q).
We define ch(E) = rank(E)+

∑
k≥1 uk/k! ∈ H∗(X; Q). Observe that c(E) =

c(E ′) if [E] = [E ′] inK(X). It can be verified that ch([E1]+[E2]) = ch([E1])+
ch([E2]) and that ch([E1] ⊗ [E2]) = ch([E1])ch([E2]). Observe that if E is a
vector bundle of rank n ≥ 1, then ch([E]) is invertible in Hev(X; Q). The
following theorem allows us to determine K(X) up to torsion.

Since H̃ i(SX; Z) ∼= H̃ i−1(X), we have Hodd(X) ∼= H̃even(SX; Q). Hence

we have a homomorphism K̃(SX)−→Hodd(X; Q). From this we see that we
have a homomorphism K∗(X)−→H∗(X; Q).

Theorem 3.4. (Atiyah-Hirzebruch) Let X be a finite CW complex. One has
a natural isomorphism of rings K∗(X)⊗Q−→H∗(X; Q).

The above theorem implies that if K(X) has no torsion, then it is iso-
morphic to a subalgebra of Hev(X; Q). When the cohomology is generated
by degree 2 elements and H2k(X; Z) is a free abelian group for all k, one has
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the following proposition (cf. [20]). Recall that the Picard group Pic(X)
of isomorphism classes of lines bundles on X is isomorphic to the additive
group H2(X; Z) via [L] 7→ c1(L).

Proposition 3.5. Let X be a connected finite CW complex such that the
Hk(X; Z) is zero for k odd and is a free abelian group for k even. Suppose
that H∗(X; Z) is generated as a ring by degree 2 elements, then K(X) is
generated as a ring by the classes of line bundles on X. Furthermore, K(X)
is a free abelian group of rank χ(X).

Operations in K-theory
The K-ring has the structure of a λ-ring which leads important natural oper-
ations. These operatioins have been used to solve many important problem
in topology such as the vector field problem for spheres, the Hopf invariant
one problem, etc.

For any (complex) vector bundle E over X, denote by Λk(E), the k-the
exterior power of E. If E = E ′ ⊕E ′′, then Λk(E) =

∑
i+j=k Λi(E ′)⊗Λj(E ′′)

where it is understood that Λ0(E) = ε1 and Λj(E) = 0 if j exceeds
the rank of E. This relation can be expressed more formally as:λt(E) =
λt(E

′)λt(E
′′) where λt denotes the polynomial

∑
i≥0 Λi(E)ti in the indeter-

minate t with coefficients in V ect(X). Consider its image in K(X)[t] ⊂
K(X)[[t]]. Since λt(E

′) is invertible in K(X)[[t]], we obtain a well-defined
map λt : K(X)−→1 + tK(X)[[t]] defined as [E] 7→ λt([E]) of the (ad-
ditive) abelian group to the multiplicative group of special units in the
power-series ring K(X)[[t]]. In particular, one has well-defined operations
λi : K(X)−→K(X) defined as λk([E]) = [Λk(E)] for any vector bundle E.
(Note that λk(−[E]) can be non-zero for infinitely many k ≥ 0.) These op-
erations are natural in the sense that if f : X−→Y is any continuous map,
then f ∗ : K(Y )−→K(X) preserves the λ-operations: λk(f ∗(α)) = f ∗(λk(α));
equivalently, f ∗(λt(α)) = λt(f

∗(α)).

The γ-operations γi, i ≥ 0, on K(X) are defined in terms of the λ-
operations as follows: γt : K(X)[[t]]−→K(X)[[t]] is defined as

∑
i≥0 γ

iti =
γt = λt/(1−t). Thus, by comparing coefficients of t on both sides, we see that
γ0 = 1, γ1 = λ1, γ2 = λ2 + λ1, γ3 = λ3 + 2λ2 + λ1, γ4 = λ4 + 3λ3 + 3λ2 + λ1

and so on. Also, one can express λ-operations in terms of the γ operations.
Indeed, the substitution s = t/(1 + t) yields: λs/(1−s) = γs, i.e., λt = γt/(1+t).

We note that γt(x+ y) = γt(x)γt(y).
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Lemma 3.6. Let ξ be a vector bundle of rank n. Then γk([ξ] − n) = 0 for
k > n.

Proof. γt([ξ]− n) = λt/(1−t)([ξ]− n) = λt/(1−t)([ξ])λt/(1−t)(−n).

Now λt(n) = (1+t)n implies that λt(−n) = (1+t)−n and so λt/(1−t)(−n) =
(1− t)n. Thus γt([ξ]− n) = (1− t)nλt/(1−t)([ξ]) =

∑
0≤k≤n t

k(1− t)n−k[λk(ξ)]
since λk(ξ) = 0 for k > n. 2

We shall now define the Adams operations ψk, k ∈ Z. They were intro-
duced by Adams who used them to solve the vector field problem on spheres.

It should be noted, the formal relation between the λ operations and
the Adams operation ψk is the same as that between elementary symmetric
functions in x1, x2, · · · , and the power-sums, assuming k > 0. (To inter-
pret infinite sums and products appropriately, one has to work in the ring
of polynomial functions, which is defined as the inverse limit of usual polno-
mial rings Sn := Z[x1, · · · , xn] and the ring homomorphism Sm−→Sn got by
setting xj = 0 for j > n. See [13, Chapter 1].) Thus, if λt =

∏
i≥1(1 + xti),

then ψk =
∑
xki , k ≥ 1. Note that

∑
k≥0 ψ

k+1tk =
∑

(xi(1 − xit)
−1) =∑

−(d/dt)(ln(1− xit) = −(d/dt)(ln(
∏

(1− xit))) = −(d/dt)(lnλ−t).
This is the motivation for the following definition.

Let k ≥ 1. Define ψk by
∑

k≥0 ψ
k+1tk = −(d/dt)(lnλ−t). For k = 0,

ψ0(x) is defined as rank of x. When k < 0, ψk([E]) = ψ−k(Hom(E, ε1)) for
any vector bundle E.

We state without proof the following properties of the Adams operations.
It turns out that the first two properties uniquely characterise thess opera-
tions.

Theorem 3.7. For any k, l ∈ Z, and any x, y ∈ K(X),
(i) ψk([L]) = [L]k for any line bundle L,
(ii) ψk(x+ y) = ψk(x) + ψk(y),
(iii) ψk(ψl(x)) = ψkl(x),
(iv) ψk(xy) = ψk(x)ψk(y),
(v) ψp(x) = xp mod p for any prime p,

(vi) ψk(α) = knα where α is the generator of K̃(S2n) ∼= Z.

We conclude with a brief discussion on the relation between K- theory
and KO-theory.
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Given any complex vector bundle E over X we can restrict the scalar
multiplication to the reals and regard E as a real vector bundle. On the
other hand, starting with a real vector bundle V , we can form the tensor
product C⊗R V to obtain a vector bundle, called the complexification of V .
These operations are compatible with the formation of Whitney sums. Also
complexification preserves tensor products as well. (However, restriction of
scalars does not preserve tensor product as is evident from taking ranks on
both sides.) Furthermore, one has also the complex conjugation E 7→ E∗ ∼=
Hom(E, ε1). It is immediate that restriction of scalars to R is invariant under
complex conjugation. These operations can be defined on the appropriate K
groups. We have the following

Proposition 3.8. Let r : K(X)−→KO(X), c : KO(X)−→K(X) and
∗ : K(X)−→K(X) denote respectively restriction of scalars to R, the com-
plexification, and the complex conjugation. Then
(i) c ◦ r = 1 + ∗

(ii) r ◦ c = 2, and,
(iii) r ◦ ∗ = r.
(iv) ∗ ◦ c = c.

In the above theorem the numbers 1 stands for identity map and 2 stands
for multiplication by the element 2 (represented by the trivial real vector
bundle of rank 2).

4 K-theory of torus manifolds

Let T = (S1)n. Let M be a T -torus manifold of dimension 2n. We will be
assume throughout that the T -action on M locally standard and that the
orbit space Q := M/T is a homology polytope. We fix an omni-orientation
on M and a Riemannian metric which is T -invariant.

Recall that, by Proposition 3.5 and 2.4, the K-ring of M is generated by
the classes of line bundles. Therefore, as a first step in the computation of
K(M), we shall construct line bundles on M which will serve as generators of
K(M). Recall that the Picard group of M is isomorphic, via the first Chern
class, to H2(M ; Z) and that the latter group is generated by the classes
[VF ], F ∈ Q. Thus there exists a line bundle LF with c1(LF ) = [VF ]. We
shall give an explicit construction of such a line bundle.
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Let F ∈ Q and let νF denote the normal bundle to the imbedding VF ↪→
M . The Riemannian metric on M induces a metric on νF . Since M is omni-
oriented, νF is orientable. We put that orientation so that the orientation
on TVF ⊕ νF coincides with the orientation on TM |VF . Any oriented 2-
plane bundle may be regarded as a complex line bundle. (This is because
SO(2) ∼= U(1).) Thus νF is a complex line bundle. We now extend this to a
complex line bundle on M as follows.

First we identify the unit disk bundle D(νF ) with an equivariant tubular
neighbourhood NF of VF in M such that the zero-cross section corresponds
to the imbedding VF ↪→M . Pulling back νF to NF

∼= DF via the projection
D(νF )−→VF of the disk bundle, we obtain complex line bundle ξ over NF .
One has the cross-section s : NF −→ ξ (v) = (πF (v), v), v ∈ NF

∼= D(νF )
where πF is the projection of the disk bundle D(νF ). This section vanishes
precisely along VF . The complex line bundle LF over M is obtained by gluing
the bundle ξ over NF and the trivial complex line bundle over M \ int(NF )
along νF |∂NF using the trivialization s|∂NF . It is clear that LF is a line
bundle over M which restricts to the normal bundle over VF and admits a
section sF which vanishes precisely on VF . It follows that c1(LF ) = [VF ] ∈
H2(M ; Z).

Lemma 4.1. With the above notations, if F1, . . . , Fr ∈ Q are such that F1 ∩
· · · ∩ Fr = ∅, then

∏
1≤i≤r([LFi

]− 1) = 0 in K(X).

Proof. Let si : M −→ LFi
be the section constructed as above so that

the si vanishes precisely on Fi.

Let E = LF1 ⊕ · · · ⊕ LFr . Consider the section σ : M −→ E defined as
σ(x) = (s1(x), . . . , sr(x)). Then σ(x) = 0 if and only if si(x) = 0 for all i, i.e.,
if and only if x ∈ F1∩· · ·∩Fr = ∅. Thus σ is nowhere vanishing. This implies
that E = ξ⊕ ε for some complex vector bundle ξ of rank r−1. Applying the
operation γr we obtain that γr([E]−r) = γr([ξ]−(r−1)) = 0 by Lemma 3.6.
On the other hand, by Lemma 3.6 again, we have γk([L]− 1) = 0 for k > 1
for any line bundle L. Using this and the property that γt(x+y) = γt(x)γt(y)
repeatedly, we obtain that γr([E]− r) = γr(([LF1 ]− 1) + · · ·+ ([LFr ]− 1)) =∏

1≤i≤r γ
1([LFi

]− 1) =
∏

1≤i≤r([LFi
]− 1). Thus

∏
1≤i≤r([LFi

]− 1) = 0. 2

Let u ∈ Hom(T,S1). Consider the line bundle Lu :=
∏

F∈Q L
〈u,λ(F )〉 where

λ:Q −→ Z is the characteristic map of M . Since the first Chern class defines
an isomorphism of groups between the Picard group of M and H2(M ; Z), we
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see that c1(Lu) =
∑

F∈Q〈u, λ(F )〉[VF ] = 0 in H2(M ; Z) in view of Theorem
2.4. It follows that Lu is trivial.

Write yF = 1 − [LF ] ∈ K(M). Then from Lemma 4.1 and the above we
have the following relations in K(M).
(i) If Fi ∈ Q are such that F1 ∩ . . . ∩ Fr = ∅ then yF1 . . . yFr = 0.
(ii) If u ∈ Hom(T,S1), then

zu :=
∏
F∈Qu

(1− yF )〈u,λ(F )〉 −
∏
F∈Q′

u

(1− yF )−〈u,λ(F )〉 = 0

where Qu = {F ∈ Q | 〈u, λ(F ) ≥ 0} and Q′u := Q \ Qu.
Let R(Q, λ) denote the ring Z[yF ;F ∈ Q]/I where I is generated by

monomials yF1 . . . yFr whenever F1 ∩ · · · ∩ Fr = ∅, Fi ∈ Q, and the elements
zu, u ∈ Hom(S1, T ) as in (ii) above. It is clear that one has a ring homomor-
phism η : R(Q, λ)−→K(M) which maps each yF to 1− [LF ], F ∈ Q. In view
of Theorem 2.4 and Theorem 3.5 we see that η is surjective.

Theorem 4.2. The ring homomorphism η : R(Q, λ) −→ K(M) is an iso-
morphism of rings.

It remains to show that η is injective. In view of the fact that K(M) is
an abelian group of rank χ(M), it suffices to show that R(Q, λ) is an abelian
group of rank at most χ(M). This is established in [19] and the proof will
not be reproduced here.

Remark 4.3. The above theorem gives a presentation of the K-ring of quasi-
toric manifolds as well as smooth complete complex toric varieties as these
arise as special cases of torus manifolds. In the case of smooth projective toric
varieties one can show, by elementary considerations, that the Grothendieck’s
K-ring is also isomorphic to ‘topological’ K-ring considered in the above
theorem. There are also other descriptions of K-rings of toric varieties. See
[12], [18], [16], and [24].

The special case of the complex projective spaces is due to Adams [1] who
also computed the K-ring of real projective spaces.

5 Appendix

We shall recall here some basic definitions and facts concerning (co)homology
of manifolds, vector bundles and characteristic classes. The reader may refer
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to [22], [17], [9] for detailed expositions of these topics.

Poincaré duality
Let V be a vector space of dimension n ≥ 1 over R. One has an equivalence
relation on the set of all bases of V where we declare that B ∼ B′ if the
transition matrix from B to B′ has positive determinant. There are exactly
two equivalence classes and a choice of an equivalence class µ is called an ori-
entation on V . Equivalently, an orientation on V is choice of path component
of Λn(V ) \ {0} where Λn(V ) ∼= R is the top exterior power of V .

Let M be a connected differentiable manifold of dimension n ≥ 0. We
say that M is orientable if there is an orientation µp on the tangent space
TpM for each p ∈ M in such a manner that µp varies continuously with
respect to p, i.e., given any p ∈M , there exists a coordinate neighbourhood
(U, ;x1, · · · , xn) such that the basis {∂/∂x1|q, · · · , ∂/∂xn|q} of TqM belongs
to the chosen orientation µq for all q ∈ M . If M is orientable, there are
exactly two possible orientations (since we assumed M to be connected) and
a choice of one of them is called an orientation on M . In the language of
vector bundles, it can be seen that M is orientable if and only if Λn(TM) is
isomorphic to the product bundles pr1:M ×R−→M and, again, choice of an
orientation is equivalent to choice a path-component of Λn(TM) minus the
zero-cross section.

The notion of orientability can be defined for topological manifolds but
we shall merely refer the reader to standard sources (for example, [22] for
the details.

It can be shown that, when M is compact (and connected), Hn(M : Z)
is either isomorphic to Z or is zero depending on whether M is orientable
or not. An orientation on M is equivalent to choice of a generator for the
infinite cyclic group Hn(M ; Z). Let M be oriented and denote by µM (or
simply µ) the corresponding generator of Hn(M ; Z) ∼= Z. µM is called the
fundamental class of M .

If M is not orientable, we say it is non-orientable. Irrespective of whether
M is orientable or not, when M is compact, connected and of dimension n,
one has Hn(M ; Z) ∼= Z/2Z and hence there is a unique mod 2 homology
class µM , called the mod-2 fundamental class. In case M is oriented, then
the fundamental class in Hn(M ; Z) maps to the mod-2 homology class of
M under the homomorphism induced by the surjective homomorphism of
coefficient group Z−→Z/2Z.
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Let R denote Z/2Z in case M is non-orientable and let R denote either
Z or Z/2Z in case M is orientable. We shall denote by µ ∈ Hn(M ;R) the
fundamental class of M in case M is oriented; otherwise it denotes the mod-2
fundamental class.

Recall that for any topological space X there is a cap-product
Hk(X;R) × Hk(X;R)−→Hn−k(X;R), denoted (u, α) 7→ u ∩ α. This cap
product is bilinear, and, moreover, it has the following properties:
(i) (u∪v)∩α = u∩(v∩α) and 1∩α = α. Thus we may regard the homology
H∗(X;R) as a module over the cohomology ring H∗(X;R).
(ii) The cap product is natural in the following sense: Suppose f : Y−→X
is any continuous map, u ∈ Hk(X;R), β ∈ Hn(Y ;R) then f∗(f

∗(u) ∩ β) =
u ∩ f∗(β). That is, when we regard H∗(Y ;R) as a module over H∗(X)
via f ∗ : H∗(X;R)−→H∗(Y ;R), then f∗ is a homomorphism of H∗(X;R)-
modules.

We now state the Poincaré duality theorem for compact connected n-
dimensional manifolds. There are duality isomorphisms for non-compact
manifolds and relative versions (known as Poincaré -Lefschetz duality). There
are also duality theorems for manifolds with boundary. We refer the reader
to [22].

Theorem 5.1. (Poincaré Duality) Let M be a compact connected n-
dimensional manifold, n ≥ 1. Let µ ∈ Hn(M ;R) ∼= R be the fundamental
class of M where where R = Z/2Z or, R = Z when M is oriented. Then one
has the isomorphism:

∩µ:Hk(M ;R)−→Hn−k(M ;R).

Let A be an oriented compact connected submanifold dimension k of
an oriented compact connected n-dimensional manifold M . Denote the in-
clusion map ↪→ M by j. Let µM ∈ Hn(M ; Z) (resp. µA ∈ Hk(A; Z)) be
the fundamental class of M (resp. A). There is a unique cohomology class
[A] ∈ Hn−k(M ; Z) which is Poincaré dual to j∗(µA), i.e., [A] ∩ µM = j∗([A]).
The class [A] is called the cohomology class ‘dual’ to A.

Vector bundles A complex vector bundle ξ over a space X consists of a
surjective map p:E−→X called the projection if, for every x ∈ X, p−1(x) is
a complex vector space of dimension n such that the following local triviality
condition holds:
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For every x ∈ X, there exists a neighbourhood U ⊂ X of x and a homeo-
morphism hU : p−1(U)−→U ×Cn such that the it induces an isomorphism of
complex vector space p−1(y) onto {y} × Cn for every y ∈ U . Thus we have
the following commutative diagram:

p−1(U)
hU−→ U × Cn

p ↓ ↓ pr1

U === U.

The integer n is called the rank of the vector bundle ξ.

For example, pr1:X × Cn−→X is the projection of the trivial bundle εn.

A real vector bundle is defined similarly.

An isomorphism of vector bundles ξ−→η over the same base space X is
of a map f : E(ξ)−→E(η) which is fibrewise an isomorphism of vector spaces
covering the identity map of X, i.e., pη ◦ f = pξ. One has also the notions of
homomorphisms, monomorphisms, and epimorphisms of vector bundles.

One can perform operations such as direct sum, tensor product, exterior
power, taking duals, etc., on vector bundles by carrying out such operations
fibrewise, so long as these operations are continuous (cf. [17, Chapter 2]).
For example, if ξ, η are vector bundles over X, the ξ⊕ η (called the Whitney
sum of ξ and η) is the bundle with total space E(ξ ⊕ η) the fibre-product
E(ξ)×XE(η) = {(e, e′) | pξ(e) = pη(e

′), e ∈ E(ξ), e′ ∈ E(η)}. The projection
map E(ξ ⊕ η)−→X is just the map (e, e′) 7→ p(e).

If E−→X is the projection of a vector bundle ξ over X and if f : Y−→X
is a continuous map, one has the pull-back bundle f ∗(ξ) over Y whose total
space is the fibre-product E(f ∗(ξ)) = {(y, e)|f(y) = p(e), y ∈ Y, e ∈ E}. If f
is an inclusion, we write ξ|Y instead of f ∗(ξ) and call it the restriction of ξ.

One of the most important vector bundle associated to a smooth manifold
M is its tangent bundle TM . Also if A ⊂ M is an imbedding of a smooth
manifold A into M , then TA is a subbundle of f ∗(TM). In this case, there
is a bundle ν (unique up to isomorphism) over A such that TA⊕ν ∼= TM |A.
ν is called the normal bundle.

Let Gn,k denote the set of all k-dimensional vector subspaces of Cn. This
set can be identified with the homogeneous space U(n)/U(k) × U(n − k)
so Gn,k has the natural structure of a manifold. It is called the complex
Grassmann manifold. The real Grassmann manifold RGn,k, identified with
O(n)/O(k)×O(n− k), is defined similarly.
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One has the tautological vector bundle γn,k of rank k over Gn,k whose
total space is E(γn,k) = {(X, x) | x ∈ X ∈ Gn,k}. With respect to the
standard innerproduct on Cn, one has the orthogonal complement X⊥ for
any X ∈ Gn,k, so we get a vector bundle γ⊥n,k whose fibre over X ∈ Gn,k is

X⊥. Note that γn,k ⊕ γ⊥n,k ∼= εn.

The importance of the tautological bundle is brought out by the following
theorem.

Theorem 5.2. (Classification theorem) Let X be a CW complex of dimen-
sion ≤ d and let 2(n−k) > d. Then any vector bundle ξ of rank k is isomor-
phic to the pull-back f ∗(γn,k) for some continuous map f : X−→Gn,k. Fur-
thermore, if g : X−→Gn,k is another continuous map such that ξ ∼= g∗(γn,k),
then f and g are homotopic.

Thus the classification theorem says that the set of isomorphism classes
of vector bundles of rank k over a finite dimensional CW-complex X is in
bijection with the set [X,Gn,k] of homotopy classes of maps from X to Gn,k

provided n is large compared to the dimension of X.

Using the above theorem, one can define various characteristic classes of
vector bundles.

Suppose that M is a smooth manfold and that j : A ↪→ M is smooth.
Denote by π:V−→N the projection of the normal bundle ν. Assume that
M is oriented. The normal bundle is orientable as a vector bundle. We
put that orientation on ν so that ν ⊕ TA is isomorphic as oriented vector
bundle to TM |A. V can be identified–preserving orientation–with a tubular
neighbourhood of N in M such that the zero-cross section gets identified with
A itself. Since M and V are oriented, V is also oriented. Let u ∈ Hn−k(V, V \
A; Z) denote the Thom class of V . We denote by u|M the image of u under
the composition Hn−k(V, V \A; Z)

ex←− Hn−k(M,M \A; Z) −→ Hn−k(M ; Z),
where ex is the excision isomorphism.

Proposition 5.3. With the above notation, u|M ∈ Hn−k(M ; Z) equals the
dual cohomology class of A.

We shall omit the proof.

Characteristic classes One has the inclusion Gn,k ↪→ Gn+1,k where we
regard Cn as the subspace of Cn+1 spanned by the first n standard basis
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vectors. Let G∞k denote the union
⋃
n>kGn,k. We topologise G∞,k by union-

topology: A set C is closed in G∞,k if and only if C ∩Gn,k is closed for all n.
One has the tautological bundle γ∞,k over G∞,k whose fibre over L ∈ G∞,k is
the vector space L. It is clear that j∗n(γ∞,k) = γn,k where jn : Gn,k−→G∞,k
is the inclusion.

The importance ofG∞,k is brought out by following classification theorem:

Theorem 5.4. (Classification theorem) Let X be any paracompact topolog-
ical space and ξ any complex vector bundle of rank k over X. Then there
exists a classifying map fξ : X−→G∞,k such that f ∗ξ (γ∞,k) ∼= x. The map fξ
is unique up to homotopy. In particular, one has a bijection from V ectk(X)
to the set [X,G∞,k].

In view of the above classification theorem, γ∞,k is called a universal
bundle and G∞,k, a classifying space for rank k-bundles.

Definition 5.5. Let u ∈ H i(G∞,k; Z). Let ξ be any complex vector bundle of
rank k over a paracompact base space X. Define the u-characteristic class of
ξ, denoted u(ξ) to be f ∗ξ (u) ∈ H i(X; Z).

The u-characteristic class satisfies the following naturality property: if
f : Y−→X is any continuous map, then u(f ∗(ξ)) = f ∗(u(ξ)).

We shall introduce an important family of characteristic classes known as
Chern classes. We define the Chern classes after studying the structure of
cohomology ring of G∞,k.

The space G∞,k has a CW structure having cells only in even-dimensions
and that each Gn,k is a sub complex of G∞,k. The number of cells in
G∞,k in dimension 2r equals the number of sequences (a1, . . . , ak) such that∑

1≤j≤k jaj = r where each aj are non-negative integers. We shall now de-
scribe the CW-structure.

Let I(n, k) denote the set of all k-tuples of positive integers i = (i1, . . . , ik)
where 1 ≤ i1 < · · · < ik ≤ n. Denote by Ci the subspace {L ∈ Gn,k |
dim(Cij ∩ L) = j, dim(Cij−1 ∩ L) = j − 1, 1 ≤ j ≤ k}. Then each Ci is a
cell of (real) dimension 2

∑
1≤j≤k(ij − j). The closure of Ci is the union of

all Cj where j ≤ i, i.e., jl ≤ il for 1 ≤ l ≤ k. The collection {Ci | i ∈ I(n, k)}
yields a CW-structure for Gn,k. Each cell Ci is known as a Schubert cell
and its closure C i a Schubert variety. Indeed C i has the structure of a
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complex projective variety of (complex) dimension
∑

(ij − j) =: |i|. Since
the Schubert varieties are even dimensional (over R), they form a basis for
the integral (co)homology groups of Gn,k. In particular, H i(Gn,k,Z) = 0 if i
is odd.

Note that I(n, k) ⊂ I(n+1, k) and that Gn,k is the sub complex of Gn+1,k

consisting of all Schubert cells Ci, i ∈ I(n, k). Taking the collection of all
Schubert varieties {Ci}, i ∈ I(n, k), n > k, we obtain a CW structure on
G∞,k =

⋃
Gn,k. Again Schubert varieties form a Z- basis for H∗(G∞,k; Z)

and Hodd(G∞,k; Z) = 0.

Given i ∈ I(n, k), we obtain a partition (i1−1) ≤ (i2−2) ≤ · · · ≤ (ik−k)
of

∑
(ij − j) = |i| into k numbers each of which is at most (n− k). One can

associate to this a certain ‘dual’ partition 1a1 . . . kak of |i| where the number
of parts equals

∑
1≤i≤k ai ≤ n−k numbers and each part of the partition is at

most k. (The notation 1a1 . . . kak stands for the partition in which i occurs ai.)
This establishes a bijection between {C i | i ∈ I(n, k), |i| = r} and the set of
partitions {1a1 . . . kak |

∑
iai = r,

∑
ai ≤ n−k}. The latter set is in bijective

correspondence with the set of all monomials {ca1
1 . . . cak

k |
∑
ai ≤ n − k} in

indeterminates ci, 1 ≤ i ≤ k, of total degree 2|i| where each ci given degree
2i. We summarize the above discussion as

Proposition 5.6. The dimension of Hm(Gn,k; Z) is zero if m is odd, and,
when m is even, is equal to the number of partitions of m/2 into at most
(n− k) numbers each of which is less than or equal to k.

The restriction homomorphism Hm(G∞,k; Z)−→Hm(Gn,k; Z) is an iso-
morphism if m ≤ 2(n− k).

When k = 1, the space G∞,k is just the infinite dimensional complex
projective space P∞ and the its cohomology ring is the polynomial ring Z[x]
where −x is the class of the Schubert variety C1 = P1. Observe that degree
of x is 2. Consider the product (P∞)k. The cohomology ring H∗((P∞)k; Z)
is isomorphic, by Künneth theorem, to the polynomial ring Z[x1, . . . , xk]
where xi is the image of x ∈ H2(P∞; Z) under the map induced by the i-th
projection (P∞)k−→P∞.

Let ξ = ξ1 ⊕ · · · ⊕ ξk, where ξr is the pull-back by the r-th pro-
jection (P∞)k−→P∞ of the line bundle γ∞,1. One has a classifying map
ρ : (P∞)k−→G∞,k of ξ. The induced map ρ∗ : H∗(G∞,k; Z)−→H∗((P∞)k; Z)
was shown to be a monomorphism by A. Borel. The symmetric group Sk
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acts on (P∞)k by permuting the factors. If σ ∈ Sk, then ρ ◦ σ is a classifying
map for σ∗(ξ) = ξσ(1) ⊕ · · · ⊕ ξσ(k)

∼= ξ. It follows that ρ is homotopic to
ρ ◦ σ. Therefore ρ∗ = σ∗ρ∗ for all σ ∈ Sn. This means that the image of
ρ∗ is contained in the subring of the cohomology ring H∗((P)k; Z) which is
invariant under the action of the symmetric group Sk. It is readily seen that
this invariant subring equals the ring of symmetric polynomials in x1, . . . , xn.
Denoting the elementary symmetric polynomials in the xi by e1, · · · , ek, we
see that ρ∗(H∗(G∞,k; Z) is contained in the polynomial ring Z[c1, . . . , ck]. A
simple argument using Proposition 5.6 shows that ρ∗ is onto. Thus we con-
clude that H∗(G∞,k; Z) is isomorphic to the polynomial algebra Z[c, . . . , ck]
where ci has degree 2i.

Definition 5.7. Let ξ be a complex vector bundle of rank k over a paracom-
pact base space X. Let fξ : X−→G∞,k be a classifying map for ξ. The i-th
Chern class of ξ is defined to be f ∗ξ (ci), 1 ≤ i ≤ k. We set c0(ξ) = 1 and
cr(ξ) = 0 for r > k. We define the total Chern class of ξ as

∑
i≥0 ci(ξ).

Theorem 5.8. If ξ and ξ′ are complex line bundles over a paracompact
base space X, then c1(ξ ⊗ ξ′) = c1(ξ) + c1(ξ′). The first Chern class map
c1:Pic(X)−→H2(X; Z) is an isomorphism of groups.

Proof: Consider the bundle ξ1 ⊗ ξ2 over P∞ × P∞ where ξ is the pull back
of γ∞,1 over P∞ via the i-th projection P∞ × P∞−→P∞. The total space of
ξ1 ⊗ ξ2 is E(ξ1 ⊗ ξ2) = {([u], [v]; a(u⊗ v)) | [u], [v] ∈ P∞, a ∈ C}.

Consider the C-bilinear map C∞ ⊗ C∞−→C∞ defined as (u, v) 7→∑
r≥0(

∑
i+j=r uivj)er =: u.v where u =

∑
i≥0 uiei and v =

∑
i≥0 viei,. Then

u.v = 0 only if u = 0 or v = 0. Hence it defines a C-linear monomor-
phism ϕ: C∞ ⊗ C∞−→C∞ given by ϕ(u ⊗ v) = u.v and a continuous map
µ : P∞ × P∞−→P∞ which sends ([u], [v]) to [u.v].

One has a bundle map

E(ξ1 ⊗ ξ2)
f−→ E(γ∞,1)

↓ ↓
P∞ × P∞ µ−→ P∞

where f([u], [v]; a(u⊗ v)) := ([u], [v]; aϕ(u⊗ v)).

It follows that µ is a classifying map for ξ1⊗ξ2. Hence c1(ξ1⊗ξ2) = µ∗(x)
(where x = c1(γ∞,1)). Using the fact that µ([u], [e0]) = [u] = µ([e0], [u]) it
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is easy to see that µ∗(x) = x1 + x2 ∈ H2(P∞ × P∞; Z). This verifies the
statement of the proposition in the special case of the bundles ξ1, ξ2 over P∞.

Now let ξ, ξ′ be any two line bundles over a paracompact base space
X. Let f, f ′ : X−→P∞ be classifying maps of ξ, ξ′. Consider the map
F : X−→P∞ defined as F (x) = µ((f(x), f ′(x))). Then F ∗(γ∞,1) = f ∗(ξ1)⊗
f ′∗(ξ2) = ξ ⊗ ξ′. Therefore c1(ξ ⊗ ξ′) = (f, f ′)∗(µ∗(x)) = (f, f ′)∗(x1 + x2) =
f ∗(x1) + f ′ ∗ (x2) = c1(ξ) + c1(ξ′).

This also verifies that c1 : Pic(X)−→H2(X; Z) is a homomorphism. That
it is an isomorphism follows from the fact that P∞ is the Eilenberg-MacLane
space K(Z, 2). 2

We now establish the following

Theorem 5.9. (Whitney product formula) If ξ and η are complex vector
bundles over X, then cr(ξ ⊕ η) =

∑
i+j=r ci(ξ)cj(η).

Proof: Let ξj be the pull-back of γ∞,1 by the jth projection (P∞)n−→P∞.
Let ξ = ξ1 ⊕ ξk, η = ξk+1 ⊕ ξn where rank(ξ) = k and rank(η) = n− k =: l.
We have a diagram of maps which commutes up to homotopy:

(P∞)k × (P∞)l
id−→ (P∞)n

ρξ × ρη ↓ ↓ ρξ⊕η
G∞,k ×G∞,l

ϕ−→ G∞,n

where ϕ, ρξ, and ρη are classifying maps for γ∞,k⊕γ∞,l, ξ, and η respectively.
From this we see that (ρξ×ρη)∗cr(γ∞,k⊕γ∞,l) = ρ∗ξ⊕η(cr(ξ⊕η). As remarked
earlier, ρ∗ξρ

∗
η, and ρ∗ξ⊕η are monomorphisms and ci(γ∞,k) is the ith elementary

symmetric polynomial in x1, · · · , xk. Therefore the Whitney product formula
for the rth Chern class of γ∞,k ⊕ γ∞,l is the immediate consequence of the
relation

er(x1, . . . , xn) =
∑
i+j=r

ei(x1, . . . , xk)ej(xk+1, . . . , xn).

The general case where ξ, η are vector bundles over an arbitrary para-
compact base X follows from this using the naturality of Chern classses and
the classification theorem, Theorem 5.4. We omit the details. 2

As a corollary we obtain the following

Proposition 5.10. If ξ ∼= Hom(ξ,C) denotes the dual of the bundle ξ, then
cr(ξ) = (−1)rcr(ξ) for all r ≥ 1.
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Outline of proof: The proposition follows from Theorem 5.8 when ξ is a line
bundle since that case [Hom(ξ, ε1)] is the inverse [ξ]−1 in Pic(X). Now when
ξ is a direct sum of line bundles ξ1, . . . , ξk over (P∞)k, the result follows from
the Whitney product formula. From this, the result follows for ξ = γ∞,k. The
general case now follows from naturality of Chern classes and the universality
of γ∞,k.

Remark 5.11. The tangent bundle τ of the complex manifold P1 = S2 is
well-known to be γ2,1 ⊗ γ2,1, where γ2,1 denotes the dual of the tautological
bundle. It follows that c1(τ) = −2x1 where x1 is the image of x ∈ H2(P∞; Z)
under the homomorphism induced by the inclusion P1 ⊂ P∞. From our
definition of the generator x of H2(P∞; Z), it follows that 〈x, µ〉 = −1 where
µ ∈ H2(P1; Z) ∼= Z is the fundamental class of P1. It follows that 〈c1(τ), µ〉 =
2 = χ(P2). This explains the choice of the generator x.

More generally, if M is any compact connected complex manifold of di-
mension n and τ the tangent bundle of M , then 〈cn(τ), µM〉 = χ(M), the
Euler characteristic of M .

For a thorough and systematic development of vector bundles and char-
acteristic classes we refer the reader to [17]. For a comprehensive treatment
of K-theory the reader should study [11].
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