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1. Introduction

Let G be a semisimple affine algebraic group defined over a field k of characteristic
zero (the field need not be algebraically closed). The group of k–rational points
of G will be denoted by G(k). Our aim here is to describe all the maximal
connected solvable k–subgroups of G up to conjugation by elements in G(k)
in terms of certain solvable k–subgroups of some of the standard parabolic k–
subgroups containing a fixed minimal k–parabolic subgroup.

Similar works have been done earlier considering different set-ups. When
k = R , the analogous problem for real semisimple Lie algebras and real semisimple
algebraic groups were studied in [7, Theorem 4.1] and [6, Section 3] respectively.
It was proved by Platonov, [8], that the number of conjugacy classes of maxi-
mal solvable subgroups (not necessarily connected) in an algebraic group over an
algebraically closed field is finite.

First assume that G is k–anisotropic. Then the group of k–rational points
G(k) has no unipotent elements. Therefore, the maximal connected solvable k–
subgroups of G are precisely the maximal tori defined over k ; these tori are all
k–anisotropic. Thus, in this case the maximal connected solvable k–subgroups of
G are precisely the maximal k–anisotropic tori of G . Although the problem of
finding G(k)–conjugacy classes of maximal k–tori in k–anisotropic groups may
be tractable for special cases of k , resolving the problem for a general k seems
very difficult to the best of our knowledge. In what follows we assume that G is
k–isotropic.
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The reader is referred to Section 2 for the definitions and notation used
here. Fix a maximal k–split torus S of G . Let ∆ be the set of k–roots with
respect to S , and let ∆+ ⊂ ∆ be the positive roots given by a fixed minimal
k–parabolic subgroup of G containing S . Let Φ ⊂ ∆+ be the subset consisting
the simple roots. Any subset Θ of Φ defines a k–parabolic subgroup PΘ of G .
Define SΘ as in (1). Let ZG(SΘ) be the centralizer of SΘ in G .

We need to make a definition for the convenience of exposition. A subset
Θ ⊂ Φ is called admissible if [ZG(SΘ) , ZG(SΘ)] admits a maximal k–torus
which is k–anisotropic. Let Θ ⊂ Φ be an admissible subset, and let T be a
maximal k–torus of [ZG(SΘ) , ZG(SΘ)] which is k–anisotropic. It is clear that
TZ(ZG(SΘ))Ru(PΘ) is a connected solvable k–subgroup of G .

We prove the following theorem (see Theorem 3.3, Theorem 4.2 and Propo-
sition 4.3):

Theorem 1.1. Let Θ ⊂ Φ be an admissible subset, and let T be a maximal
k -torus of [ZG(SΘ) , ZG(SΘ)] which is k–anisotropic. Then the subgroup

BΘ,T := TZ(ZG(SΘ))Ru(PΘ)

is a maximal connected solvable k–subgroup of G.

For any maximal connected solvable k–subgroup B of G, there is an admis-
sible subset Θ and a maximal anisotropic k -torus T ⊂ [ZG(SΘ) , ZG(SΘ)] such
that B is conjugate to BΘ,T (defined above) by some element in G(k).

For admissible subsets Θi , i = 1 , 2, and maximal k–torus

Ti ⊂ [ZG(SΘi
) , ZG(SΘi

)]

which is k–anisotropic, the two subgroups BΘ1,T1 and BΘ2,T2 of G are conjugate
by some element in G(k) if and only if

Θ1 = Θ2 and c T1 c
−1 = T2

for some c ∈ PΘ1(k) = PΘ2(k) satisfying the condition that c ZG(SΘ1) c−1 =
ZG(SΘ1).

We also give a criterion for an element of G(k) to lie in some maximal
connected solvable k–subgroup of G (see Theorem 5.2).

2. Notation and preliminaries

In this section we fix some notation, which will be used throughout. For the
generalities in the theory of algebraic groups that are used here, the reader is
referred to [3] and [1, Chapter V]. As before, k is a field of characteristic zero,
which is not necessarily algebraically closed.

The center of a group H is denoted by Z(H). Let H be a linear algebraic
group defined over k . We denote its Lie algebra by Lie(H). The connected
component of H , containing the identity element, is denoted by H0 . For a
subgroup J of H , and a subset S of H , by ZJ(S) we will denote the subgroup of
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J that commutes with all the elements of S . The normalizer of J in H is denoted
by NH(J).

Let G be a semisimple algebraic group defined over k . If G admits a k -
split torus of positive dimension, then G is said to be k–isotropic; otherwise, G
is called k–anisotropic.

Let S ⊂ G be a maximal k–split torus. The group of characters of S will
be denoted by X(S).

We fix some notation:

• P is a fixed minimal k–parabolic subgroup of G containing S .

• ∆ ⊂ X(S) is the set of k–roots with respect to S .

• ∆+ ⊂ ∆ is the set of positive roots given by P .

• Φ ⊂ ∆+ is the subset consisting of simple roots of ∆+ .

For any Θ ⊂ Φ, define

SΘ := (
⋂
χ∈Θ

kernel(χ))0 . (1)

This k–split torus SΘ is called the standard k–split torus of type Θ. Let ZG(SΘ)
denote the centralizer of SΘ in G . The standard k–parabolic subgroup of G ,
containing P , corresponding to Θ will be denoted by PΘ (see [1, p. 197, Section
14.17] when k = k̄ and [1, p. 233, Section 21.11] for a general k ). We recall that

PΘ = ZG(SΘ) ·Ru(PΘ) ,

where Ru(PΘ) is the unipotent radical of PΘ .

It is known that

Z(ZG(SΘ))0 = A · SΘ , (2)

where A is a k–anisotropic torus; see [5, Proposition 1.1]. Therefore, the k–split
part of Z(ZG(SΘ))0 is SΘ . In particular, ZG(SΘ)/SΘ admits a k–anisotropic
maximal torus if and only if [ZG(SΘ) , ZG(SΘ)] admits a k–anisotropic maximal
torus.

Definition 2.1. A subset Θ ⊂ Φ is called admissible if [ZG(SΘ) , ZG(SΘ)]
admits a maximal k–torus which is k–anisotropic. In the case when k = R this is
equivalent to the definition of admissible subsets of Φ given in [4, Definition 5.8].

3. A collection of maximal connected solvable subgroups

Lemma 3.1. Let G be a semisimple algebraic group defined over k . Suppose
that G admits a maximal k–torus, say T , which is k–anisotropic. Then there is
no nontrivial unipotent k -subgroup U ⊂ G such that T ⊂ NG(U).



1172 Azad, Biswas, and Chatterjee

Proof. If G is k–anisotropic, then there no nontrivial unipotent k–subgroup
of G . Hence we will assume that G is k–isotropic.

As before, let S be a maximal k–split torus in G . To prove the lemma
by contradiction, let U 6= {e} be a unipotent k–subgroup so that T ⊂ NG(U).
Using [2, Proposition 3.1] we see that there is a parabolic k–subgroup P ⊂ G
such that

NG(U) ⊂ P and U ⊂ Ru(P ) .

Now, there is a subset Θ ⊂ Φ such that P is conjugate to PΘ by some
element in G(k). Fix α ∈ G(k) such that αPα−1 = PΘ . Note that PΘ ( G
because U ⊂ Ru(P ) and U 6= {e} . Clearly, we have

αTα−1 ⊂ PΘ .

As ZG(SΘ) is a maximal reductive subgroup of PΘ defined over k , it follows that
there is an element β ∈ G(k) such that

βTβ−1 ⊂ ZG(SΘ) .

Define T ′ := βTβ−1 . This T ′ is a maximal torus, and it is k–anisotropic; also,
T ′ commutes with SΘ . Therefore,

SΘ ⊂ ZG(T ′) = T ′ .

But this is in contradiction with the facts that SΘ is positive dimensional and
k–split while T ′ is k–anisotropic. In view of this contradiction, the proof of the
lemma is complete.

In the next lemma we will deal with a semisimple group H over the algebraic
closure k of k . As in the case of k , we have a description of all the parabolic
subgroups containing a fixed Borel subgroup (see [1, p. 197, Section 14.17]).

Lemma 3.2. Let H be a semisimple algebraic group defined over k . Let
P ⊂ H be a parabolic subgroup, and let D ⊂ H be a connected solvable subgroup
of H . Let T be a maximal torus of H so that T ⊂ D ∩ P . Further assume that
Ru(P ) ⊂ Ru(D). Then, D ⊂ P .

Proof. Since both D and P are connected, it is enough to show that

Lie(D) ⊂ Lie(P ) . (3)

To prove (3) by contradiction, suppose Lie(D) is not contained in Lie(P ).

We fix a Borel subgroup B ⊂ P containing T . Let ∆̃ be the set of roots with
respect to T . Let ∆̃+ be the set of positive roots induced by B , and let Φ̃ be the
set of simple roots in ∆̃+ . Then there is a subset Θ ⊂ Φ̃ such that P = PΘ .

Denote the Z–span of Θ by Z · Θ. As Lie(D) is T –invariant under the
adjoint action, and Lie(D) is not contained in Lie(P ), we conclude that there is

an element α ∈ ∆̃+−Z ·Θ such that Lie(H)−α ⊂ Lie(D). As Ru(P ) ⊂ Ru(D),
it follows that Lie(H)α ⊂ Lie(D). Thus

Lie(H)−α + Lie(T ) + Lie(H)α ⊂ Lie(D) .
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But Lie(D) is a solvable Lie algebra, while Lie(H)−α + Lie(T ) + Lie(H)α contains
a copy of sl2(k). This is a contradiction, proving (3).

Let
Θ ⊂ Φ

be a subset such that ZG(SΘ)/SΘ admits a k–anisotropic maximal torus. Re-
call that this is equivalent to the assertion that [ZG(SΘ) , ZG(SΘ)] admits a k–
anisotropic maximal torus. Let

T ⊂ [ZG(SΘ) , ZG(SΘ)]

be a k–anisotropic maximal torus of [ZG(SΘ) , ZG(SΘ)]. Note that

T Z(ZG(SΘ)) = T Z(ZG(SΘ))0 .

Clearly, T Z(ZG(SΘ)) is a maximal k–torus of ZG(SΘ).

Theorem 3.3. In the above set–up,

BΘ,T := TZ(ZG(SΘ))Ru(PΘ)

is a maximal connected solvable k–subgroup of G.

Proof. Clearly BΘ,T is a connected solvable k–subgroup. Let B ⊂ G be a con-
nected solvable k–subgroup such that BΘ,T ⊂ B . We set TΘ := T ′Θ Z(ZG(SΘ)).
Since TΘ is a maximal torus of G , and TΘ ⊂ BΘ,T ⊂ B , we conclude that
B = TΘRu(B). Further, as BΘ,T ⊂ B , it follows that

Ru(BΘ,T ) = Ru(PΘ) ⊂ Ru(B) .

Therefore, to prove the theorem, it suffices to show that

Ru(BΘ,T ) = Ru(B) . (4)

As TΘ is a maximal torus in G contained in B , and Ru(PΘ) ⊂ Ru(B),
from Lemma 3.2 it follows that

B ⊂ PΘ .

Since Ru(PΘ) ⊂ Ru(B) ⊂ PΘ , and ZG(SΘ) = [ZG(SΘ) , ZG(SΘ)]Z(ZG(SΘ)), one
has that

Ru(B) = (ZG(SΘ) ∩Ru(B))Ru(PΘ) = ([ZG(SΘ) , ZG(SΘ)] ∩Ru(B))Ru(PΘ) .

Clearly, TΘ ⊂ NG(Ru(B)). Hence

T ⊂ N[ZG(SΘ),ZG(SΘ)]([ZG(SΘ) , ZG(SΘ)] ∩Ru(B)) .

But recall that T is a maximal torus in [ZG(SΘ) , ZG(SΘ)], and T is k–anisotropic.
Therefore, applying Lemma 3.1 to the semisimple group [ZG(SΘ) , ZG(SΘ)] and its
unipotent subgroup [ZG(SΘ) , ZG(SΘ)] ∩Ru(B), we conclude that

[ZG(SΘ) , ZG(SΘ)] ∩Ru(B) = {e} .

Hence Ru(B) = Ru(PΘ) = Ru(BΘ,T ), proving (4).
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4. Completeness of the collection up to conjugation

Lemma 4.1. Let G be a semisimple algebraic group defined over k . Let A ⊂ G
be a k–split torus. Let T ⊂ G be another k -torus containing A. Assume that
there is no unipotent k -subgroup U of G such that T ⊂ NG(U). Then A = {e}.

Proof. It is enough to show that A ⊂ Z(G), or, equivalently,

Ad(s) = IdLie(G) (5)

for all s ∈ A . Let
Γ ⊂ X(A)

be the finite subset of characters such that

Lie(G) =
⊕
χ∈Γ

Lie(G)χ and Lie(G)χ 6= 0 ∀χ ∈ Γ

(Lie(G)χ ⊂ Lie(G) is the weight-space, under the adjoint action of A , corre-
sponding to the character χ). Clearly, (5) is equivalent to the statement that

Γ = {1} , (6)

where 1 ∈ X(A) is the trivial character of A .

To prove (6) using contradiction, assume that Γ 6= {1} . Take any nontrivial
character χ0 ∈ Γ. Define

M :=
⊕
m>0

Lie(G)m·χ0 .

Let exp be the usual exponential map from the k–subvariety of nilpotent elements
in Lie(G) to the k–subvariety of unipotent elements in G . Define U := exp(M) ⊂
G , which is a unipotent k–subgroup. We have T ⊂ NG(U), because Ad(T )(M) =
M . But exp(Lie(G)χ0) ⊂ U . In particular, U 6= {e} , which is in contradiction
with the assumption in the lemma. Therefore, we have proved that (6) holds;
hence (5) holds.

Theorem 4.2. Let G be a semisimple affine algebraic group defined over k ,
and let B be a maximal connected solvable k–subgroup of G. Then there is an
admissible subset Θ ⊂ Φ, a maximal k–torus T ⊂ [ZG(SΘ) , ZG(SΘ)] which is
k–anisotropic and an element α ∈ G(k), such that the following holds:

αBα−1 = TZ(ZG(SΘ))Ru(PΘ) := BΘ,T .

Proof. We have B ⊂ NG(Ru(B)). Let T ′ be a maximal k–torus of B such
that B = T ′Ru(B). Therefore, we have

T ′ ⊂ NG(Ru(B)) .

Further, we have

Ru(B) ⊂ Ru(NG(Ru(B))) and T ′Ru(NG(Ru(B))) ⊃ T ′Ru(B) = B .
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Since T ′Ru(NG(Ru(B))) is a connected solvable k–subgroup, by maximality
of B , we have

Ru(NG(Ru(B))) = Ru(B) . (7)

So, using [2, Corollaire 3.2] it follows that NG(Ru(B)) is a parabolic k–subgroup
of G . This parabolic k–subgroup NG(Ru(B)) will be denoted by Q . From (7) it
follows that Ru(Q) = Ru(B).

There is an element δ ∈ G(k), and a subset Θ ⊂ Φ, such that

δQδ−1 = PΘ . (8)

It is enough to prove the theorem for the group δ−1Bδ instead of B . In
the rest of the proof we replace B by δ−1Bδ .

With this substitution, (8) becomes

NG(Ru(B)) = Q = PΘ .

Consequently,
Ru(B) = Ru(PΘ) and B ⊂ PΘ . (9)

As ZG(SΘ) is a Levi k–subgroup of PΘ , there is a k–rational point γ ∈ Ru(PΘ)(k)
such that

γT ′γ−1 ⊂ ZG(SΘ) . (10)

We now substitute the maximal k–torus

T̂ := γT ′γ−1 ⊂ B

in place of T ′ .

Therefore, from (10) we have

T̂ ⊂ ZG(SΘ) . (11)

From the maximality of B it follows that T̂ is a maximal torus of ZG(SΘ).
Consequently,

Z(ZG(SΘ)) ⊂ T̂ .

Let
T ⊂ [ZG(SΘ) , ZG(SΘ)]

be a maximal k–torus, and let A ⊂ Z(ZG(SΘ))0 be a k–anisotropic torus (see
(2)), such that

Z(ZG(SΘ))0 = ASΘ and T̂ = TASΘ .

We will prove that the torus T is k–anisotropic.

Let T1 ⊂ T be the k–split part of T . From the maximality of B it follows
there is no nontrivial unipotent k–subgroup of G such that

U ⊂ [ZG(SΘ) , ZG(SΘ)] and T ⊂ N[ZG(SΘ) ,ZG(SΘ)](U) .

Indeed, otherwise B is strictly contained in T̂URu(PΘ), contradicting the maxi-
mality of B . Now from Lemma 4.1, and the fact that [ZG(SΘ) , ZG(SΘ)] is semisim-
ple, we conclude that T1 = {e} . Thus T is k–anisotropic.

Since T is k–anisotropic, in view of (9) and (11), we conclude that B =
BΘ,T .
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Theorem 3.3 and Theorem 4.2 together describe the maximal connected
solvable subgroups of G defined over k . It remains to give a criterion for two
subgroups as in Theorem 3.3 to be conjugate by some element of G(k).

Let
Θ1 ,Θ2 ⊂ Φ

be two admissible subsets. As before, we construct subgroups

BΘi,Ti := TiZ(ZG(SΘi
))Ru(PΘi

) , i = 1 , 2 ,

where Ti is a maximal k -torus of [ZG(SΘi
) , ZG(SΘi

)] which is k–anisotropic.

Proposition 4.3. The two subgroups BΘ1,T1 and BΘ2,T2 are conjugate by some
element of G(k) if and only if

Θ1 = Θ2 and c T1 c
−1 = T2

for some c ∈ PΘ1(k) = PΘ2(k) satisfying the condition that c ZG(SΘ1) c−1 =
ZG(SΘ1).

Proof. First assume that

Θ1 = Θ2 and c T1 c
−1 = T2 ,

where c ∈ PΘ1(k) with c ZG(SΘ1) c−1 = ZG(SΘ1). Let Θ := Θ1 = Θ2 . As c
normalizes Ru(PΘ) and ZG(SΘ), we have

c T1Z(ZG(SΘ1))Ru(PΘ1) c−1 = T2Z(ZG(SΘ2))Ru(PΘ2) .

In particular, BΘ1,T1 and BΘ2,T2 are G(k)–conjugate.

We will now prove the converse. Assume that there is an element c ∈ G(k)
such that

cBΘ1,T1 c
−1 = BΘ2,T2 .

Then we have

cRu(PΘ1) c−1 = Ru(PΘ2) and c T1Z(ZG(SΘ1)) c−1 = β T2Z(ZG(SΘ2)) β−1

for some β ∈ Ru(PΘ2)(k). Thus, without loss of generality, we may, and we will,
assume that

cRu(PΘ1) c−1 = Ru(PΘ2) and c T1Z(ZG(SΘ1)) c−1 = T2Z(ZG(SΘ2)). (12)

But as SΘi
is the k–split part of the torus TiZ(ZG(SΘi

)), it follows that

c SΘ1 c
−1 = SΘ2 .

In particular,
c ZG(SΘ1) c−1 = ZG(SΘ2) . (13)

Thus

c PΘ1 c
−1 = c ZG(SΘ1)Ru(PΘ1) c−1 = ZG(SΘ2)Ru(PΘ2) = PΘ2 . (14)
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Using [1, p. 234, Proposition 21.12] it follows that Θ1 = Θ2 .

As before, we set Θ := Θ1 = Θ2 . Then from (14) it follows that
c PΘ c

−1 = PΘ . This implies that c ∈ PΘ(k). Again from (13) we have that
c ZG(SΘ) c−1 = ZG(SΘ). Now, as Ti is a maximal k–torus in [ZG(SΘ) , ZG(SΘ)],
it follows that

Ti = (TiZ(ZG(SΘ)) ∩ [ZG(SΘ) , ZG(SΘ)])0 .

Using (12) it follows that c T1Z(ZG(SΘ)) c−1 = T2Z(ZG(SΘ)). Thus c T1c
−1 =

T2 . In view of (13), the proof is now complete.

5. A criterion to be in a maximal solvable subgroup

As before, let G be a semisimple affine algebraic group defined over a field k of
characteristic zero. If g ∈ G(k) is semisimple or unipotent, then it is easy to
see that g lies in a connected abelian k–subgroup of G . A connected abelian
k–subgroup of G clearly lies in a maximal connected solvable k -subgroup of G .

However, if g ∈ G(k) is arbitrary then it is not true in general that g is
contained in a connected abelian k -subgroup of G . When k = R , in [4, Theorem
5.11], a sufficient condition is given for an element g ∈ G(k) to lie in a G(k)–
conjugate of BΘ,T . We point out that the conclusion of [4, Theorem 5.11] holds
for a general k of characteristic zero. We have nothing new to add here other than
noting that the transition of [4, Section 5] from the case of k = R to the case of
a general k of characteristic zero goes through without any difficulty.

Let Wk denote the k–Weyl group NG(S)/ZG(S). We note that Wk acts
on S and, in particular, induces an action on the power set (= set of subsets) of
∆.

Lemma 5.1. Let s be a semisimple element in G(k). Then any maximal k–
split torus of ZG(s)0 is G(k)–conjugate to a standard k–split torus SΘ for some
Θ ⊂ Φ. Moreover, if Θ′ ⊂ Φ, then some G(k)–conjugate of the standard k–
split torus SΘ′ is a maximal k–split torus of ZG(s)0 if and only if Θ and Θ′ are
Wk(k)–conjugate.

Proof. This lemma is proved in [4] under the assumption that k = R (see [4,
Corollary 5.7]). The proof of the first part of the lemma is exactly identical to the
proof of the first part in [4, Corollary 5.7]; we just need to replace R by k .

For the proof of the second part, we need a bit more justification than that
is given in [4, Corollary 5.7]. Let Θ ,Θ′ ⊂ Φ be such that some G(k)–conjugates
of both SΘ and SΘ′ are maximal k–split tori of ZG(s)0 . Then by conjugacy of
maximal k–split tori it follows that there is an element c ∈ ZG(s)0(k) such that

cSΘc
−1 = SΘ′ .

As SΘ , SΘ′ are both subtori of S , using [3, Corollary 4.22], we conclude that there
is an element a ∈ NG(S)(k) such that

axa−1 = cxc−1, ∀x ∈ SΘ .

In particular, Θ and Θ′ are Wk(k)–conjugate.
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Take any s ∈ G(k). Let Θ ⊂ Φ be such that some G(k)–conjugate of the
k–split torus SΘ is a maximal k–split torus of ZG(s)0 . Then s is said to be of
type Θ; see [4, Definition 5.8]. If s is of type Θ, then note that Θ is necessarily
an admissible subset of Φ.

Assume that s is of type Θ. Take any Θ′ ⊂ Φ. Then from Lemma 5.1 it
follows that s is of type Θ′ if and only if Θ and Θ′ are Wk(k)–conjugate.

Theorem 5.2. Take any g ∈ G(k). Let gs be the semisimple part of g .
Assume that gs is of type Θ (in particular, Θ is admissible). Then there is an
element c ∈ G(k), and a maximal k–torus T of [ZG(SΘ) , ZG(SΘ)] which is k -
anisotropic, such that

cgc−1 ∈ BΘ,T .

In particular, G(k) is the union of all G(k)–conjugates of BΘ,T (k) and all max-
imal k–tori of [ZG(SΘ), ZG(SΘ)] which are k–anisotropic, where Θ runs over all
admissible subsets of Φ.

Theorem 5.2 was proved in [4] for k = R (see [4, Theorem 5.11]). The
proof of Theorem 5.11 in [4] works for any k of characteristic zero. Hence we omit
the proof.
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