S. Ramanujan to G.H. Hardy 12 January 1920

University of Madras

[ am extremely sorry for not writing you a single letter up to now ... I dis-
covered very interesting functions recently which I call “Mock” ¥-functions.
Unlike the “False” ¥-functions (studied partially by Prof. Rogers in his in-
teresting paper) they enter into mathematics as beautifully as the ordinary
¥-function. I am sending you with this letter some examples ...

If we consider a ¥-function in the transformed Eulerian form e.g.
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and determine the nature of the singularities at the points ¢ = 1,¢> = 1,¢* =
1,¢* = 1,¢° = 1,... we know how beautifully the asymptotic form of the
function can be expressed in a very neat and closed exponential form. For
instance when ¢ = e~ and t — 0
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and similar results at other singularities.® It is not necessary that there should
be only one term like this. There may be many terms but the number of terms
must be finite. T Also o(1) may turn out to be O(1). That is all. For instance
when ¢ — 1 the function
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is equivalent to the sum of five terms like (*) together with O(1) instead of

o(1).




If we take a number of functions like (A) and (B) it is only in a limited
number of cases the terms close as above; but in the majority of cases they
never close as above. For instance when ¢ = e * and ¢t — 0
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where a; = ﬁgv and so on. The function (C) is a simple example of a
function behaving in an unclosed form at the singularities.

*The coefficient (of) 1/t in the index of e happens to be %2 in this par-
ticular case. It may be some other transcendental numbers in other cases.

TThe coefficients of ¢,#2,... happen to be ﬁ, ... in this case. In other
cases they may turn out to be some other algebraic numbers.

Now a very interesting question arises. Is the converse of the statements
concerning the forms (A) and (B) true? That is to say Suppose there is a
function in the Eulerian form and suppose that all or an infinity of points
q = *™™/" are exponential singularities and also suppose that at these points
the asymptotic form of the function closes as neatly as in the cases of (A)
and (B). The question is:i— is the function taken the sum of two functions one
of which is an ordinary ¢ function and the other a (trivial) function which is
O(1) at all the points €*™™/™? The answer is it is not necessarily so. When
it is not so I call the function Mock ¥-function. I have not proved rigorously
that it is not necessarily so. But I have constructed a number of examples
in which it is inconceivable to construct a ¥-function to cut out the sin-
gularities of the original function. Also I have shown if it is necessarily so
then it leads to the following assertion:—viz. it is possible to construct
two power series in z namely > .~ a,z” and Y b,2™ both of which have

essential singularities on the unit circle, are convergent when |z| < 1, and
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tend to finite limits at every point x = e and that at the same time the
limit of Y 0 a,2™ at the point x = e~2™/ is equal to the limit of > o b,z"
at the point x = e277/5,

This assertion seems to be untrue. Any how we shall go to the examples
and see how far our assertions are true.




I have proved that if
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at all the points ¢ = —1,¢°> = —1,¢°> = —1,¢" = —1,..., and at the same
time
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at all the points ¢> = —1,¢* = —1,¢% = —1,... Also obviously f(q) = O(1)
at all the points ¢ =1,¢°> =1,¢° = 1,... And so f(q) is a Mock ¥ function.
When g = —e "t and t — 0
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The coefficient of ¢" in f(q) is

It is inconceivable that a single 9 function could be found to cut out the
singularities of f(q).
Mock ¥-functions
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These are related to f(q) as shown below.
20(=q) — f(a) = fq) + 4 (=q)
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These are of the 3rd order.

Mock 9-functions (of 5th order)
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have got similar relations as above.
Mock ¥-functions (of 7th order)
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These are not related to each other.

Ever yours sincerely
S.Ramanujan



