<u>Shock Propagation in Loosely</u> <u>Packed Granular Media</u>

Sudhir N. Pathak (Institute of Mathematical Sciences, Chennai) Zahera Jabeen (Univ. Michigan, USA) Purusattam Ray (Institute of Mathematical Sciences, Chennai) R. Rajesh (Institute of Mathematical Sciences, Chennai)

Nuclear Explosion

How does the radius increase with time?

Wednesday 16 January 2013

Dimensional Analysis

$$R(t) = f(E_0, t, \rho, \mathbf{X}_0)$$

$$\begin{bmatrix} E_0 \end{bmatrix} = ML^2T^{-2}$$
$$\begin{bmatrix} \rho \end{bmatrix} = ML^{-d}$$
$$\begin{bmatrix} t \end{bmatrix} = T$$

$$R(t) = c \left(\frac{E_0 t^2}{\rho}\right)^{\frac{1}{d+2}}$$

$$d = 3 \implies R(t) \propto t^{2/5}$$

Comparison with data

<u>A computer model</u>

- Ideal gas
- Particles at rest
- One particle given an impulse
- Interaction only on contact
 - ★ Energy conserving
 - ★ Momentum conserving

<u>A computer model</u>

A computer model

Radius vs time

$$R(t) = c \left(\frac{E_0 t^2}{\rho}\right)^{\frac{1}{d+2}}$$

2 dimensions

3 dimensions

Question

Take the above model and make the collisions inelastic.

How do the results change?

Outline of the talk

- Motivation
- Analysis
- Experiments
- Tweaked models
- Summary

Granular systems

Sand, steel balls, talcum powder

Size $\sim 1 \mu m$ to 1 m m

Mass $\sim 1 mg$

Velocity $\sim 1 cm/s$

$$\frac{KE}{kT} = \frac{10^{-6}10^{-4}}{kT} \approx 10^{10}$$

$$\frac{PE}{kT} = \frac{10^{-6}1010^{-2}}{kT} \approx 10^{13}$$

Temperature plays no role

Phenomenology

Jaeger et al, 1996

Blair et al, 2003

Aranson et al, 2006

Goldhirsch et al, 1993

Key ingredient

Collisions are inelastic

 $v^t = u^t$ $v^n = -ru^n$

r < 1

Freely cooling granular gas

- Give initial energy to particles
- Isolate system
- Energy loss through collisions
- Why study?
 - ★ Isolates effects of inelastic collisions
 - ★ Direct experiments
 - * As parts of larger driven systems
 - * Interacting particle systems

Homogeneous Cooling

$$\frac{dE}{dt} = -\frac{\Delta E}{\tau}$$

$$\frac{dE}{dt} \sim \frac{(1-r^2)E}{a/\sqrt{E}}$$

$$E \sim \frac{1}{(1 - r^2)t^2 + c^2}$$

Haff's law Haff, 1982

Assumption: particles are homogeneously distributed

Clustering

1d-energy

2d-energy

Ben-Naim et al, 1999, Nie et al, 2002

r<1:As t $\rightarrow \infty$, r $\rightarrow 0$

- Breakdown of Haff's law (kinetic theory)
- New regime: inhomogeneous clustered regime

Microgravity

Tatsumi et al, 2009

Experiments (indirect)

Ferguson et al, 2004

Experiments

- friction
- boundary effects
- Will argue for failure of kinetic theory for shock problem, but experimentally realizable

Boudet et al, PRL 2009

Crater formation

Walsh et al, PRL 2003

Experiments

Cheng et al, Nature Phys, 2008

Details of simulation: a constant coefficient of restitution?

Coefficient of Restitution

 $r \to 1$ when $v \to 0$ $r \to r_0$ when $v \to \infty$

Do we need δ ?

Inelastic collapse

Event driven simulations

Interaction only on contact Find out minimum of all collision times Advance time to that collision time For every time step $O(N^2)$ calculations Divide space into small cells Expand events to include collisions and cell crossing Now, all calculations are local

Computer simulation

Computer simulation

Elastic vs Inelastic

Inelastic particles

Scaling analysis

Let $R_t \sim t^{\alpha}$

Wednesday 16 January 2013

Length scales

Do all these lengths scale as t^{α} ?

Length scales

 $\begin{pmatrix} \langle R_x^2 \rangle & \langle R_x R_y \rangle \\ \langle R_x R_y \rangle & \langle R_u^2 \rangle \end{pmatrix}$

 $A = \left(\frac{\lambda_1 - \lambda_2}{\lambda_1 + \lambda_2}\right)^2$

Probability distribution (2-D)

Scaling analysis

Let $R_t \sim t^{\alpha}$

$$v_t = \frac{dR_t}{dt} \sim t^{\alpha - 1}$$

 $N_t \sim R_t^d \sim t^{\alpha d}$

$$E_t \sim N_t v_t^2 \sim t^{\alpha d + 2\alpha - 2}$$

Scaling (elastic limit)

$$E_t \sim N_t v_t^2 \sim t^{\alpha d + 2\alpha - 2}$$

But energy is a constant

$$\alpha d + 2\alpha - 2 = 0$$

$$\alpha = \frac{2}{d+2}$$

Scaling (inelastic limit)

- clustering for all r < 1
- Particle direction remains constant

Radial Momentum

• radial momentum is conserved

Scaling (inelastic limit)

 $N_t v_t d\Omega = ext{constant}$ lpha d + lpha - 1 = 0 $lpha = rac{1}{d+1}$ $lpha_{el} = rac{2}{d+2}$

<u>A calculation in one dimension</u>

Simulation-2d

 $\langle N(t) \rangle \sim t^{2/3}$

 $\langle E(t) \rangle \sim t^{-2/3}$

<u>Comparison with</u> <u>kinetic theory</u>

Simulation-3d

 $\langle N(t) \rangle \sim t^{3/4}$

 $\langle E(t) \rangle \sim t^{-3/4}$

<u>δ-dependence</u>

Experiments

Boudet et al, PRL 2009

Data (Shock)

Non-zero ambient

<u>temperature</u>

Non-zero ambient

<u>temperature</u>

Non-zero ambient

<u>temperature</u>

Model with escape rate

Model with escape rate

Crater formation

Walsh et al, PRL 2003

Data (Crater)

Viscous fingering

Cheng et al, Nature Phys, 2008

Driven gas (elastic)

Driven gas (elastic)

Driven gas

Driven gas (removal)

Scaling argument

Constant rate of increase of radial momentum

 $R \sim t^{2/3}$

Experiment

Summary & Outlook

- A generalization of the Taylor-Sedov problem
- Inelastic \Rightarrow clustering and band formation
- Conservation of radial momentum
- Exponents independent of r, form of r(v)
- Describes experimental data well

Summary & Outlook

- Understanding crossovers
- Can the freely cooling gas be understood?
- Can one solve for pressure, density distribution?
- Can experimental data be improved?