TWO PHASE TRANSITIONS IN SYSTEM OF HARD RODS ON TWO DIMENSIONAL

LATTICES

Joyjit Kundu (The Institute of Mathematical Sciences)
Collaborators: R. Rajesh, Deepak Dhar and Jurgen F. Stilck

INTRODUCTION AND THE MODEL e What is the nature of the second transition from nematic to isotropic phase
at high density”

o [s the high density disordered (HDD) phase, a reentrant low-density disor-
dered phase or a qualitatively distinct phase?

e Hard Rods in continuum undergo isotropic-nematic transition with increas-
ing density:.
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The Monte Carlo algorithm is as follows:

Increasing density

0.1

e Remove all the X-mers, reoccupy all the rows with X-mers, keeping Y -mers : e «im = Al o
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e Repeat the same procedure for Y-mers along the columns. | 20 o P - Pl
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Data collapse of Binder cumulant, Order parameter, its second moment, and compressibility for different system sizes of the squar e lattice

What happens on lattices? o

e Square lattice of dimensions L x L. Remove al Xcmers 11— [ e Critical exponents for triangular lattice are same as those of ¢ = 3 Potts

model 1n two dimensions.

e k-mers: Rods occupying £ consecutive lattice sites either in horizontal or

vertical direction having excluded volume interaction.
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Data collapse of Binder cumulant, Order parameter, its second moment, and compressibility for different system sizes of the triangular lattice.

e Eixistence of a crossover length scale > 1400, beyond which nature of cor-
relations changes.
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Intermediate density

e Correlations decay as a power law, up to the given length scale.

Isotropic Nematic

M=3.89, L=252 i

e Entropy per site: Sgis(p = 1) > log2/k* and Syem(p N
st cquilioratesat high density

(b)

(a) Deacy of the Order parameter correlation with distance for square lattice, (b) Cumulative probability distribution of clustersfor square lattice

SIMULATION RESULTS DISCUSSION

e Quantities of interest: e An efficient Monte Carlo algorithm for studying the problem of hard, rigid

p = k(n, +ny)/L? m = k(n, — ny)/L* Q = <
L2 [(p) — (9], and U =1 — ;14

o bixistence of an intermediate nematic phase for k > 7 = two phase e The second transition is demonstrated on both square and triangular lattice o ”» -
.. e Nature of the second transition and the critical exponents are determined
transitions |Ghosh and Dhar 2007]. for b =17

for both square and triangular lattices.

rods on lattices is demonstrated.

e Numerical evidence for the existence of the second phase transition from
nematic to disordered phase is presented.

e [sotropic-nematic transition : 2D Ising (square lattice), 2D ¢ = 3 Potts e Transition is continuous.

(triangular lattice). e [vidence of a crossover over length scale > 1400 is found.

e Critical exponents for square lattice : v = 0.90 £ 0.05, /v = 0.22 £ 0.07,
e [s there an efficient algorithm to study the high density?” B/v =022+ 0.07, v/v = 1.56 £ 0.07.

e It is expected that the nature of the transition will be independent of the
rod length £.
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