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Abstract – We study the response of a granular system at rest to an instantaneous input of energy
in a localised region. We present scaling arguments that show that, in d dimensions, the radius of
the resulting disturbance increases with time t as tα, and the energy decreases as t−αd, where the
exponent α= 1/(d+1) is independent of the coefficient of restitution. We support our arguments
with an exact calculation in one dimension and event-driven molecular-dynamics simulations of
hard-sphere particles in two and three dimensions.
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Granular systems, predominantly characterised by dissi-
pative collisional dynamics, are ubiquitous in nature and
exhibit a wide variety of very rich and striking physi-
cal phenomena [1]. Although many experimental stud-
ies have captured the complexity of these systems by
studying phenomena ranging from clustering instability,
co-existence of phases to non-Maxwellian velocity distribu-
tions (see [1,2] for reviews), the theoretical understand-
ing of these systems is far from complete (see [3–5] for
reviews). Hence, it is imperative to study simple models
that capture some distinctive features of the system, yet
are amenable to analysis.
A model that has attracted considerable attention in

the past is the freely cooling granular gas, where initially,
particles are homogeneously distributed in space with
velocities drawn from a normalizable distribution function.
These particles move ballistically and lose energy through
inelastic collisions [6–17]. After an initial homogeneous
cooling regime, where energy Et at time t decays as Et ∼
(1+Ct)−2 (Haff’s law [18]), C being a constant, clustering
instability sets in [7]. In the clustered regime, the energy
decays with a different power law, with an exponent which
depends on the dimension but not upon the coefficient of
restitution [11–13,17]. The exponent is known analytically
in one dimension through a mapping to the Burgers
equation (Et ∼ t

−2/3) [10,19]. In higher dimensions, the
exponents obtained from the analogy to Burgers equation
(Et ∼ t

−d/2, d� 2) [12] differ from that obtained from
mean-field scaling arguments (Et ∼ t

−2d/d+2) [6] and from
simulations of the Boltzmann equation [13,20]. The precise

(a)E-mail: zahera@imsc.res.in

 400

 450

 500

 550

 600

 650

 400  450  500  550  600

(a)

 0

 200

 400

 600

 800

 1000

 0  200  400  600  800  1000

(b)

Fig. 1: (Color online) Shown are the positions of particles
that have undergone at least one collision, following input of
energy at (500, 500) for (a) the inelastic case (r= 0.1) at times
t= 5000, 10000, 20000, 50000, and (b) elastic case (r= 1.0) at
time t= 25000.

value of the exponents in two and higher dimensions in this
model have remained uncertain.
In this paper, we consider a simple and tractable model

of inelastic particles where the particles are initially at
rest and the system is perturbed by imparting momentum
to a single particle. This in turn leads to motion of
other particles by inter-particle inelastic collisions, and
the particles cluster to form a nearly spherical shell that
propagates radially outwards in time (see fig. 1(a)). Using
scaling arguments and numerical simulations, we show
that the scaling behaviour of energy and the radius of the
disturbance with time is independent of the coefficient of
restitution. The results obtained from scaling arguments
are confirmed by an exact calculation in one dimension
and event-driven molecular-dynamics simulations in two
and three dimensions.
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The corresponding problem when collisions are elastic is
the classic Taylor-von Neumann-Sedov problem of shock
propagation following a localised intense explosion [21].
In this case, the particles remain isotropically distribu-
ted (see fig. 1(b)) and the exponents can be obtained
by simple dimensional analysis [22], while the scaling
functions can be calculated exactly following a more
detailed analysis [21,23]. The simulations and scaling
arguments for a hard-sphere model with elastic collisions
were recently done in ref. [24]. Other studies on response to
singular perturbation have focussed on signal propagation
in driven dilute granular gas [25] as well as in dense static
granular material (see [26] and references within).
Our model consists of a collection of monodisperse hard

spheres (in simulation we have taken 2.5× 105 and 2× 106

particles in two and three dimensions, respectively) of
finite diameter (unity in simulation) distributed randomly
in space such that no two particles overlap (in simulation
the number density n= 0.25 in both two and three dimen-
sions). Periodic boundary conditions are implemented in
all directions. All the particles are initially at rest. A single
particle is chosen at random and given a velocity �v0 of unit
magnitude along a random direction. The particle motion
is ballistic till it collides with other particles. The collisions
conserve momentum and the velocities change determin-
istically according to the following collision rules: if the
velocities before and after collision are u1, u2, and v1, v2
respectively, then

v1,2 = u1,2− ǫ[n · (u1,2−u2,1)]n, (1)

where r= 2ǫ− 1(0< r < 1) is the coefficient of restitution
and n is the unit vector directed from center of particle 1 to
center of particle 2. Thus, the tangential component of the
relative velocity remains unchanged, while the magnitude
of the longitudinal component is reduced by a factor r.
For r < 1, the system undergoes inelastic collapse in

which infinite collisions take place in finite time [27].
This computational difficulty is avoided by making the
collisions elastic when the longitudinal relative velocity
is less than a cutoff velocity δ [11]. This qualitatively
captures the experimental situation where r is seen to be a
function of the relative velocity [28,29]. In our simulation,
we set δ= 10−4.
Consider now the result of a typical simulation (see

fig. 1(a)). Let Rt be the typical radius of the shock profile
at time t. We assume that this is the only relevant length
scale in the problem, and the width of the moving region
also scales as Rt. Let vt be the typical speed, Nt the
number of active particles (particles that have undergone
collisions), and Et the total kinetic energy at time t. These
quantities are related to each other through simple scaling
relations. The speed vt is related to Rt as vt ∼ dRt/dt.
The number of particles that have undergone collisions is
proportional to the volume swept out by the disturbance:
Nt ∼R

d
t , where d is the dimension. Energy is then given

by Et ∼Ntv
2
t .

We look for scaling solutions of the kind Rt ∼ t
α, where

α is a scaling exponent. Then,

vt ∼ t
α−1, (2)

Nt ∼ t
αd, (3)

Et ∼ t
αd+2α−2. (4)

The above relations hold good for both elastic and
inelastic collisions. We now analyse the two cases sepa-
rately. For the elastic gas, energy is a constant of motion.
This implies

α=
2

d+2
, r= 1. (5)

This result coincides with exponents obtained for one
and two dimensions in the hard-sphere model with elastic
collisions [24], and for three dimensions in the Taylor-
Sedov problem of shock propagation, where the radius of
the shock front grows as Rt ∼ t

2/5 [22].
For the inelastic case, there is one unknown exponent α

which is determined by the following argument. In general,
when collisions are dissipative, particles tend to cluster
together. In the problem studied in this paper as well,
a short time after the initial perturbation, the particles
that have undergone at least one collision concentrate
themselves into a narrow band. Results of a typical
simulation are shown in fig. 1(a), which clearly shows
the band formation. Though the data shown is for r=
0.1, formation of bands is seen for all r < 1. Due to the
band formation, radial momentum is purely outwards.
All collisions being momentum conserving, the radial
momentum will be conserved. The radial momentum
carried by the particles in a small solid angle dΩ scales as
vtR

d
t dΩ. The conservation law implies that vtR

d
t ∼ const,

or equivalently, vt ∼R
−d
t ∼ t

−αd. Comparing with eq. (2),
we immediately obtain

α=
1

d+1
, r < 1. (6)

In one dimension, the above scaling result can be
checked by a simple calculation. Consider the sticky limit
r= 0, when the particles coalesce on collision. Let particles
of unit mass be initially placed on a lattice with spacing
a. Let the particle at the origin be given a velocity v0 to
the right. When this particle collides with its neighbour,
it coalesces with it. The mass of this composite particle
after m collisions is then m, and its velocity, given by
momentum conservation, is vm = v0/m towards the right.
The time taken for m collisions is given by

tm =

m−1
∑

i=0

a

vi
, (7)

=
am(m− 1)

2v0
. (8)

At large times,m≈
√

2v0t/a. Butm is identical to Nt and
Rt, which by definition scales as t

α. This gives α= 1/2,
consistent with that obtained by setting d= 1 in eq. (6).
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Fig. 2: The anisotropy index A(t) of the band in two dimensions
is plotted as a function of time t for different values of the
coefficient of restitution r. A(t) converges to a value less than
one for all r.

In two and three dimensions, the scaling arguments are
tested numerically using event-driven molecular-dynamics
simulations [30]. The data presented is averaged typically
over 100 different initial realizations of the particles. All
lengths are measured in units of the particle diameter,
and time in units of initial mean collision time 1/(v0n

1/d),
where v0 is unity in the simulations. We first check the
validity of the assumption of a single length scale Rt.
Figure 2 shows the variation in two dimensions of the
anisotropy index A(t) with time, where the anisotropy
index is given by A(t) = 〈[(λ1−λ2)/(λ1+λ2)]

2〉, λ1, λ2
being the eigenvalues of the moment of inertia tensor [31].
If the transverse and longitudinal radii scale differently
with time, then A(t) should converge to unity at large
times. However, A(t) is found to converge to a constant less
than one for all r. For r= 1, A(t) converges to zero at large
times. We conclude that though the shape of the front is
anisotropic for r < 1, all length scales scale identically with
time.
We check the scaling relations eqs. (3), (4), and (6) by

measuring the mean number of active particles 〈Nt〉 and
the mean kinetic energy per particle 〈Et〉 as a function of
time. In two dimensions, the scaling argument gives 〈Nt〉 ∼
t2/3, 〈Et〉 ∼ t

−2/3, while in three dimensions 〈Nt〉 ∼ t
3/4,

〈Et〉 ∼ t
−3/4. In fig. 3(a) and (b), we show the variation

with time of Nt and Et in two and three dimensions. For
larger r, it takes longer time to reach the scaling regime.

This crossover time t
(1)
c reflects the transition of the

particles from the initial homogeneous spatial distribution

to the clustered state. We find that t
(1)
c diverges in the

elastic limit as t
(1)
c ∼ (1− r2)−φ1 , where φ1 ≈ 2.25 in two

dimensions and φ1 ≈ 3.0 in three dimensions. In addition,
at large times, the system crosses over to the elastic

regime when vt ∼ δ. This crossover time t
(2)
c can be seen

in fig. 4, in which the mean kinetic energy 〈Et〉 in two
dimensions is plotted as a function of time for different
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Fig. 3: Simulation results for the (a) the mean number of
active particles 〈Nt〉 and (b) the mean kinetic energy 〈Et〉 as
a function of time t. In both the plots, the top three curves
correspond to three dimensions and the bottom three curves
correspond to two dimensions. The different data correspond
to the coefficients of restitution r= 0.1 (♦), 0.5 (△), 0.8 (�).
The solid lines have exponents obtained from scaling theory.
The data have been shifted for the sake of clarity.
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Fig. 4: The mean kinetic energy per particle 〈Et〉 as a function
of time t is plotted in two dimensions for coefficient of resti-
tution r= 0.1 and cutoff velocities δ= 10−2, 10−3, 10−4, 10−5.
The straight line has slope −2/3.

cutoff velocities δ. The crossover time scales as t
(2)
c ∼ δ−φ2

where φ2 = 1/(1−α) (3/2 in d= 2 and 4/3 in d= 3).
Within these limitations, the numerical data shows good
agreement with the theoretical prediction shown with solid
lines.
We check the scaling relations for Rt and vt by studying

the radial and the velocity distribution function. The
radial distribution function P (R, t) measures the mean
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Fig. 5: Results in two dimensions for (a) the radial distribution
function P (R, t) and (b) the velocity distribution function
P (v, t), when scaled as in eqs. (9) and (10) with scaling
exponent α= 1/3. The scaling collapse has been obtained for
times t= 25000 (♦), 37500 (△), and 50000 (�). The coefficient
of restitution is r= 0.1.

number of active particles at a distance R from the center
of mass of the active particles at time t. The velocity
distribution function P (v, t) measures the probability that
a randomly chosen active particle has speed v at time
t. These distribution functions should be a function of a
single scaling variable:

P (R, t) = t−αf1(Rt
−α), (9)

P (v, t) = t1−αf2(vt
1−α), (10)

where f1 and f2 are scaling functions. These scaling
collapses are verified numerically in two dimensions (see
fig. 5) and in three dimensions (see fig. 6). The data shown
is for one value of the coefficient of restitution (r= 0.1),
but the same is observed for other values of r. The scaling
function f2(vt

1−α) decays exponentially at large speeds
v. Such non-Maxwellian behaviour is typical of granular
systems [32–34]. We also observe that the faster particles
are in the inside edge of the collapsed band, thus making
the bands stable.
We also studied the structure of the collapsed bands.

For that, the packing fraction of the particles in the bands
was numerically calculated by dividing the space into cells
of linear length 10, and counting the number of particles
in each cell. For all r < 1, the typical packing fraction seen
at large times ranges from 0.78 to 0.82 in two dimensions.
This value is very close to 0.84, the packing fraction
of random close packed structures seen in jamming of
frictionless spherical particles [35]. For r= 1, the packing
fraction is ∼ 0.47, showing that the particles are very
loosely packed.
To conclude, we studied the problem of shock propa-

gation in granular (inelastic) systems and obtained scal-
ing solutions for the problem. In one dimension, the exact
result for the sticky limit (r= 0) corroborated the scal-
ing solution. In two and three dimensions, we verified
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Fig. 6: Results in three dimensions for (a) the radial distrib-
ution function P (R, t) and (b) the velocity distribution func-
tion P (v, t), when scaled as in eqs. (9) and (10) with scaling
exponent α= 1/4. The scaling collapse has been obtained for
times t= 30000 (♦), 50000 (△) and 75000 (�). The coefficient
of restitution is r= 0.1.

our results using event-driven molecular-dynamics simula-
tions. Our analysis showed conclusively the universality (r-
independence) of the scaling solutions and its dependence
only on the spatial dimension. We retrieved the earlier
results for the classic Taylor-von Neumann-Sedov prob-
lem corresponding to the elastic limit (r= 1). For r < 1,
we obtained an explicit expression for the scaling exponent
at late times. Similar exponents in the related problem of
the freely cooling granular gas have remained inconclusive
as yet.
The model discussed in this paper also has experimental

significance. Direct experiments on freely cooling gas are
difficult due to friction and boundary effects. Recent
experiments reproduced the energy decay law in the
homogeneous cooling regime [36], but not in the clustered
regime. The boundary effects will be eliminated if the
granular gas is initially at rest, making the problem
discussed in this paper more easily reproducible in the
laboratory.
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