
Shock Propagation in Loosely 
Packed Granular Media

Sudhir N. Pathak(Institute of Mathematical Sciences, Chennai)
Zahera Jabeen (Univ. Michigan, USA)

Purusattam Ray (Institute of Mathematical Sciences, Chennai)
R. Rajesh (Institute of Mathematical Sciences, Chennai)

Wednesday 16 January 2013



Nuclear Explosion

How does the radius increase with time?
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Dimensional Analysis

[E0] = ML2T−2

[ρ] = ML−d

[t] = T

d = 3 =⇒ R(t) ∝ t2/5

R(t) = c

(
E0t2

ρ

) 1
d+2

R(t) = f(E0, t, ρ, T0)
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Comparison with data
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A computer model

• Ideal gas

• Particles at rest

• One particle given an impulse

• Interaction only on contact
★ Energy conserving

★ Momentum conserving
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A computer model
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A computer model

Wednesday 16 January 2013



Radius vs time
R(t) = c

(
E0t2

ρ

) 1
d+2
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Question

Take the above model and make 
the collisions inelastic.  

How do the results change?
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Outline of the talk

• Motivation

• Analysis

• Experiments

• Tweaked models

• Summary
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Granular systems
Sand, steel balls, talcum powder

Size ∼ 1µm to 1mm

Mass ∼ 1 mg

Velocity ∼ 1cm/s

KE

kT
=

10−610−4

kT
≈ 1010

PE

kT
=

10−61010−2

kT
≈ 1013

Temperature plays no role
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Phenomenology

Jaeger et al, 1996

Blair et al, 2003 Goldhirsch et al, 1993 

Aranson et al, 2006
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Key ingredient

u

u t

un

Collisions are inelastic

vt = ut

vn = −run

r < 1
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Freely cooling granular gas

• Give initial energy to particles

• Isolate system

• Energy loss through collisions

• Why study?

★ Isolates effects of inelastic collisions

★ Direct experiments

★ As parts of larger driven systems

★ Interacting particle systems
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Homogeneous Cooling

dE

dt
∼ (1− r2)E

a/
√

E

E ∼ 1
(1− r2)t2 + c2

Haff’s law Haff, 1982

dE

dt
= −∆E

τ

Assumption: particles are homogeneously distributed
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Clustering
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Clustering

Wednesday 16 January 2013



1d-energy 2d-energy

Ben-Naim et al, 1999, Nie et al, 2002 r<1: As t →∞, r → 0

Clustering
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Clustering

• Breakdown of Haff ’s law (kinetic theory)

• New regime: inhomogeneous clustered 
regime
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Experiments

Maaβ et al, 2008

Levitation
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Experiments
Microgravity

Tatsumi et al, 2009
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Experiments (indirect)

Ferguson et al, 2004
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Experiments

• friction

• boundary effects

• Will argue for failure of 
kinetic theory for shock 
problem, but experimentally 
realizable
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Boudet et al, PRL 2009

Experiments
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Experiments

Walsh et al, PRL 2003

Crater formation
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Experiments

Cheng et al, Nature Phys, 2008
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Details of simulation: a constant 
coefficient of restitution?

Brass Aluminium

Marble

r → 1 when v → 0

r → r0 when v →∞

C. V. Raman, 1918
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Coefficient of Restitution

r

v

1

δ

r → 1 when v → 0

r → r0 when v →∞
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Do we need δ?
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Event driven simulations
Interaction only on contact

Find out minimum of all collision times 

Advance time to that collision time

For every time step O(N2) calculations 

Divide space into small cells

Expand events to include collisions and cell crossing

Now, all calculations are local
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Computer simulation
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Computer simulation

Wednesday 16 January 2013



Elastic vs Inelastic

Elastic particles Inelastic particles
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Scaling analysis

Let Rt ∼ tα
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Length scales

R1

R2

δR

Do all these lengths scale as tα ?
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Length scales
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Probability distribution 
(2-D)
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Scaling analysis

vt =
dRt

dt
∼ tα−1

Let Rt ∼ tα

Et ∼ Ntv
2
t ∼ tαd+2α−2

Nt ∼ Rd
t ∼ tαd
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Scaling (elastic limit)

Et ∼ Ntv
2
t ∼ tαd+2α−2

But energy is a constant

αd + 2α− 2 = 0

α =
2

d + 2
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Scaling (inelastic limit)
• clustering for all r < 1

• Particle direction remains constant
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Radial Momentum
• radial momentum is conserved
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Scaling (inelastic limit)

NtvtdΩ = constant

αd + α− 1 = 0

α =
1

d + 1

αel =
2

d + 2
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A calculation in one dimension
a av0

Special case: r=0 [sticky limit]

After m− 1 collisions, mass of particle is m

Momentum conservation =⇒ vm−1 = v0
m

tm = a
v0

+ a
v1

+ . . . + a
vm−1

= a
∑m

i=1
i

v0
∝ m2

m ∼ Nt ∼ Rt ∼
√

t

α = 1
2 , d = 1 α =

1
d + 1

Recall
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Simulation-2d

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 2  3  4  5  6  7  8  9  10  11  12

lo
g[

N
(t)

]

log(t)

Number - 2D

r=0.1
r=0.5
r=0.8

t2/3

-8
-7
-6
-5
-4
-3
-2
-1
 0
 1

 2  3  4  5  6  7  8  9  10  11  12

lo
g[

E(
t)]

log(t)

Energy - 2D

r=0.1
r=0.5
r=0.8

t-2/3

〈N(t)〉 ∼ t2/3 〈E(t)〉 ∼ t−2/3
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Comparison with 
kinetic theory
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Eq. (6)
Simulation
Slope = 1/3

Wednesday 16 January 2013



Simulation-3d

〈E(t)〉 ∼ t−3/4〈N(t)〉 ∼ t3/4
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δ-dependence
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Experiments

Boudet et al, PRL 2009
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Data (Shock)
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Non-zero ambient 
temperature
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Non-zero ambient 
temperature
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Non-zero ambient 
temperature
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Model with escape rate
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Model with escape rate
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Experiment 

Walsh et al, PRL 2003

Crater formation
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Data (Crater)
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Experiment 
Viscous fingering

Cheng et al, Nature Phys, 2008
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Driven gas (elastic)
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Driven gas (elastic)
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Driven gas
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Driven gas
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Driven gas (removal)
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Scaling argument

Constant rate of increase of 
radial momentum

R ∼ t2/3
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Experiment
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Summary & Outlook

• A generalization of the Taylor-Sedov problem

• Inelastic ⇒ clustering and band formation

• Conservation of radial momentum

• Exponents independent of r, form of r(v)

• Describes experimental data well
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Summary & Outlook

• Understanding crossovers

• Can the freely cooling gas be 
understood?

• Can one solve for pressure, 
density distribution?

• Can experimental data be 
improved?
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