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Reentrant disordered phase in a system of repulsive rods on a Bethe-like lattice
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We solve exactly a model of monodispersed rigid rods of length k with repulsive interactions on the random
locally tree-like layered lattice. For k � 4 we show that with increasing density, the system undergoes two phase
transitions: first, from a low-density disordered phase to an intermediate density nematic phase and, second, from
the nematic phase to a high-density reentrant disordered phase. When the coordination number is four, both phase
transitions are continuous and in the mean field Ising universality class. For an even coordination number larger
than four, the first transition is discontinuous, while the nature of the second transition depends on the rod length
k and the interaction parameters.

DOI: 10.1103/PhysRevE.88.012134 PACS number(s): 64.60.Cn, 64.70.mf, 64.60.F−, 05.50.+q

I. INTRODUCTION

A system of long hard rods in three dimensions undergoes a
phase transition from a disordered phase with no orientational
order to an orientationally ordered nematic phase as the
density of rods is increased beyond a critical value [1–3]
and has applications in the theory of liquid crystals [4,5].
In two dimensions, though an ordered phase that breaks a
continuous symmetry is disallowed [6], the system undergoes
a Kosterlitz-Thouless-type transition from an isotropic phase
with exponential decay of orientational correlation to a high-
density critical phase [7–10]. On two-dimensional lattices,
remarkably, there are two entropy-driven transitions for long
rods: first, from a low-density disordered (LDD) phase to an
intermediate density nematic phase, and, second, from the
nematic phase to a high-density disordered (HDD) phase [11].
While the existence of the first transition has been proved
rigorously [12], the second transition has been demonstrated
only numerically [13]. In this paper, we consider a model
of rods interacting via a repulsive potential on the random
locally tree-like layered lattice and through an exact solution
show the existence of two phase transitions as the density is
varied.

We describe the lattice problem in more detail. Rods
occupying k consecutive lattice sites along any lattice direction
will be called k-mers. No two k-mers are allowed to intersect,
and all allowed configurations have the same energy. For
dimers (k = 2), it is known that the system remains disordered
at all packing densities [14]. For k � kmin, it was argued that
the system of hard rods would undergo two phase transitions as
density is increased [11]. On both the square and the triangular
lattices kmin = 7 [11,15]. Monte Carlo studies show that the
first transition from LDD phase to nematic phase is continuous
and is in the Ising universality class for the square lattice and in
the three-state Potts model universality class for the triangular
lattice [15–19]. The existence of this transition has been proved
rigorously for large k [12]. The second transition from the
nematic to HDD phase was studied using an efficient algorithm
that ensures equilibration of the system at densities close to full
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packing [13,20]. On the square lattice the second transition is
continuous with effective critical exponents that are different
from the two-dimensional Ising exponents, though a crossover
to the Ising universality class at larger length scales could
not be ruled out [13]. On the triangular lattice the second
transition is continuous, and the critical exponents are nu-
merically close to those of the first transition. This raises the
question whether the LDD and HDD phases are the same or
different.

Is there a solvable model of k-mers that shows two
transitions with increasing density and throws light on the
HDD phase? The hard core k-mer problem was solved exactly
on the random locally tree-like layered lattice (RLTL), a
Bethe-like lattice [21]. This lattice was introduced because
a uniform nematic order is unstable on the more conventional
Bethe lattice when the coordination number is larger than
four. However, on the RLTL, while a stable nematic phase
exists for all even coordination numbers greater than or equal
to four, the second transition is absent for hard rods [21].
In this paper, we relax the hard-core constraint and allow
k-mers of different orientations to intersect at a lattice site.
Weights u,v, . . . are associated with sites that are occupied
by two, three, . . . , k-mers. When the weights are zero, we
recover the hard rod problem. We solve this model on the
RLTL and show that for a range of u,v, . . ., the system
undergoes two transitions as the density is increased: first,
from a LDD phase to a nematic phase and, second, from
the nematic phase to a HDD phase. For coordination number
q = 4, the two transitions are continuous and belong to the
mean field Ising universality class. For q � 6, where q is
an even integer, while the first transition is first order, the
second transition is first order or continuous depending on the
values of k,u,v, . . . . In all cases, it is possible to continuously
transform the LDD phase into the HDD phase in the ρ-
interaction parameters phase diagram without crossing any
phase boundary, showing that the LDD and HDD phases are
qualitatively similar, and hence the HDD phase is a reentrant
LDD phase.

The rest of the paper is organized as follows. In Sec. II
we recapitulate the construction of RLTL and formulate the
model of rods on this lattice. In Sec III we derive the analytic
expression for free energy for fixed density of horizontal and
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vertical k-mers on the four-coordinated RLTL. It is shown that
the system undergoes two continuous phase transitions for
k � 4. In Sec. IV the free energy is computed for coordination
number q = 6, and the dependence of the nature of the
transition on the different parameters is detailed. Section V
summarizes the main results of the paper and discusses some
possible extensions.

II. THE RLTL AND DEFINITION OF THE MODEL

The RLTL was introduced in Ref. [21]. In this section, we
recapitulate its construction for coordination number q = 4.
Generalization to larger even values of q is straightforward.
Consider a collection of M layers, each having N sites. Each
site in layer m is connected to the sites in layer (m − 1) by
two bonds. To distinguish between two orientations, the bonds
are divided into two types: X and Y . Each site in the mth
layer is connected with exactly one randomly chosen site
in the (m − 1)-th layer with a bond of type X. Similarly
bonds of type Y are also connected by random pairing of
sites in the two adjacent layers. Hence, the total number of
such possible pairing between two layers is (N !)2. A typical
bond configuration is shown in Fig. 1. For a q-coordinated
lattice with periodic boundary conditions, the total number of
different possible graphs is (N !)qM/2, and with open boundary
conditions there are (N !)q(M−1)/2 different possible graphs. In
the thermodynamic limit, the RLTL contains few short loops
and locally resembles a Bethe lattice.

We consider a system of monodispersed rods of length k

on the RLTL. A k-mer occupies (k − 1) consecutive bonds
of same type. Rods on an X (Y )-type of bonds will be called
x-mers (y-mers). Weights eμ1 and eμ2 are associated with each
x-mer and y-mer, where μ’s are chemical potentials. Linear
rods comprising k monomers are placed on the RLTL such that
a site can be occupied by utmost two k-mers. Two k-mers of
the same type cannot intersect. A weight u is associated with
every site that is occupied by two k-mers of different type. The
limiting case u = 0 corresponds to the hard core problem. For
even q � 6, a site can be occupied by utmost q/2 k-mers, each
of different type.

mm− 1 M1

FIG. 1. (Color online) Schematic diagram of the RLTL with
N = 6 sites per layer and coordination number 4. A typical bond
configuration between layers m − 1 and m is shown with X bonds in
red (solid) lines and Y bonds in blue (dotted) lines.

For a given bond configuration R, let ZR(M,N ) denote
the partition function, the weighted sum over all possible
rod configurations. We then define the average partition
function as

Zav(M,N ) = 1

NR

∑
R

ZR(M,N ), (1)

where NR is the number of different bond configurations on
the lattice. In the thermodynamic limit the mean free energy
per site is obtained by

f = − lim
M,N→∞

1

MN
ln Zav, (2)

where the temperature and Boltzmann constant have been set
equal to 1.

III. k-MERS ON RLTL WITH COORDINATION
NUMBER 4

In this section, we calculate the free energy of the system
on the RLTL of coordination number four for fixed u and fixed
densities of x-mers and y-mers. The phase diagram of the
system is obtained by minimizing the free energy with respect
to x-mer and y-mer densities for a fixed total density.

A. Calculation of free energy

To calculate the partition function, consider the operation
of adding the mth layer, given the configuration up to the
(m − 1)-th layer. The number of ways of adding the mth layer
is denoted by Cm. Cm will be a function of the number of
x-mers and y-mers passing through the mth layer and the
number of intersections between x-mers and y-mers at the
mth layer.

Let xm (ym) be the number of x-mers (y-mers) whose
leftmost sites or heads are in the mth layer. Xm and Ym are
the number of sites in the mth layer occupied by x-mers and
y-mers, respectively, but where the site is not the head of the
k-mer. Clearly,

Xm =
k−1∑
j=1

xm−j , Ym =
k−1∑
j=1

ym−j , 1 � m � M, (3)

with xm = ym = 0, for m � 0. To have all k-mer fully
contained with in the lattice for open boundary condition we
need to impose, xm = ym = 0 for, m � M − k + 2.

In a k-mer, let h denote its head or left most site and b denote
the other k − 1 sites. Then we define �m

ij , where i,j = h,b, to
be the number of intersections at the mth layer between site
i of an x-mer and site j of a y-mer. For instance, �m

hh is the
number of sites in the mth layer, occupied simultaneously by
the heads of an x-mer and a y-mer.

Given {xm}, {ym}, and {�m
ij }, the calculation of Cm reduces

to an enumeration problem. The details of the enumeration are
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given in the Appendix. We obtain

Cm = N !Xm!Ym!(N − Xm)!(N − Ym)!(
xm − �m

hh − �m
hb

)
!
(
ym − �m

hh − �m
bh

)
!
(
Xm − �m

bb − �m
bh

)
!
(
Ym − �m

bb − �m
hb

)
!

× 1(
N − Xm − Ym − xm − ym + ∑

i,j=b,h �m
ij

)
!
∏

i,j=b,h �m
ij !

. (4)

The partition function is then the weighted sum of the product
of Cm for different layers:

Zav = 1

(N !)2M

∑
{xm},{ym},{�m

ij }

∏
m

(
Cmeμ1xmeμ2ymu

∑
ij �m

ij

)
, (5)

where the sum is over all possible number of x-mers, y-mers,
and number of doubly occupied sites. Each term in the sum in
Eq. (5) is of order exp(NM). Hence, for large N,M , we replace
the summation with the largest summand with negligible
error. To find the summand that maximizes the sum, we
extremize the summand with respect to the variables that are
summed over. For example, to maximize with respect to xl , we
set

C
({xm + δm,l},{ym},{�m

ij

})
eμ1

C
({xm},{ym},{�m

ij

}) ≈ 1, (6)

where C = ∏
m Cm. Likewise, we can write equations for each

of the variables.
We look for homogeneous solutions such that ρx = xmk/N ,

ρy = ymk/N , and γij = �m
ij /N are variables that are indepen-

dent of N and have no spatial dependence. Here ρx and ρy are
fractions of sites in any layer that are occupied by x-mers and
y-mers, respectively. In terms of these variables, Eq. (6) and
the corresponding one obtained by maximizing with respect
to yj reduce to
(
ρx − ρx

k

)k−1(
1 − ρ + ∑

ij γij

)k( ρx

k
− γhh − γhb

)−1

(
1 − ρx + ρx

k

)k−1(
ρx − ρx

k
− γbb − γbh

)k−1 = e−μ1

(7)

and(
ρy − ρy

k

)k−1(
1 − ρ + ∑

ij γij

)k( ρy

k
− γhh − γbh

)−1

(
1 − ρy + ρy

k

)k−1(
ρy − ρy

k
− γbb − γhb

)k−1 = e−μ2 ,

(8)

where ρ = ρx + ρy is the total density.

The summand in Eq. (5) has to be now maximized with
respect to the intersection parameters {�l

ij }. On doing so, we
obtain[
ρx

(
1 − 1

k

) − γbb − γbh

][
ρy

(
1 − 1

k

) − γbb − γhb

]
γbb

(
1 − ρ + ∑

ij γij

) = 1

u
,

(9a)(
ρx

k
− γhh − γhb

)( ρy

k
− γhh − γbh

)
γhh

(
1 − ρ + ∑

ij γij

) = 1

u
,

(9b)(
ρx

k
− γhh − γhb

)[
ρy

(
1 − 1

k

) − γbb − γhb

]
γhb

(
1 − ρ + ∑

ij γij

) = 1

u
,

(9c)( ρy

k
− γhh − γbh

)[
ρx

(
1 − 1

k

) − γbb − γbh

]
γbh

(
1 − ρ + ∑

ij γij

) = 1

u
,

(9d)

where i,j = h,b. Equation (9) can easily be solved to express
γbb, γhb, and γbh in terms of γhh:

γbb = (k − 1)2γhh, γbh = γhb = (k − 1)γhh, (10)

and γhh satisfies the quadratic equation

γ 2
hh − γhh

ρ − ρu − 1

k2(1 − u)
− uρxρy

k4(1 − u)
= 0. (11)

Equation (10) has a simple interpretation. Given that a x-mer
and y-mer have intersected, the intersecting site is chosen from
the head (h) or one of the other k − 1 sites (b) of the k-mers
randomly. In addition, the choice of h or b for the x-mer and
y-mer are independent of each other. Thus, the probability of
choosing 2 b’s is (k − 1)2 times that of choosing 2 h’s and
leads to the first relation in Eq. (10). Similar reasoning also
gives the second relation in Eq. (10).

From Eq. (5), the free energy is calculated using Eq. (2).
Eliminating the chemical potentials using Legendre trans-
forms, we may express the free energy in terms of ρx , ρy ,
and u as

f (ρx,ρy,u) = −k − 1

k

∑
i

ρi ln ρi −
∑

i

[
1 − (k − 1)ρi

k

]
ln

[
1 − (k − 1)ρi

k

]
+

∑
i

(ρi − k2γhh) ln(ρi − k2γhh)

+ (1 − ρ + k2γhh) ln(1 − ρ + k2γhh) − ρ

k
ln k + k2γhh ln

(
k2γhh

u

)
, (12)
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where γhh is a function of ρx , ρy , and u through Eq. (11). This
expression for the free energy will turn out to be not convex
everywhere. The true free energy f̄ (ρx,ρy,u) is obtained by
the Maxwell construction such that

f̄ (ρx,ρy,u) = CE[f (ρx,ρy,u)], (13)

where CE denotes the convex envelope. The densities ρx and
ρy are free parameters. Given total density ρ, we minimize the
free energy with respect to ρx and ρy subject to the constraint
ρx + ρy = ρ. The isotropic solution corresponds to ρx = ρy ,
while a solution ρx �= ρy corresponds to a nematic phase.

B. Two phase transitions

To study the phase transitions we define the nematic order
parameter as

ψ = ρx − ρy

ρ
. (14)

A nonzero ψ corresponds to a nematic phase. The free energy
when expressed as a power series in ψ , has the form

f (ρx,ρy,u) = A0(ρ,u) + A2(ρ,u)ψ2 + A4(ρ,u)ψ4 + · · · ,
(15)

such that f (ρx,ρy,u) is unchanged when ψ ↔ −ψ . The
expressions for the coefficients A0(ρ,u), A2(ρ,u), and A4(ρ,u)
are unwieldy, and we do not reproduce them here. However,
we find that the coefficient A4(ρ,u) > 0. For small densities,
the coefficient of the quadratic term A2(ρ,u) is positive, and
the free energy has a minimum at ψ = 0 corresponding to the
LDD phase. However, for k � 4, if u is smaller than a critical
value uc, then A2(ρ,u) changes sign continuously at a critical
density ρc1, and the free energy has two symmetric minima at
ψ �= 0, corresponding to the nematic phase. This qualitative
change in the behavior of the free energy for densities close to
ρc1 is shown in Fig. 2. As density is further increased, A2(ρ,u)
changes sign continuously from negative to positive at a second
critical density ρc2, such that the free energy has a minimum
at ψ = 0, corresponding to the HDD phase. The dependence
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ρ < ρc1

ρ = ρc1

ρc1 < ρ < ρc2

FIG. 2. (Color online) Free energy f (ψ) as a function of the
order parameter ψ for ρ ≈ ρc1. The data are for k = 6, u = 0.15,
and q = 4. The curves have been shifted for clarity. The dotted line
denotes the convex envelope.
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FIG. 3. (Color online) Order parameter ψ as a function of density
ρ. For low and high densities, ψ = 0, while for intermediate densities,
ψ �= 0. The data are for q = 4 and k = 6.

of the free energy on ψ for densities close to ρc2 is similar to
that shown in Fig. 2.

The variation of the order parameter ψ with density ρ

is shown in Fig. 3 for different values of u. ψ increases
continuously from zero at ρc1 and decreases continuously
to zero at ρc2. The average number of intersections between
the rods per site, though continuous, also shows nonanalytic
behavior at ρc1 and ρc2 (see Fig. 4). The power series expansion
of free energy in Eq. (15) has the same form as that of a system
with scalar order parameter that has two broken symmetry
phases. Thus, the two transitions will be in the mean field
Ising universality class. The nematic phase does not exist
for k < 4.

The phase diagram in the ρ-u plane is determined by solving
A2(ρ,u) = 0 for ρ and is shown in Fig. 5 for different values of
k. The difference between the two critical densities decreases
with increasing u. Beyond a maximum value uc(k), there is
no phase transition, and the system remains disordered at all
densities. The critical densities ρc1 and ρc2 may be solved as
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FIG. 4. (Color online) Average number of interactions per site,
Nints, as a function of density ρ for different values of u. Inset: The
region between the two critical points is magnified. The data are for
q = 4 and k = 6.

012134-4



REENTRANT DISORDERED PHASE IN A SYSTEM OF . . . PHYSICAL REVIEW E 88, 012134 (2013)

 0

 0.05

 0.10

 0.15

 0.20

 0  0.2  0.4  0.6  0.8  1.0  1.2  1.4

u

ρ

k=4

k=5

k=6

ψ≠ 0

ψ=0ψ=0

FIG. 5. (Color online) Phase diagram when q = 4 for different
values of k.

an expansion in u. For example, when k = 4,

ρc1 = 2

k − 1
+ 2u + 12u2 + O(u3), k = 4 (16)

and

ρc2 = 1.13148 − 2.38675u − 12.2726u2 + O(u3), k = 4.

(17)

It is of interest to determine ρc2 for large k. For the hard
rod problem, it was conjectured that ρc2 ≈ 1 − a/k2, when
k → ∞ [11]. For our model, we find

ρc2 = −1 + 2k − √−3 + 4k

−1 + k
, u → 0,

= 2 − 2√
k

+ 1

k
− 5

4k3/2
+ 1

k2
+ O(k−5/2). (18)

Thus the leading correction is O(1/
√

k), and not O(1/k2).
uc(k), the largest value of u for which the nematic phase

exists, is determined by solving the equations A2(ρ,u) = 0
and dA2(ρ,u)/dρ = 0 simultaneously. uc(k) increases with k
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FIG. 6. (Color online) uc, the maximum value of u for which the
transitions exists as a function of k. The data are for q = 4.
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FIG. 7. (Color online) Free energy f (ψ) as a function of the order
parameter ψ for ρ ≈ ρc1 when q = 6. The data are for k = 6, v = u2,
and u = 0.15. The dotted lines denote the convex envelopes.

(see Fig. 6) and approaches 1 from below as k → ∞. At uc(k)
two mean-field Ising critical lines meet.

IV. k-MERS ON RLTL WITH q = 6

The calculation presented in Sec. III may be extended to
the case when the coordination number q � 6. We discuss
the results when q = 6. In this case, we associate a weight
u (v) to a site occupied by two (three) k-mers of different
type. The calculation of the free energy now involves many
more combinatorial factors than for the case q = 4, but is
straightforward. The details of the calculation may be found in
Supplemental Material [22]. Let ρx , ρy , and ρz be the fraction
of sites occupied by x-mers, y-mers, and z-mers respectively.
We define the order parameter to be ψ = (ρx − ρy)/ρ, where
we set ρy = ρz. We find that for u < uc(k) and v < u, the
system undergoes two transitions as for the case q = 4, at
critical densities ρc1 and ρc2.

The three-dimensional ρ-u-v phase diagram may be visual-
ized by studying the phase diagram along three different lines
in the u-v plane: v = u2, v = u3, and v = u4. The free energy,
expressed as a power series in ψ , now has the form

f (ρx,ρy,u,v) = A0(ρ,u,v) + A2(ρ,u,v)ψ2 + A3(ρ,u,v)ψ3

+A4(ρ,u,v)ψ4 + · · · , (19)

where A4(ρ,u,v) > 0 and A3(ρ,u,v) is in general nonzero. At
low densities, A2(ρ,u,v) is positive, and the free energy has a
global minimum at ψ = 0. With increasing density it develops
a second local minimum at ψ �= 0. At ρc1 the two minima
become degenerate, and for ρc1 < ρ < ρc2, the free energy
has a minimum at ψ �= 0, corresponding to the nematic phase.
A typical example is shown in Fig. 7. The order parameter thus
shows a discontinuity at ρc1, and the transition is first order. In
all the cases we have studied, we find that the first transition
from disordered to nematic phase is discontinuous.

On the other hand, the nature of the second transition from
the nematic to HDD phase depends on the value of k, u,
and v. When v = u2, the second transition is first order for
all k. However, when v = u3, the second transition could be
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FIG. 8. (Color online) Order parameter ψ as a function of density
ρ for different values of u for k = 7, q = 6, and v = u3. The second
transition is first order for u > u∗(k) and continuous for u � u∗(k).
Here u∗(7) ≈ 0.09563. Regions shown by the thick lines denote
coexistence region.

first order or continuous. We find that for k < 7, the second
transition is always first order, while for k � 7, the order of
transition depends on u. In Fig. 8 we show the variation of
the order parameter ψ with density ρ for different values of
u for fixed k = 7. The second transition is continuous for
small values of u and first order for larger values of u. For the
transitions that are first order, the system shows coexistence
near the transition point. In the coexistence region, the system
no longer has uniform density, but instead has regions of
the ordered and disordered phases. The order parameter for
these densities are obtained from the Maxwell construction.
In Fig. 8 the coexistence regions are marked with thick lines.
Qualitatively similar behavior is seen for k > 7. The second
transition is continuous for u � u∗(k) and first order for
u > u∗(k). The value of u∗(k) increases with k. When v = u4,
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FIG. 9. (Color online) The number of interactions per site, Nints,
as a function of density ρ for two different values of u. The data are
for q = 6, k = 7, and v = u4. Inset: The variation with density of (a)
order parameter ψ , (b) fraction of sites occupied by two k-mers, and
(c) fraction of sites occupied by three k-mers. Here u = 0.20.
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FIG. 10. (Color online) Phase diagram for q = 6 and k = 7 for
(a) v = u2, (b) v = u3, and (c) v = u4. Shaded portions denote
coexistence regions. Dotted lines denote continuous transitions.

the phenomenology is qualitatively similar to that for the
case v = u3.

The first order or continuous nature of the second transition
is also reflected in the average number of intersections. In Fig. 9
we show the variation for the number of intersections per site
with density for k = 7 for two values of u: one corresponding
to a first order and the other to continuous transition. In addition
to ψ , the average number of intersections between rods per
site also shows a discontinuity when the transition is first
order. This discontinuity vanishes when the transition becomes
continuous.

These observations are summarized in the ρ-u phase
diagram for k = 7 shown in Fig. 10. Shaded portions denote the
coexistence regions in the ρ-u plane. For v = u3 and v = u4, a
second order line terminates at a tricritical point beyond which
the transition becomes first order.

The exponents describing the continuous transitions may
be found from the Landau-type free energy, Eq. (19). At
the first transition A2(ρ,u,v) > 0 and A3(ρ,u,v) < 0. At the

10-4

10-3

10-2

10-1

10-7 10-6 10-5 10-4 10-3 10-2

|ψ
|

(ρc2-ρ)

(a)

(b)

u=u *(7)
u<u *(7)

FIG. 11. (Color online) The order parameter ψ as the density ρ

approaches the critical density ρc2 for u < u∗ and at the tricritical
point u = u∗ when k = 7, q = 6 and v = u3. The solid lines are
power laws (a) (ρc2 − ρ)1/2 and (b) (ρc2 − ρ).
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spinodal point A2(ρ,u,v) changes sign to negative. As density
is further increased A2(ρ,u,v) changes sign back to positive.
When this occurs, A3(ρ,u,v) could be positive or negative.
If positive, then the transition will be continuous. Now the
critical exponents are determined from a Landau free energy
functional of the form A2ψ

2 + A3ψ
3, and hence the critical

exponent β = 1, where ψ ∼ (ρc2-ρ)β as ρ approaches ρc2

from below. At the tricritical point A3(ρ,u,v) = 0, and the
transition is in the mean field Ising universality class with
β = 1/2 (see Fig. 11).

V. SUMMARY AND DISCUSSION

In this paper we studied the problem of monodispersed
long rigid rods on the RLTL, a Bethe-like lattice where rods
of different orientations are allowed to intersect with weight
u,v, . . . depending on whether a site is occupied by two,
three, . . . , k-mers. We showed that the system undergoes
two phase transitions with increasing density for k � kmin and
appropriate choice of interaction parameters. For coordination
number q = 4, the two transitions are continuous and in the
mean field Ising universality class. For q = 6, while the first
transition is first order, the nature of the second transition
depends on the values k, u, and v, giving rise to a rich phase
diagram. To the best of our knowledge, it is the only solvable
model on interacting rods that shows two phase transitions.

The limit u → 0 is different from u = 0 (the hard rod
problem). When u = 0, the second transition in absent [21].
When u, v > 0, the fully packed phase is disordered by
construction, and if the first phase transition exists, so does
a second phase transition. The relaxation of the restriction that
only rods of different orientations may intersect at a lattice site
does not change the qualitative behavior of the system as the
high-density phase remains disordered. There are still two tran-
sitions, both in the mean field Ising universality class (when
q = 4). However, the solution becomes more cumbersome.

Similarly when q = 6, the limit v → 0 is different from
v = 0 when u > 0. When v = 0, a lattice site may occupied
by utmost two k-mers of different type. In this case, the fully
packed phase is not necessarily disordered, and for certain
values of k and u, only one transition is present for increasing
density.

For hard rods on the square lattice, Monte Carlo simulations
were unable to give a clear answer to the question whether the
HDD and LDD phases are qualitatively similar or not [13].
It was argued that the HDD phase on the square lattice has
a large crossover length scale ξ ∗ ∼ 1500, and for length
scales larger than ξ ∗ it is possible that the HDD phase is
not qualitatively different from the LDD phase. This was
based on the evidence that vacancies in the HDD phase do
not form a bound state. In this paper, by expanding the
phase diagram from a one-dimensional ρ phase diagram to
a multidimensional ρ-interaction parameters phase diagram,
we showed that it is always possible to continuously transform
the LDD phase into the HDD phase without crossing any
phase boundary. This means that the LDD and HDD phases
are qualitatively similar, at least for the model on RLTL. It
would thus be worthwhile to simulate the hard rods problem
on the square lattice for system sizes larger than 1500 and
verify the same.

It would also be possible to study the problem with repulsive
interactions on the square lattice. The algorithm presented in
Refs. [13,20] is generalizable to the case when intersections
are allowed. Confirming whether the qualitative behavior is
similar to that seen for RLTL would be interesting. Measuring
the exponents for the second transition might be easier for such
a model as the critical density would be away from the fully
packed limit.

For the RLTL with coordination number q = 4, we showed
that for large k, ρc2 ≈ 2 − a/

√
k + O(k−1). This is at variance

from the prediction from entropy based arguments for the hard
rod problem that ρc2 approaches 1 as k−2 [11]. It would be
interesting to resolve this discrepancy.

The RLTL is suitable for studying hard core models of
anisotropic particles. An example is polydispersed systems of
hard rods which can show multiple phases [23,24]. Its solution
on the RLTL would make rigorous some of the qualitative
features of the problem. Another interesting problem is that
of percolation of a system of long rods. Using simulations,
the dependence of the critical percolation threshold on the
rod length, and the probabilities of horizontal and vertical rods
being present, has been conjectured [25,26]. These conjectures
may be checked on the RLTL through an exact solution. These
are promising areas for future study.
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APPENDIX: CALCULATION OF Cm FOR q = 4

In this appendix, we derive the expression for Cm as given in
Eq. (4). Cm is the total number of ways of connecting the X and
Y bonds from the (m − 1)-th layer to the m-th layer consistent
with the number of x-mers, y-mers, and intersections at the
mth layer.

In the (m − 1)-th layer, there are Xm and Ym sites occupied
by x-mers and y-mers that extend to the mth layer. These Xm

bonds of type X have to be connected to Xm different sites out
of the N sites in the mth layer. This can be done in

N !

(N − Xm)!

ways. Among the Ym bonds of type Y , �m
bb of them are

connected to sites occupied by an x-mer and the remaining
Ym − �m

bb bonds are connected to empty sites in the mth layer.
The number of ways of connecting the Y bonds is a product
of the two enumerations and is equal to

Ym!Xm!

�m
bb!

(
Y − �m

bb

)
!
(
Xm − �m

bb

)
!

×
(
N − Xm

)
!(

N − Xm − Ym + �m
bb

)
!
.

Now connect the remaining (N − Xm) free bonds of type
X and (N − Ym) free bonds of type Y to sites in layer m that
are not occupied by x-mers and y-mers, respectively. This can
be done in

(N − Xm)!(N − Ym)!

ways.
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We have to now assign sites to xm and ym heads in layer
m. Out of xm (ym) heads, �m

hb (�m
bh) of them will be on sites

already occupied by only a y-mer (x-mer). The number of
ways of doing this is(

Xm − �m
bb

)
!

�m
bh!

(
Xm − �m

bb − �m
bh

)
!

×
(
Ym − �m

bb

)
!

�m
hb!

(
Ym − �m

bb − �m
hb

)
!
.

There are (N − Xm − Ym + �m
bb) sites in the mth layer

which are unoccupied so far. They can be divided into four
groups: �m

hh sites, each occupied by the heads of an x-mer

and a y-mer, (xm − �m
hh − �m

hb) sites occupied by only a
head of an x-mer, (ym − �m

hh − �m
bh) sites occupied by only

a head of a y-mer, and (N − Xm − Ym − xm − ym + ∑
ij �m

ij )
unoccupied sites. The number of ways of arranging them is(

N − Xm − Ym + �m
bb

)
!

�m
hh!

(
xm − �m

hh − �m
hb

)
!
(
ym − �m

hh − �m
bh

)
!

× 1(
N − Xm − Ym − xm − ym + ∑

ij �m
ij

)
!
.

The product of all these factors gives Cm as given in Eq. (4).
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