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Abstract

In this paper we study the surjectivity of the power maps g �→ gn for real points of algebraic groups
defined over reals. The results are also applied to study the exponentiality of such groups.
© 2010 Elsevier Inc. All rights reserved.

Keywords: Real algebraic groups; Power maps; Surjectivity; Exponentiality

1. Introduction

Let G be a real Lie group with Lie algebra L(G) and let exp : L(G) → G be the associated
exponential map. The Lie group G is said to be exponential if G = exp(L(G)). For an inte-
ger n, let Pn denote the n-th power map defined by Pn(g) = gn, g ∈ G. It is then immediate
that Pn : G → G is surjective if and only if Pp : G → G is surjective for all prime divisors p

of n. A well-known result, proved independently by K. Hofmann, J. Lawson and M. McCrudden
(see [19,21] and Theorem 4.16), says that a real Lie group is exponential if and only if all its
n-th power maps are surjective. A considerable amount of work has been done on the so-called
“exponentiality problem” for real groups, the main theme of which is finding criteria to decide
which real Lie groups are exponential; the reader is referred to the survey article [14]. The ex-
ponentiality problem of real Lie groups is fairly well understood in the case of solvable groups
and (semi)simple real Lie groups through the work of D. Djoković and N. Thang in [16] and
M. Wüstner in [27,28]. But in the case of mixed groups, that is, groups with nontrivial Levi fac-
tor and solvradical, the general problem remains largely open. In the latter case when the group
admits a compact Levi factor advances were made in [11] and [22] and for a general complex
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algebraic group a satisfactory solution follows from [7]. However, many Lie groups fail to be
exponential and invoking the above result of Hofmann, Lawson and McCrudden, it is obvious
that Lie groups fail to be exponential only in the presence of non-surjective n-th power maps. In
view of this, it is natural to ask for a characterization of real Lie groups for which an individual
n-th power map is surjective. On the other hand an answer to this question on the power maps on
real Lie groups will have immediate implications on the exponentiality problem of such groups.
The purpose of this paper is to address such questions on the Lie groups which arise as the group
of real points G(R) of a complex algebraic group G defined over R.

To put the present work in proper perspective we briefly mention the work that has been done
on the n-th power maps and its ramifications to the exponentiality problem. In [6] we obtained
a necessary and sufficient condition for the surjectivity of the n-th power maps for connected
solvable real Lie groups in terms of Cartan subgroups. This result has many applications which
include strengthening of Dixmier’s characterization of solvable simply connected real Lie groups
which are exponential. In [7] we have given a characterization for the surjectivity of the n-th
power maps for general connected algebraic groups over algebraically closed fields of character-
istic zero in terms of a maximal torus and its weights, which in turn yields a complete solution
of the exponentiality problem, for this class of groups. As further applications, in [7] we have
explicitly determined, for all simple algebraic groups over algebraically closed fields of charac-
teristic zero, the set of integers n for which the n-th power map is surjective. The author in [8]
and R. Steinberg in [26], independently extended some of the results of [7] which leads to a
complete classification of exponents n for which Pn is surjective for semisimple groups over
algebraically closed fields of arbitrary characteristic. More recently, in [9] we have solved the
question of surjectivity of n-th power maps of p-adic algebraic groups and studied its relation
with the exponentiality of such groups, and in [10] we have obtained results on these questions
for real Lie groups and algebraic groups, which are not necessarily (Zariski) connected.

We now describe the main results of this paper. The reader is referred to the next section for
the relevant notations and definitions.

Theorem 1.1. Let G be a complex algebraic group defined over R and H be an R-algebraic
subgroup of maximal rank. Suppose that Pn : G → G is surjective. Then the following hold.

(1) Let n be an odd integer, H be Zariski connected and T be a maximal torus of H which is de-
fined over R. Then Pn : ZT (R)(X) → ZT (R)(X) is surjective for all nilpotent X ∈ L(H(R)).

(2) Let n be an odd integer. Then Pn : H(R)∗ → H(R)∗ is surjective. Moreover, if n is coprime
to the order Ord(H(R)/H(R)∗) then Pn : H(R) → H(R) is surjective. In particular, if H is
Zariski connected then Pn : H(R) → H(R) is surjective.

(3) In (2) above, if H further admits an R-anisotropic maximal torus then we do not need to
restrict n to be odd, that is, Pn : H(R)∗ → H(R)∗ is surjective. Moreover, if n is coprime to
the order Ord(H(R)/H(R)∗) then Pn : H(R) → H(R) is surjective.

If H is Zariski connected and n is odd then Pn : Z(H(R)) → Z(H(R)) is surjective.

In Sections 4 and 5 of [7] methods were developed to determine, for complex algebraic
groups G, the exact set of integers n for which Pn : G → G is surjective. Equipped with this, The-
orem 1.1 becomes an effective tool in finding integers n for which Pn is surjective or establishing
exponentiality for Lie groups that appear as the group of real points of maximal rank subgroups
of complex algebraic groups. This is illustrated in Theorem 1.3, Corollary 1.4 and Corollary 1.5.



P. Chatterjee / Advances in Mathematics 226 (2011) 4639–4666 4641
Next, as an immediate application of Theorem 1.1 and some results of [7] we get the following
corollary.

Corollary 1.2. Let G be a complex algebraic group defined over R. Then there exists an inte-
ger mG such that Pn : G(R) → G(R) is surjective for all n coprime to mG.

In other words, Corollary 1.2 says that if G is as above then Pp : G(R) → G(R) is surjective
for all but finitely many primes p. Considering a connected linear solvable Lie group and the

simply connected cover S̃L2(R) of SL2(R) in Example 4.10 and in Example 4.11, respectively,
we show that this no longer holds for general connected real Lie groups.

In the next result we use Theorem 1.1 and Theorems A, C and Corollary D of [7] to get a
more precise form of Corollary 1.2 for the class of semisimple groups over R.

Theorem 1.3. Let G be a complex algebraic group defined over R and H be a Zariski connected
R-algebraic subgroup of G of maximal rank.

(1) If G is semisimple and of classical type and n is odd then Pn : H(R) → H(R) is surjective
if n is coprime to Ord(Z(H(R))/Z(H(R))∗). In particular, if G is R-simple of type Bl , Cl

or Dl then Pn : H(R) → H(R) is surjective if n is an odd integer.
(2) If G is R-simple of type E6, E7, F4 or G2 then Pn : H(R) → H(R) is surjective if n is

coprime to 6.
(3) If G is R-simple of type E8 then Pn : H(R) → H(R) is surjective if n is coprime to 30.

Thus, if G is a semisimple group of classical type and n is coprime to 2 · Ord(Z(G(R)))

then Pn : G(R) → G(R) is surjective. More generally, if G is any semisimple group over R then
Pn : G(R) → G(R) is surjective if n is coprime to 30 · Ord(Z(G(R))).

We remark that the above result extends the “if” part of Theorem C [7].
We now state our next result on the exponentiality of groups G(R).

Corollary 1.4. Let G be a Zariski connected complex algebraic group defined over R and H be
a Zariski connected R-algebraic subgroup of G of maximal rank.

(1) Suppose for all odd integers n the map Pn : G → G is surjective. Then H(R) is exponential
if and only if P2 : H(R) → H(R) is surjective.

(2) Suppose G is exponential and H admits an R-anisotropic maximal torus. Then the group
H(R)∗ is exponential.

Consequently, if G is semisimple and of classical type and H(R) is evenly centered then H(R)

is exponential if and only if P2 : H(R) → H(R) is surjective.

We now record Corollary 1.5 which is a straightforward application of Theorem 1.3 and
Corollary 1.4. In dealing with the exponentiality problem for minimal parabolic subgroups of
SLn(H), S.G. Dani and M. McCrudden arrive at Corollary 1.2 [11], concerning the relation be-
tween square roots and exponentiality of individual elements in minimal parabolic subgroups
of GLn(H). It follows readily from Corollary 1.2 of [11] that, for any n, a minimal parabolic
subgroup P in SLn(H) is exponential if and only if P2 : P → P is surjective. We generalize this
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observation in (1) of Corollary 1.5 to any maximal rank subgroup of SLn(H). In (2) of Corol-
lary 1.5, we obtain a new class of exponential subgroups of U(p,q) and PSU(p, q) and as an
outcome, we get a new proof of the fact that U(p,q) is an exponential group, which was proved
earlier in [12] using the description of conjugacy classes of U(p,q).

Corollary 1.5. Let G be a complex algebraic group over R and H be a Zariski connected maxi-
mal rank subgroup defined over R.

(1) If G = SL2m(C) equipped with the R-structure such that G(R) = SLm(H) and H(R) is
evenly centered then Pn : H(R) → H(R) is surjective if n is odd. In particular, if P is any
R-parabolic subgroup of G then Pn : P(R) → P(R) is surjective if n is odd. Thus P(R) is
exponential if and only if P2 : P(R) → P(R) is surjective.

(2) Let p,q be two integers such that p + q = m. If G = GLm(C) (resp. G = PSLm(C)) is
equipped with the R-structure such that G(R) = U(p,q) (resp. G(R)∗ = PSU(p, q)) then
Pn : H(R)∗ → H(R)∗ is surjective if n is odd. Thus H(R)∗ is exponential if and only if
P2 : H(R)∗ → H(R)∗ is surjective. Let D denote a maximal compact torus (that is, maximal
compact, connected, abelian subgroup) of U(p,q) (resp. of PSU(p, q)). If H(R) further
contains a G(R)-conjugate of D then H(R)∗ is exponential.

The next result gives sufficient conditions for the surjectivity of the n-th power maps. For
relevant notations used in this result see Section 5 in addition to Section 2. Let G be a Zariski
connected algebraic group defined over R and H be a Levi subgroup over R. Let AH be a set of
all mutually nonequivalent admissible subsets of a set of simple roots �H

R
in the R-root system

with respect to a fixed maximal R-split torus SH of H (see Definition 5.8). For each θ in AH one
gets the standard R-parabolic subgroup P H

θ of H which in turn yields the standard R-parabolic
subgroup Pθ = P H

θ RuG of G. Further, for each θ in AH we fix a maximal R-torus Tθ of H such

that SH
θ

def= (
⋂

α∈θ Kerα)0 is the R-split part of Tθ .

Theorem 1.6. Let G be a Zariski connected complex algebraic group defined over R. Let n be
an integer.

(1) Let H be a Levi subgroup of G which is defined over R. Suppose that for every θ ∈ AH

and for every X ∈ L(RuPθ (R)) the map Pn : ZTθ (R)(X) → ZTθ (R)(X) is surjective then
Pn : G(R) → G(R) is surjective.

(2) Let {T1, . . . , Tk} be a set of representatives of the finitely many G(R)-conjugacy classes of
maximal tori of G defined over R. Suppose, for each i the map Pn : ZTi(R)(X) → ZTi(R)(X)

is surjective, for all nilpotent elements X ∈ L(G(R)) then Pn : G(R) → G(R) is surjective.
(3) Let T be a maximal torus of G which is defined over R and maximally R-anisotropic in G

and let Tan be the anisotropic part of T . Suppose the map Pn : ZTan(R)(X) → ZTan(R)(X) is
surjective for all positive elements X ∈ L(G(R)) then Pn : G(R)∗ → G(R)∗ is surjective.

The part (2) in the above theorem establishes one side of the power map analogue of a con-
jecture posed in Problem 5.6 [14]. See also Remark 5.12 on the sufficiency of the conditions in
the above theorem.

In the next few results we deal with the interrelation between surjectivity of power maps on
groups and their minimal parabolic subgroups. In response to Problem 5.7 of [14], regarding the
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simultaneous exponentiality of Lie groups and their minimal parabolic subgroups, S.G. Dani and
M. McCrudden in [11] and D. Djoković in [13] independently proved that the minimal parabolic
subgroups of SLn(H) are not exponential if n � 8. Further, in [11] it is shown that minimal
parabolic subgroups in SLn(H), n � 4, are exponential, while in [13], among other results, it is
proved that minimal parabolic subgroups in U(p,q) are exponential. Recall that both SLn(H)

and U(p,q) are exponential groups. Thus, any speculation on the dependence of exponentiality
of Lie groups and their minimal parabolic subgroups, seems to be false in general. However,
Theorems 1.1 and 1.3 support the fact that the set of integers n, for which Pn is surjective for
both the group and its minimal parabolic subgroup, could be large. Hence, fixing an integer n,
it is natural to find the class of groups, for which surjectivity of Pn on the ambient Lie group
is equivalent to that on its minimal parabolic subgroups. For any integer n, in [7] it is proved
that this class contains all connected complex algebraic groups. In the next theorem we show,
in particular, that if n is odd then any semisimple algebraic group over R of real rank one also
belongs to the above class.

Theorem 1.7. Let G be a connected semisimple algebraic group over R which is a direct product
(as R-algebraic groups) of either semisimple groups of R-rank one or R algebraic groups which
are evenly centered and of classical type. Let n be an odd integer and P be a minimal R-parabolic
subgroup of G. Then Pn : G(R) → G(R) is surjective if and only if Pn : P(R) → P(R) is sur-
jective.

Our next Theorem 1.9 relates the surjectivity of the n-th power maps and the existence of
Pn-regular n-th roots of certain semisimple elements. This finally yields a necessary condition
for the surjectivity of power maps for R-quasisplit groups. The key fact, required in the proof of
Theorem 1.9, which is of independent interest, is Theorem 1.8 which ensures the existence of a
semiregular unipotent element in H(R) for any R-quasisplit group H . It was proved by L. Roth-
schild in Proposition 5.1 [23] that an R-quasisplit reductive Lie algebra h in fact admits a regular
nilpotent element in h(R). It is also shown in Proposition 3.1 [7] that a semiregular unipotent
element exists in a general algebraic group over an algebraically closed field of characteristic
zero. Thus Theorem 1.8 may be regarded as a generalization of the above result of Rothschild to
any Zariski connected R-quasisplit group which is not necessarily reductive. On the other hand,
Theorem 1.8 extends Proposition 3.1 of [7].

Theorem 1.8. Let G be any Zariski connected R-quasisplit complex algebraic group and P be
a minimal R-parabolic subgroup of G. Then there is a unipotent element u ∈ RuP (R) which is
semiregular in G.

We now apply Theorem 1.8 to obtain Theorem 1.9.

Theorem 1.9. Let G be a Zariski connected complex algebraic group over R. Suppose that
Pn : G(R) → G(R) is surjective.

(1) Let s be a semisimple element in G(R) such that ZG(s)0 is an R-quasisplit algebraic group.
Then there is r ∈ G(R) such that s = rn and r is Pn-regular in G.

(2) In addition, if G is assumed to be R-quasisplit and if P is a minimal R-parabolic subgroup
of G then Pn : P(R) → P(R) and Pn : Z(G(R)) → Z(G(R)) are both surjective.
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The following corollary is an immediate application (and hence the proof is omitted) of (1) of
Theorem 1.3 and (2) of Theorem 1.9.

Corollary 1.10. Let G be a Zariski connected R-split semisimple group of classical type and
let S be a maximal R-split torus in G. Let H be a Zariski connected R-algebraic subgroup
of G containing S. Suppose Z(H(R)) is not a connected Lie group. Then Pn : H(R) → H(R) is
surjective if and only if n is odd.

2. Notations and background

In this section we fix most of the notations, definitions and recall some standard facts, which
will be used throughout this paper. A few specialized notations and definitions are mentioned
as and when they occur later. The reader is referred to [2,5,24] for generalities in the theory of
algebraic groups. Although many facts stated here hold for algebraic groups over arbitrary fields,
for our purpose we will recall them in the setting of algebraic groups defined over reals.

The center of an abstract group Γ is denoted by Z(Γ ) and the order of Γ is denoted by
Ord(Γ ). If G is a Lie group or an algebraic group we denote the Lie algebra of G by L(G). For
an integer n, let Pn denote the n-th power map defined by Pn(g) = gn, g ∈ G. For a subgroup H

of G and a subset S of G, ZH (S) will denote the subgroup consisting of all elements of H which
commute with every element of S. Similarly, for X ∈ L(G) and H a closed subgroup of G,
ZH (X) denotes the closed subgroup {h ∈ H | Ad(h)X = X}. The Zariski connected component
of an algebraic group G, containing the identity element, is denoted by G0, while for a real Lie
group H , we denote the connected component (in the real topology) by H ∗, to avoid confusion
with the Zariski connected component of algebraic groups. A Lie group is said to be evenly
centered if either the center is connected or the number of connected components of the center is
a power of two. Observe that center-free adjoint groups and real points of the classical groups of
type Bl,Cl and Dl are examples of evenly centered groups. An element g in a real Lie group A

is said to be Pn-regular in A if the linear transformation Ad(g) : L(A) → L(A) does not have a
nontrivial n-th root of unity in C as an eigenvalue.

Let now G be an algebraic group defined over R. The real points of G (resp. of L(G)) is
denoted by G(R) (resp. L(G)(R)). For any element x ∈ G(R) (resp. X ∈ L(G(R))) the semisim-
ple and the unipotent (resp. nilpotent) Jordan components of x (resp. X) will be denoted by xs

(resp. Xs ) and xu (resp. Xn) respectively; then we have x = xsxu = xuxs and xs, xu ∈ G(R)

(resp. X = Xs + Xn and Xs,Xn ∈ L(G(R))). The Zariski closure of the group generated by
any nontrivial unipotent element is connected and one-dimensional; moreover if the nontrivial
unipotent element lies in G(R) then the Zariski closure of the group generated by this element
will also be defined over R and the real points of the group will be isomorphic to the group of ad-
ditive reals. The set of unipotent (resp. nilpotent) elements of G(R) (resp. L(G(R))) is denoted
by U(G(R)) (resp. NL(G(R))). We further recall a more refined version of Jordan decomposition,
called the complete Jordan decomposition, available in the group G(R) and in the Lie algebra
L(G(R)). The reader is referred to Proposition 2.4 [3] and Theorem 7.2, p. 431 [17] for details.
An element e ∈ G(R) (resp. E ∈ L(G(R))) is said to be compact or elliptic if e (resp. exp(E))
lies in a compact subgroup of G(R). Observe that a compact element is necessarily semisimple.
A semisimple element h ∈ G(R) (resp. H ∈ L(G(R))) is said to be hyperbolic if h ∈ S(R)∗
(resp. H ∈ L(S(R)∗)) for some R-split torus S of G. For a semisimple element s ∈ G(R) (resp.
S ∈ L(G(R))), there is a unique pair of elements se (resp. Se) and sh (resp. Sh) in G(R) (resp. in
L(G(R))) such that se (resp. Se) is compact, sh (resp. Sh) is hyperbolic and s = sesh = shse (resp.
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S = Se +Sh). For x ∈ G(R) (resp. X ∈ L(G(R))), the element (xs)e (resp. (Xs)e) will be denoted
by xe (resp. Xe). Similarly the element (xs)h (resp. (Xs)h) will be denoted by xh (resp. Xh). The
positive part of x (resp. X), which is defined to be xhxu (resp. Xh + Xn), is denoted by xp

(resp. Xp). An element y ∈ G(R) (resp. Y ∈ L(G(R))) is said to be positive if y = yhyu (resp.
Y = Yh + Yn). Thus we have the complete Jordan decomposition in G(R) (resp. L(G(R))) as
follows. For all z ∈ G(R) (resp. Z ∈ L(G(R))), there is a unique mutually commuting triplet
ze, zh, zu ∈ G(R) (resp. Ze,Zh,Zn ∈ L(G(R))) such that ze (resp. Ze) is compact, zh (resp. Zh)
is hyperbolic, zu is unipotent (resp. Zn is nilpotent) and z = zezhzu (resp. Z = Ze + Zh + Zn).
Moreover, written differently, for all z ∈ G(R) (resp. Z ∈ L(G(R))), there are commuting ele-
ments ze, zp ∈ G(R) (resp. Ze,Zp ∈ L(G(R))) such that ze (resp. Ze) is compact, zp (resp. Zp)
is positive and that z = zezp (resp. Z = Ze + Zp). We will denote the set of positive elements in
G(R) (resp. L(G(R))) by PG(R) (resp. PL(G(R))).

Let G be an algebraic group. The maximal, Zariski connected, Zariski closed, normal, unipo-
tent subgroup of G is called the unipotent radical of G and it is denoted by RuG. The rank of G is
the dimension of any of its maximal tori. An algebraic subgroup H of G is said to be of maximal
rank if rank of H is the same as the rank of G. A maximal, Zariski connected, solvable algebraic
subgroup of G is called a Borel subgroup while an algebraic subgroup P of G containing a Borel
subgroup is called a parabolic subgroup. In the case when G is defined over R and the parabolic
subgroup P is an R-algebraic subgroup of G then P is called a R-parabolic subgroup.

Let now G be an algebraic group defined over R. Recall that a torus T is said to be R-split
if T is isomorphic, as R-algebraic groups, to a product of copies of C∗. The R-rank of G is
the dimension of any of its maximal R-split tori. If R-rank of G is positive then G is called
R-isotropic; otherwise it is called R-anisotropic. Let T be a torus defined over R. The maximal
R-split (resp. R-anisotropic) subtorus of T is denoted by T sp (resp. T an). A maximal R-torus T

of G is said to be maximally R-anisotropic if Tan has the maximum possible dimension, that is,
dimTan � dimT ′

an for any maximal torus T ′ defined over R.
Let now G be reductive over R and S be a maximal R-split torus of G. The set of R-roots

with respect to S and a set of simple roots thereof are denoted by ΦR and �R, respec-
tively. Then for every subset θ of �R one gets a natural R-parabolic subgroup Pθ , called
the standard R-parabolic subgroup corresponding to θ (see [2,5,24] for details). Moreover,
Pθ = ZG(Sθ )RuPθ where Sθ = (

⋂
α∈θ Kerα)0.

We now assume that G is a Zariski connected algebraic group, defined over R, but G is not
necessarily reductive. Let H be a (reductive) Levi subgroup over R such that G admits the Levi
decomposition, G = HRuG. Let SH be a maximal R-split torus of H , �H

R
be a set of simple

roots in the R-root system of H with respect to SH . Corresponding to the given Levi subgroup H

of G and a subset φ of �R, we define the standard R-parabolic subgroup of G by Pφ = P H
φ RuG

where, P H
φ is the standard R-parabolic subgroup of the reductive group H corresponding to

φ ⊂ �H
R

, as defined above.
Let G be a complex algebraic group and σ be a generator of the Galois group of C over R. Let

Gσ denote the algebraic group obtained from conjugating G by σ . Then the product G×Gσ nat-
urally acquires an R-structure. This algebraic group, defined over R, is called the Weil restriction
of G and is denoted by RC/RG (see Section 12.4, pp. 220–222 [24] for more generalities).

Recall that a non-abelian Zariski connected complex algebraic group (resp. over R) is said to
be absolutely simple (resp. R-simple) if it does not admit any Zariski closed normal connected
subgroup (resp. defined over R) of positive dimension. Recall that an R-simple group G is either
absolutely simple or of the form RC/RG′, where G′ is an absolutely simple (complex) algebraic
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group. In the second case, when G = RC/RG′, we have that G(R) and G′(C) are isomorphic
as Lie groups. An R-simple group is said to be of type Al if it is absolutely simple of type Al

or of the form RC/RG′ for some absolutely simple group G′ of type Al . Similarly, we define
R-simple groups of type Bl,Cl,Dl,E6,E7,E8,F4 and G2. A semisimple group over R is said
to be of classical type if all of its R-simple factors are one of types Al , Bl , Cl , Dl .

An algebraic group G over R, not necessarily reductive, is said to be R-quasisplit if it admits
a Borel subgroup defined over R. In an R-algebraic group H a unipotent element u ∈ H(R) is
said to be semiregular (see Definition 4.21, p. 242 [25]) if any semisimple element in ZH (u)(R)

is central in H .

3. Preliminary characterization of surjectivity of Pn

In this section we obtain some preliminary results which will be used in the subsequent sec-
tions. In Theorem 3.3 we will obtain basic necessary and sufficient conditions on the surjectivity
of Pn.

We first recall a result which is well-known.

Lemma 3.1. Let GLn(C) be equipped with the usual R-structure and let G be an R-algebraic
subgroup of GLn(C). Assume that H ∈ Mn(R) be a hyperbolic semisimple element such that
exp(H) ∈ G. Then exp(tH) ∈ G(R) for all t ∈ R.

Proof. For a proof of this well-known fact see Lemma 3.6, p. 131 [4]. �
We next prove a lemma which will be needed in the proof of Theorem 3.3. It is well

known that exponential map is a bijection from real symmetric matrices to positive definite real
symmetric matrices. Also recall that, for an algebraic group G over R, the exponential map
exp : NL(G(R)) → UG(R) is a bijection. In the next Lemma 3.2 we generalize these facts.

Lemma 3.2. Let G be a complex algebraic group over R. Then the exponential map
exp : PL(G(R)) → PG(R) is a bijection. In particular, if g ∈ G(R) and X ∈ PL(G(R)) then
g exp(X)g−1 = exp(X) if and only if Ad(g)X = X.

Proof. We first prove that exp : PL(G(R)) → PG(R) is surjection. We choose an R-embedding
of G in GLn(C) which is equipped with its usual R-structure. Let D be the diagonal subgroup
of GLn(C). Let g ∈ PG(R). Note that as gs = gh and as D is a maximal R-split torus of GLn(C),
there is an α ∈ GLn(R) such that αghα

−1 ∈ D(R)∗. This implies that gh = exp(H) for some
hyperbolic element in Mn(R). Now let U be the Zariski closure of the group generated by gu.
Observe that ZG(R)(U) is an R-algebraic subgroup of GLn(C) and exp(H) ∈ ZG(R)(U). Since
H ∈ Mn(R) is hyperbolic, by Lemma 3.1, we have that

exp(tH) ∈ ZG(R)(U), for all t ∈ R.

Let N ∈ NL(G(R)) be such that exp(N) = u. As exp : NL(G(R)) → UG(R) is a bijection, it fol-
lows that U(R) = {exp(sN) | s ∈ R} and that [H,N ] = 0. Hence exp(H + N) ∈ PL(G(R)) and
exp(H + N) = exp(H) exp(N) = ghgu.

We next show that exp : PL(G(R)) → PG(R) is injection. As G is embedded in GLn(C) as
an R-algebraic subgroup, it is enough to prove that exp : PMn(R) → PGLn(R) is injective. Let
H,I ∈ PMn(R) be such that exp(H) = exp(I ). Then, using the uniqueness of the Jordan decom-
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position we have exp(Hh) = exp(Ih) and exp(Hn) = exp(In). As exp : NL(G(R)) → UG(R) is a
bijection we have Hn = In. So it remains to prove that Hh = Ih. By Lemma 3.1 it follows that
exp(tHh) ∈ ZGLn(R)(Ih) for all t ∈ R and consequently, [Hh, Ih] = 0. Thus exp(Hh − Ih) = 1.
Since [Hh, Ih] = 0 there is α ∈ GLn(R) such that α(Hh − Ih)α

−1 ∈ L(D(R)∗). As exp :
L(D(R)∗) → D(R)∗ is a bijection it follows that α(Hh − Ih)α

−1 = 0. Thus Hh = Ih.
Now last part follows immediately from the first part. �
In view of Lemma 3.2, it now follows that if G is an algebraic group over R and A is a

subgroup of G(R) containing the connected component G(R)∗ then (complete) Jordan decompo-
sition hold for elements in A, that is, if g ∈ A then gs, ge, gh, gu, gp ∈ A. Our next Theorem 3.3,
on the preliminary characterization on the surjectivity of Pn, generalizes Lemma 2.3 of [7].

Theorem 3.3. Let G be a complex algebraic group defined over R. Let A be a subgroup with
G(R)∗ ⊂ A ⊂ G(R). Let g ∈ A and n be an integer. Then the following are equivalent.

(1) g ∈ Pn(A).
(2) gs ∈ Pn(ZA(gu)).
(3) ge ∈ Pn(ZA(gp)).

Consequently, Pn : A → A is surjective if and only if for every unipotent element u ∈ A and
for every semisimple element s ∈ ZA(u)(R) there is a semisimple element t ∈ ZA(u)(R) such
that s = tn if and only if for every positive element p ∈ A and for every compact element e ∈
ZA(p)(R) there is a compact element f ∈ ZA(u)(R) such that e = f n.

Proof. We first prove the equivalence of (1), (2) and (3). We omit the proof of the last part as it
follows easily from the equivalence of the three statements.

1 ⇔ 2: Suppose g ∈ Pn(A). Then g = hn for some h ∈ A and it follows immediately that
gs = hn

s and gu = hn
u. Clearly hs commutes with gu and consequently gs ∈ Pn(ZA(gu)).

Now suppose gs ∈ Pn(ZA(gu)). This implies that gs = kn for some k ∈ ZA(gu). Let U be
the Zariski closure of the group generated by gu. Then U is a unipotent group defined over R

with dimension at the most one and k commutes with all the elements in U . Further, note that
gu ∈ U(R). As U(R) is isomorphic to R with its additive group structure, there is a w ∈ U(R)

such that gu = wn. As k commutes with w it follows that g = knwn = (kw)n.
1 ⇔ 3: Let g ∈ Pn(A). Then g = hn for some h ∈ A. This implies that ge = hn

e and gp = hn
p .

By Lemma 3.2 there exist X,Y ∈ PL(A) with nY = X such that gp = exp(X) and hp = exp(Y ).
Again using Lemma 3.2 we conclude that Ad(he)X = X and in particular, he exp(X)h−1

e =
exp(X). As exp(X) = gp it follows that he ∈ ZA(gp).

Conversely, suppose ge = wn for some w ∈ ZA(gp). Using Lemma 3.2, there is Z ∈ PL(A)

such that exp(Z) = gp and Ad(w)Z = Z. Set v = exp(Z/n). Then w commutes with v and
g = gegp = (wv)n. �
4. Surjectivity of Pn: From complex algebraic groups to its real points

In this section we prove Theorem 1.1, Corollary 4.3, Corollary 1.2, Theorem 1.3, Corollary 1.4
and Corollary 1.5. We also give an example of a linear solvable Lie group for which no Pn, n � 2,
is surjective; see Example 4.10. In Example 4.11 we show that the same conclusion holds when
the group is the simply connected cover of SL2(R).
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Recall that an element g in a real Lie group A is said to be Pn-regular in A if the linear transfor-
mation Ad(g) : L(A) → L(A) does not have a nontrivial n-th root of unity in C as an eigenvalue.

Lemma 4.1. Let G be a Zariski connected complex algebraic group and s ∈ G be a semisimple
element. Assume that h is an n-th root of s, that is, s = hn. Then h is Pn regular if and only if
h ∈ Z(ZG(s)0).

Proof. Suppose h is Pn-regular. Let X ∈ L(ZG(s)0). As hn = s we have Ad(hn)X = X. Now as
h is Pn regular it follows that Ad(h)X = X. Thus h ∈ Z(ZG(s)0). Now suppose h ∈ Z(ZG(s)0)

and hn = s. Let λ ∈ C∗ be an eigenvalue of Ad(h) with λn = 1. Then there is X ∈ L(G),
X 	= 0 so that Ad(h)X = λX. Hence Ad(s)X = X and consequently X ∈ L(ZG(s)0). But as
h ∈ Z(ZG(s)0) we have Ad(h)X = X. Thus λ = 1. �

We need to recall the two following results from [7].

Theorem 4.2. (See [7].) Let G be a Zariski connected algebraic group over an algebraically
closed field of characteristic zero and let n be a natural number. Then the following are equiva-
lent.

(1) Pn : G → G is surjective.
(2) Pn : ZG(s)0 → ZG(s)0 is surjective for every semisimple element s ∈ G.
(3) Pn : ZG(u) → ZG(u) is surjective for every unipotent element u ∈ G.

See [7, Corollary B] for a proof of the above theorem.

Theorem 4.3. (See [7].) Let G be a Zariski connected algebraic group over an algebraically
closed field of characteristic zero and let n be a natural number. Suppose Pn : G → G is surjec-
tive then Pn : Z(G) → Z(G) is surjective.

See [7, Corollary 3.5] for a proof of the above theorem.

Theorem 4.4. Let G be a Zariski connected complex algebraic group defined over R. Let n be
an odd integer and Pn : G → G be surjective. Then for every semisimple element s ∈ G(R) there
is a Pn-regular element h in G so that h ∈ G(R) and s = hn.

Proof. Suppose Pn : G → G is surjective where n is an odd integer. Let s ∈ G(R) be a
semisimple element. In view of Lemma 4.1 it is enough to prove that Pn : Z(ZG(s)0)(R) →
Z(ZG(s)0)(R) is surjective. Let σ : G → G be the anti-holomorphic automorphism of G so
that G(R) is precisely the fixed points of this automorphism. By Theorem 4.2 we conclude that
Pn : ZG(s)0 → ZG(s)0 is surjective. Hence by Theorem 4.3 we see that Pn : Z(ZG(s)0) →
Z(ZG(s)0) is surjective. Let r ∈ Z(ZG(s)0) be such that rn = s. Now as s ∈ G(R) it follows that
σ(r)n = σ(s) = s. Note that as s ∈ G(R) the group ZG(s)0 is defined over R. Hence Z(ZG(s)0)

is also defined over R and consequently σ(r) ∈ Z(ZG(s)0). Now as both r and σ(r) lie in the
center of the group ZG(s)0, we conclude that r , σ(r) and s commute. Hence (rσ (r))n = s2. As
n is an odd integer n + 2m = 1 for some integer m. Now

s = sn+2m = sns2m = sn
(
rσ (r)

)mn = (
srmσ(r)m

)n
.

Now clearly σ(srmσ(r)m) = srmσ(r)m and hence srmσ(r)m ∈ Z(ZG(s)0)(R). �
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Lemma 4.5. Let T be an R-anisotropic torus. Then T (R) is the maximal compact subgroup of
T = T (C), when considered as a real Lie group. Further, as a (real) Lie group, T is the direct
product of T (R) and a vector subgroup V .

Proof. Recall that as a complex algebraic group T is the direct product of n copies of C∗ where
n is the dimension of T as an algebraic group. Hence the unique maximal compact subgroup of T

is connected and its dimension as a real Lie group is n. Now the proof is completed by observing
that T (R) compact, connected and has the dimension n as a real Lie group. The second assertion
is obvious now. �
Lemma 4.6. Let G be a complex algebraic group over R and let T be a maximal torus defined
over R which is R-anisotropic. Let X ∈ L(G). Then Pn : ZT (X) → ZT (X) is surjective if and
only if Pn : ZT (R)(X) → ZT (R)(X) is surjective.

Proof. Let λ1, . . . , λl be the l distinct complex characters of T such that L(G) can be decom-
posed as a direct sum of the weight spaces, L(G) = ∑

i L(G)λi
where L(G)λi

is the weight
space, corresponding to the character λi , under the adjoint action of T on L(G).

By Lemma 4.5, T (R) is the maximal compact subgroup of T . Consequently, there exists a
subgroup V , isomorphic to Rn, of T such that for any complex character μ of T , μ(v) is a
positive real number for all v ∈ V and |μ(t)| = 1 for all t ∈ T (R). Let X ∈ L(G). We claim
that ZT (X) is a direct product of the subgroups ZT (R)(X) and ZV (X). It is enough to show
that if α ∈ T (R), β ∈ V be such that αβ ∈ ZT (X) then α ∈ ZT (R)X and β ∈ ZV (X). Note that
X = ∑

i Xi for some Xi ∈ L(G)λi
. As Ad(αβ)X = X we have Ad(αβ)Xi = Xi , for all i which

further implies that λi(αβ)Xi = Xi . Thus for those i, for which Xi 	= 0, one has λi(αβ) = 1.
Now as |λi(α)| = 1 and λi(β) is a positive real we conclude that for those i, for which Xi 	= 0,
λi(α) = λi(β) = 1. Thus, for those i, for which Xi 	= 0, we have Ad(α)Xi = Ad(β)Xi = Xi .
Hence Ad(α)X = Ad(β)X = X. In other words, α ∈ ZT (R)X and β ∈ ZV (X), which is what we
wanted to prove.

We next see that ZV (X) is a connected group. As ZT (X) is a direct product of the subgroups
ZT (R)(X) and ZV (X) and as the number of connected components of ZT (X) is finite, we have
that number of connected components of ZV (X) is finite. But ZV (X) is closed subgroup of the
vector group V and hence ZV (X) is connected.

As ZT (X) is a direct product of the subgroups ZT (R)(X) and ZV (X) where ZV (X) is
connected, abelian it is now clear that Pn : ZT (X) → ZT (X) is surjective if and only if
Pn : ZT (R)(X) → ZT (R)(X). �
Lemma 4.7. Let G be a Zariski connected complex algebraic group and let T be a maximal
torus. Then Pn : ZT (X) → ZT (X) is surjective for all nilpotent X ∈ L(G) if and only if Pn :
ZT (Y ) → ZT (Y ) is surjective for all Y ∈ L(G).

Proof. We will show that if Pn : ZT (X) → ZT (X) is surjective for all nilpotent elements X ∈
L(G), then Pn : ZT (Y ) → ZT (Y ) is surjective for all Y ∈ L(G). In fact, this will follow at once
from the observation that for any Y ∈ L(G) there is a nilpotent X ∈ L(G) such that ZT (Y ) =
ZT (X). We will prove this observation. Let F be a reductive Levi factor of G, containing T . Let



4650 P. Chatterjee / Advances in Mathematics 226 (2011) 4639–4666
B be a Borel subgroup of F containing T . Let U be the unipotent radical of F and let U− be the
unipotent radical of the Borel subgroup opposite to B . Then

L(G) = L
(
U−) + L(T ) + L(U) + L(RuG).

For Y ∈ L(G), there exist Y− ∈ L(U−), Y 0 ∈ L(T ), Y+ ∈ L(U) and Z ∈ L(RuG) such that
Y = Y− +Y 0 +Y+ +Z. Let X(T ) be the group of characters of T and let � ⊂ X(T ) be the finite
set of roots so that L(U) = ∑

χ∈� L(F)χ , where L(F)χ is the root space, corresponding to the
character χ , in the adjoint representation of T on L(F). Then clearly, L(U−) = ∑

χ∈−� L(F)χ .
We now choose W ∈ L(U) in such a way that, for all χ ∈ �, the L(F)χ -component in W is non-
zero if and only if either the L(F)χ -component of Y+ is non-zero or L(F)−χ -component of Y−
is non-zero. This implies that, ZT (Y+ + Y−) = ZT (W). Further, as T centralizes all of L(T ),
it now follows that ZT (Y ) = ZT (W + Z). But W + Z ∈ L(U) + L(RuG) and L(U) + L(RuG)

is the Lie algebra of the unipotent group URuG. Hence W + Z is a nilpotent element in L(G).
This completes the proof. �
Lemma 4.8. Let G be a Zariski connected complex algebraic group and H be a Zariski con-
nected algebraic subgroup of maximal rank. If Pn : G → G is surjective then Pn : H → H is
surjective.

Proof. Note that a maximal torus of H remains to be a maximal torus of G. Now we apply
Theorem A [7], characterizing the surjectivity of Pn, to complete the proof. �
Proof of Theorem 1.1. Suppose Pn : G → G is surjective. Then, by Theorem 1.4 of [10],
this is equivalent to saying that Pn : G0 → G0 is surjective and n is coprime to the number
of (Zariski) connected components of G. Let H be a maximal rank algebraic subgroup of G.
Then by Lemma 4.8 it is immediate that Pn : H 0 → H 0 is surjective. With this observation we
can now proceed for a proof, given in steps.

(1): As H is Zariski connected it follows that Pn : H → H is surjective. Let T be a maximal
torus of H defined over R and X ∈ NL(G(R)). Let t ∈ ZT (R)(X). Assuming n to be odd we apply
Theorem 4.4 and get s ∈ H(R) such that s is Pn-regular and t = sn. Now as Ad(t)X = X and
Ad(t)W = W for all W ∈ L(T ) and as s is Pn-regular with t = sn it follows that Ad(s)X = X

and Ad(s)W = W for all W ∈ L(T ). This implies that s ∈ ZG(T )∩ZG(X). Note that semisimple
elements of ZG(T ) lie in T . Thus s ∈ ZT (R)(X).

(2): Recall that, as Pn : G → G is surjective, Pn : H 0 → H 0 is also surjective. We first
show that Pn : H 0(R) → H 0(R) is surjective. Let u ∈ H 0(R) be a unipotent element and
s ∈ ZG(u)(R) be a semisimple element. As n is odd, by Theorem 4.4 there is a Pn-regular
element h ∈ H 0 so that h ∈ H 0(R) and s = hn. Note that u ∈ ZH 0(s)0 and by Lemma 4.1
h ∈ Z(ZH 0(s)0). Thus h ∈ ZH 0(u)(R). Hence appealing to the equivalence of (1) and (2)
in Theorem 3.3 we see that g ∈ Pn(H

0(R)). Thus Pn : H 0(R) → H 0(R) is surjective. As
H(R)∗ = H 0(R)∗ it follows, by Theorem 1.8 of [10], that Pn : H(R)∗ → H(R)∗ is surjective.

(3): Let G be an algebraic group over R and H be an R-algebraic subgroup of maximal rank.
Further assume that H contains a maximal torus T , which is defined over R and R-anisotropic.

Note that T (R) is connected and hence lies in H(R)∗. Let K be a maximal compact subgroup
of H(R)∗ containing T (R). It is then clear that T (R) is a maximal (compact) torus of K . Recall
that any compact element lies in a conjugate of K and further, it lies in a conjugate of T (R).
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We recall that, as Pn : G → G is surjective, by Theorem 1.4 of [10] and Lemma 4.8,
Pn : H 0 → H 0 is also surjective. Let g ∈ H(R)∗. Let g = geghgu be the complete Jordan de-
composition of g ∈ G(R). It follows that ge, gh, gu ∈ H(R)∗. Note that there is an α ∈ H(R)∗
such that αgeα

−1 ∈ T (R). We will show that αgα−1 has an n-th root in H(R)∗. Let αgα−1 = t .
Then te = αgeα

−1 and tp = αgpα−1. By the equivalence of (1) and (3) in Theorem 3.3 it is
enough to show that te ∈ Pn(ZH(R)∗(tp)). Using Lemma 3.2 we get that tp = exp(Y ) for some
Y ∈ PL(H(R)∗) and that ZH(R)∗(tp) = ZH(R)∗(Y ). As Pn : H 0 → H 0 is surjective, it follows
from Theorem A in [7] that Pn : ZT (W ′) → ZT (W ′) is surjective for all nilpotent elements W ′ ∈
L(H 0). By Lemma 4.7 this implies that Pn : ZT (W) → ZT (W) is surjective for all W ∈ L(H 0).
As T is R-anisotropic, by Lemma 4.6, it follows that Pn : ZT (R)(W) → ZT (R)(W) is surjective
for all W ∈ L(H 0). Thus Pn : ZT (R)(W) → ZT (R)(W) is surjective for all W ∈ L(H(R)∗). In
particular, as te ∈ ZT (R)(Y ) there is a compact element r ∈ ZT (R)(Y ) such that t = rn. Clearly
r ∈ ZH(R)∗(Y ). This completes the proof.

We now prove the last part of the theorem using Theorem 4.4. By hypothesis n is odd and
by Lemma 4.8, as H is Zariski connected, Pn : H → H is surjective. As Z(H(R)) is abelian, it
is enough to prove that for every semisimple element s ∈ Z(H(R)) we have s ∈ Pn(Z(H(R))).
As n is odd, by Theorem 4.4, there is a t ∈ H(R) such that t is Pn-regular in H and s = tn.
As Ad(s)X = X for all X ∈ L(H) we then have Ad(t)X = X for all X ∈ L(H). Thus, as H is
Zariski connected, t ∈ Z(H) which in turn implies t ∈ Z(H(R)). �
Remark 4.9. Note that Theorem 1.1 implies that if G is an algebraic group, n is odd and Pn :
G → G is surjective then Pn : G(R) → G(R) is surjective. We remark that the converse of this
result is not true as can be seen easily. Let m be an odd integer. Then Pn : SLm(C) → SLm(C) is
surjective if and only if m is relatively prime to n (see Theorem 4.15), but it can be seen (using (1)
of Theorem 1.3) that Pn : SLm(R) → SLm(R) is surjective if and only if n is odd.

Proof of Corollary 1.2. Let G be a complex algebraic group defined over R. Then using Corol-
lary 5.1 of [7] and Theorem 1.4 of [10] we conclude that there is an integer k′

G such that if n is
coprime to k′

G then Pn : G → G is surjective. Set kG = 2k′
G. Let now n be coprime to kG then n is

odd and Pn : G → G is surjective. Then by (2) of Theorem 1.1, Pn : G(R)∗ → G(R)∗ is surjec-
tive. We now recall that the order Ord(G(R)/G(R)∗) is finite. Let mG = kG ·Ord(G(R)/G(R)∗).
If n is coprime to mG then n is coprime to Ord(G(R)/G(R)∗) and Pn : G(R)∗ → G(R)∗ is
surjective. Theorem 1.8 of [10] says that for an algebraic group H defined over R, the map
Pn : H(R) → H(R) is surjective if and only if Pn : H(R)∗ → H(R)∗ is surjective and n is co-
prime to the order Ord(H(R)/H(R)∗). We now use this result to conclude that if n is coprime
to mG then Pn : G(R) → G(R) is surjective. �

We now give two examples to show that Corollary 1.2 does not hold in general.

Example 4.10. Let A be a diagonalizable matrix in Mn(C) with detA 	= 0. Let us consider the
linear Lie group G defined by

G =

⎧⎪⎨
⎪⎩

⎛
⎜⎝

1 t 0 0
0 1 0 0
0 0 exp(tA) v

⎞
⎟⎠ ∣∣∣ t ∈ R, v ∈ Cn

⎫⎪⎬
⎪⎭ .
0 0 0 1
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Then G is a closed subgroup of GLn+3(C) which is also a solvable and simply connected Lie
group isomorphic to the semidirect product R�ρ Cn, where the homomorphism ρ : R → GLn(C)

is given by ρ(t) = exp(tA), t ∈ R.

Claim. Pn : G → G is not surjective for all n if and only if A has an eigenvalue which is purely
imaginary, that is, in

√−1 R � {0}.

Let

h =

⎧⎪⎨
⎪⎩

⎛
⎜⎝

0 t 0 0
0 0 0 0
0 0 tA 0
0 0 0 0

⎞
⎟⎠ ∣∣∣ t ∈ R

⎫⎪⎬
⎪⎭ .

Observe that, as A is a diagonalizable matrix, h is contained in a Cartan subalgebra of L(G).
Further, as detA 	= 0, we conclude that h itself is a Cartan subalgebra of L(G). As G is connected
solvable, Cartan subgroups of G are connected and consequently the subgroup H defined by

H = exp(h) =

⎧⎪⎨
⎪⎩

⎛
⎜⎝

1 t 0 0
0 1 0 0
0 0 exp(tA) 0
0 0 0 1

⎞
⎟⎠ ∣∣∣ t ∈ R

⎫⎪⎬
⎪⎭

is a Cartan subgroup of G. Let λ1, . . . , λk be distinct eigenvalues of A and Cn = Cn
λ1

+· · ·+Cn
λk

be the eigenspace decomposition of Cn where Cn
λi

= {v ∈ Cn | Av = λiv}. We next describe
ZH (v) for all v ∈ Cn. Let pi : Cn → Cn

λi
be the i-th projection map with respect to the above

decomposition of Cn. For better clarity of the exposition we introduce the notion of support
of v by Supp(v) = {i | pi(v) 	= 0}. Then it is easy to see that, for v ∈ Cn, the group ZH (v) is
isomorphic to

⋂
i∈Supp(v)

(
2π

√−1

λi

Z

)
∩ R.

In view of this, there exists v ∈ Cn such that ZH (v) is isomorphic to the additive group of
integers Z if and only if A has an eigenvalue in

√−1 R � {0}. We now appeal to Theorem A
of [6] to complete the proof of the above claim. Alternatively, as G is simply connected and
solvable, we may also use Theorem C of [6] to reach the same conclusion.

Example 4.11. Let S̃L2(R) be the simply connected cover of SL2(R). We claim that for all n � 2

the map Pn : S̃L2(R) → S̃L2(R) is not surjective. We will first sketch that if G is an algebraic
group over R and if H is a covering group of the real Lie group G(R)∗ with covering map
η : H → G(R)∗ then an analogue of the Jordan decomposition is available in the Lie group H .
This is also done in Proposition 2.2 of [3] with the additional assumption that η : H → G(R)∗
is a finite covering map. Recalling that dη : L(H) → L(G(R)∗) is an isomorphism we define
the set of unipotent elements UH of H by UH = expH ◦dη−1(NL(G(R)∗)). It is not difficult to
see that η(UH ) = UG(R)∗ and that η : UH → UG(R)∗ is a bijection. Using these facts we observe
that for each g ∈ H there is a unique pair gs, gu ∈ H such that g = gsgu = gugs with gu ∈ UH
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and that η(gs) (resp. η(gu)) is the semisimple part of η(g) (resp. the unipotent part of η(gu)).
We call gs and gu the semisimple and unipotent parts of g respectively. It is easy to see that if
UG(R)∗ ∩ Z(G(R)∗) = e then Z(H) consists of semisimple elements. We are now in a position
to prove the following claim.

Claim. Let now G = SL2(C) be equipped with the usual R-structure so that G(R) = SL2(R)

and let H be a covering group of G(R)∗ = G(R). Assume that Pn : H → H is surjective then
Pn : Z(H) → Z(H) is surjective.

As before let η : H → SL2(R) be the covering map. Also by the facts stated above, Z(H)

consists of semisimple elements. Let u be the unipotent element in USL2(R) defined by u = ( 1 1
0 1

)
.

Let ũ be the unique element in UH such that η(ũ) = u. Let α ∈ Z(H). If g = αũ then it is
immediate that gs = α and gu = ũ. It is a fact that u is a regular unipotent element in SL2(C)

and consequently all the semisimple elements of ZSL2(R)(u) are central in SL2(R) (compare this
with Theorem 1.8). As Pn : H → H is surjective there is h ∈ H such that g = hn. Clearly α = hn

s

and ũ = hn
u. We now show that hs ∈ Z(H). Note that η(hs) is semisimple and commutes with u.

This forces η(hs) ∈ Z(SL2(R)). Thus hs ∈ Z(H). This completes the proof of the claim.

Now if H = S̃L2(R) then, by the above claim, surjectivity of Pn : S̃L2(R) → S̃L2(R) implies

surjectivity of Pn : Z(S̃L2(R)) → Z(S̃L2(R)). But Z(S̃L2(R)) is isomorphic to the additive group

of integers Z. Thus Pn : S̃L2(R) → S̃L2(R) is not surjective if n 	= 1.

Remark 4.12. In a similar vein, as in Example 4.11, one may consider the questions of surjec-

tivity of the exponential map exp : L(S̃L2(R)) → S̃L2(R). This question and related structures

are studied in depth in [18] where the authors show that the image exp(L(S̃L2(R))) misses a

nonempty open set in S̃L2(R) and thus, exp(L(S̃L2(R))) is not even dense in S̃L2(R). In fact, in

p. 423 [18] the authors employ a very interesting parametrization of S̃L2(R) by R3 and in p. 429

[18] and in p. 18 [20] elegant pictorial descriptions of the set exp(L(S̃L2(R))) in R3 are given
enabling one to visualize the above fact.

We now proceed towards a proof of Theorem 1.3. We first need a lemma.

Lemma 4.13. Let H be a Zariski connected complex algebraic group defined over R and let H1
be a normal R-algebraic subgroup of H which is not necessarily Zariski connected. Assume that
n is odd and that Pn : H/H1 → H/H1 is surjective. Then Pn : H(R)/H1(R) → H(R)/H1(R) is
surjective.

Proof. Let F = H/H1. Then by hypothesis Pn : F → F is surjective. Now as n is odd and F

is Zariski connected it follows from Theorem 1.1 that Pn : F(R) → F(R) is surjective. We next
note that H(R)/H1(R) embeds in F(R). It can be easily seen that (H(R)/H1(R))∗ = F(R)∗.
Thus we have the following inclusion(

H(R)/H1(R)
)∗ = F(R)∗ ⊂ H(R)/H1(R) ⊂ F(R).

As F is Zariski connected, the index of F(R)∗ in F(R) is of the form 2l for some integer l.
We recall that, by Theorem 1.7 of [10], if G is an algebraic group defined over R, A is a sub-
group of G(R) with G(R)∗ ⊂ A ⊂ G(R) then Pn : A → A is surjective if and only if so is Pn :
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G(R)∗ → G(R)∗ and n is relatively prime to the order Ord(A/G(R)∗). This result implies that
Pn : F(R)∗ → F(R)∗ is surjective. Now, as the index of F(R)∗ in H(R)/H1(R) is of the form 2i ,
applying Theorem 1.7 of [10] again, we conclude that Pn : H(R)/H1(R) → H(R)/H1(R) is sur-
jective. �
Lemma 4.14. Let G be a Zariski connected complex reductive algebraic group and H be a
Zariski connected algebraic subgroup of maximal rank. Assume that Pn : G/Z(G) → G/Z(G)

is surjective. Then Pn : H/Z(H) → H/Z(H) is surjective.

Proof. As H is of maximal rank and G is reductive, Z(G) ⊂ H and consequently Z(G) ⊂
Z(H) ⊂ H . Observe that H/Z(G) is a maximal rank subgroup of G/Z(G). Thus by Theorem A
of [7], as Pn : G/Z(G) → G/Z(G) is surjective, it follows that Pn : H/Z(G) → H/Z(G).
Clearly H/Z(H) is a quotient of H/Z(G). Hence Pn : H/Z(H) → H/Z(H) is surjective. �

We now need to recall certain results of [7]. Let G be a connected simple algebraic group.
We consider the root system associated to G with respect to some maximal torus of G. Let �

be the set of simple roots with respect to an order in the root system and let h = ∑
α∈� mαα be

the highest root. A prime p is said to be a bad prime for the simple group G if p divides mα for
some α ∈ �. Now if G is connected semisimple then a prime p is said to be a bad prime for G

if p is bad for some simple factor of G.

Theorem 4.15. (See [7].) Let G be a Zariski connected semisimple algebraic group over an
algebraically closed field of characteristic zero. Then Pn : G → G is surjective if and only if
n is prime to the bad primes for G and Ord(Z(G)). In particular, if G is a connected simple
algebraic group then Pn : G → G is surjective if and only if one of the following conditions
holds (depending on the type of G).

(1) G is of type Al , l � 1 and n is prime to Ord(Z(G)).
(2) G is of type either Bl , l � 2 or Cl , l � 3 or Dl , l � 4, and n is prime to 2.
(3) G is of type either E6 or E7 or F4 or G2, and n is prime to 6.
(4) G is of type E8 and n is prime to 30.

Hence for any semisimple algebraic group G the map Pn is surjective if n is prime to
30 · Ord(Z(G)).

See [7, Theorem C] for a proof of the above theorem.

Proof of Theorem 1.3. (1): Let G be a semisimple algebraic group over R which is of clas-
sical type. Then by G/Z(G) is a direct product of adjoint groups of type either Al or Bl or
Cl or Dl . Now by (1) of Theorem 4.15, for adjoint groups of type Al , the map Pn is sur-
jective for all n. Further, by (2) of Theorem 4.15, for groups of type Bl or Cl or Dl the map
Pn is surjective for all odd n. Hence Pn : G/Z(G) → G/Z(G) is surjective for all odd n. Let
now H be an R-algebraic Zariski connected subgroup of G of maximal rank. By Lemma 4.14
Pn : H/Z(H) → H/Z(H) is surjective for all odd n. We now appeal to Lemma 4.13 to see that
Pn : H(R)/Z(H(R)) → H(R)/Z(H(R)) is surjective for all odd n. It is now immediate that
Pn : H(R) → H(R) is surjective if n is odd and Pn : Z(H(R)) → Z(H(R)) is surjective. But as
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Z(H(R)) is abelian Pn : Z(H(R)) → Z(H(R)) is surjective if and only if n is coprime to the
order Ord(Z(H(R))/Z(H(R))∗). This completes the proof of the first part of (1).

To give a proof of the second part of (1), first observe that, if G is of type Bl or Cl or Dl

the map Pn is surjective for all odd n (see (2) of Theorem 4.15). Consequently, as H is maximal
rank, by the last part of Theorem 1.1 it is immediate that Pn : Z(H(R)) → Z(H(R)) is surjective
for all odd n. We now apply the first part of (1), Theorem 1.3 to conclude the proof.

(2) and (3): The proofs of the statements follow immediately from Theorem 1.1 and (3) and
(4) of Theorem 4.15.

We now give the proofs of the final parts of Theorem 1.3.
If G is an algebraic group over R, which is semisimple and of classical type then it follows

immediately from (1) that Pn : G(R) → G(R) is surjective if n is coprime to 2 · Ord(Z(G(R))).
The proof of the subsequent statement follows similarly as in the proof of (1). We apply

Lemmas 4.13, 4.14, after we observe, using Theorem 4.15, that if G is any semisimple group
over R then Pn : G/Z(G) → G/Z(G) is surjective if n is coprime to 30. Thus the proof of the
theorem is completed. �

We now need to recall a criterion, which follows from results of K. Hofmann and J. Lawson
in [19] and M. McCrudden in [21], on the exponentiality of real Lie group.

Theorem 4.16. Let G be a closed subgroup of a real Lie group which is not necessarily con-
nected. Then G = exp(L(G)) if and only if Pn : G → G is surjective for all n � 2.

Proof. The theorem follows immediately from the result that exp(L(G)) = ⋂
n�2 Pn(G), which

is readily implied either by Theorem A of [19] or by combination of Proposition 1 of [19] and
Theorem 2 of [21]. �
Proof of Corollary 1.4. (1): By (2) of Theorem 1.1, as H is Zariski connected maximal rank
subgroup of G and as Pn : G → G is surjective for all odd n, it follows that Pn : H(R) → H(R)

is surjective for all odd n. Thus Pn : H(R) → H(R) is surjective for all n if and only if P2 :
H(R) → H(R) is surjective. Appealing to Theorem 4.16 we conclude that H(R) is exponential
if and only if P2 : H(R) → H(R) is surjective.

(2): As G is exponential, Pn : G → G is surjective for all n. Consequently, by (3) of Theo-
rem 1.1, as H is of maximal rank and contains an R-anisotropic maximal torus, we have that
Pn : H(R)∗ → H(R)∗ is surjective for all n. Now we apply Theorem 4.16 to conclude that
H(R)∗ is exponential.

We now give a proof of the last part. As H(R) is evenly centered, by (1) of Theorem 1.3, it
follows that Pn : H(R) → H(R) is surjective for all odd n. Now the proof follows, as above,
using Theorem 4.16. �
Proof of Corollary 1.5. (1): Proofs of the statements follow immediately from (1) of The-
orem 1.3, the last part of Corollary 1.4 and the fact that for any P (as in the statement of
Corollary 1.5) Ord(Z(P (R))) = Ord(Z(SLm(H))) = 2.

(2): First recall that G = GLm(C) (resp. G = PSLm(C)) is an exponential group. So Pn :
G → G is surjective for all n. As above, we now use (1) of Corollary 1.4 to see that H(R)∗ is
exponential if and only if P2 : H(R) → H(R) is surjective.
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For the proof of the last part of (2) we observe that Zariski closure of D (or any of its G(R)-
conjugates) is a maximal torus of G which is defined over R and R-anisotropic. The rest of the
proof now follows from (2) of Corollary 1.4. �
5. Types, conjugates of elements and parabolic subgroups

In this section we prove Theorem 1.6. In order to prove Theorem 1.6 (and Theorems 1.7, 1.9
in Section 6) we need to prove Theorem 5.11 which gives certain criteria to decide when a G(R)-
conjugate of g ∈ G(R) will lie in some canonical solvable subgroups defined over R which in
turn lie in standard parabolic subgroups.

We begin with the following lemma.

Lemma 5.1. Let G be a Zariski connected reductive group over an algebraically closed field
of characteristic zero. Let B be a Borel subgroup and s be a semisimple element in B . Then
ZG(s)0 ∩ B is a Borel subgroup of ZG(s)0.

Proof. Let T be a maximal torus of G such that s ∈ T ⊂ B . Clearly T ⊂ ZG(s)0. Let U be the
unipotent radical of B . Then B = T U . Note that ZG(s)0 ∩ B = T (U ∩ ZG(s)0). As the charac-
teristic of the underlying field is zero any unipotent group is connected and hence it follows that
ZG(s)0 ∩B is a connected group. Thus ZG(s)0 ∩B is a connected solvable subgroup of ZG(s)0.
We need to show that it is a maximal connected solvable group. Let B ′ be a Borel subgroup of
ZG(s)0 containing ZG(s)0 ∩ B . We will arrive at a contradiction by assuming ZG(s)0 ∩ B 	= B ′.
Let U ′ be the unipotent radical of B ′. Then U ⊂ U ′ but U 	= U ′. Consider the root system of G

with respect to T and let Φ be the set of roots. Then the Borel subgroup B induces an ordering
on Φ and the set of positive roots is denoted by Φ+. Then L(U) = ∑

α∈Φ+ L(G)α . Consequently,

L
(
U ∩ ZG(s)0) =

∑
α∈Φ+, α(s)=1

L(G)α.

Since ZG(s)0 ∩U 	⊂ U ′ and both the groups are connected we conclude that L(ZG(s)0 ∩U) 	⊂
L(U ′). But this implies that there is an α0 ∈ Φ+ with α0(s) = 1 such that L(G)−α0 ⊂ L(U ′). But
then

L(G)−α0 + L(T ) + L(G)α0 ⊂ L
(
B ′).

This is a contradiction because L(B ′) is a solvable Lie algebra but L(G)−α0 + L(T ) + L(G)α0

is not a solvable Lie algebra. This completes the proof. �
Corollary 5.2. Let G be a Zariski connected reductive group over an algebraically closed field
of characteristic zero. Let P be a parabolic subgroup and s be a semisimple element in P . Then
ZG(s)0 ∩ P is a parabolic subgroup of ZG(s)0.

Proof. Since s ∈ P we may choose a Borel subgroup B of G so that s ∈ B ⊂ P . Now ZG(s)0 ∩
B ⊂ ZG(s)0 ∩ P . Note that by Lemma 5.1 it follows that ZG(s)0 ∩ B is a Borel subgroup of
ZG(s)0. So ZG(s)0 ∩ P is a parabolic subgroup of ZG(s)0. �
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Remark 5.3. Note that even if P is a proper parabolic subgroup the group ZG(s)0 ∩P may not be
a proper parabolic subgroup of ZG(s)0. We further remark that Lemma 5.1 and Corollary 5.2 can
also be extended to any general Zariski connected algebraic group G.

In what follows some of the notions and results remain valid for groups over general fields,
but for our purpose we will confine to the field of real numbers.

We need the following definitions from [15].

Definition 5.4. (See [15].) Let G be a connected complex reductive group defined over R and S

maximal R-split torus of G. Let ΦR be the set of R-roots of G with respect to S and let �R be a
set of simple roots in ΦR. For θ ⊂ �R define Sθ to be the identity component of

⋂
α∈θ Ker(α).

The R-split subtorus Sθ is called the standard R-split torus of type θ . We say that a maximal
R-torus T is of type θ if the R-split torus Sθ is the R-split part of T , that is, Sθ = Tsp.

We need the two following results from [15].

Theorem 5.5. (See [15].) Let G be a Zariski connected complex reductive group defined over R.
Then any maximal R-torus T of G is G(R)-conjugate to a maximal R-torus of G having a
standard R-split torus as its R-split part.

See [15, Proposition 1.2] for a proof.
Retaining notations as in Definition 5.4, we denote by WR the R-Weyl group of G which is

WR = NG(S)/ZG(S).

Theorem 5.6. (See [15].) Let G be a Zariski connected complex reductive group defined over R.
Let T ,T ′ be two maximal R-tori of G and θ, θ ′ be subsets of �R so that the maximal R-split
part T is Sθ and maximal R-split part T ′ is Sθ ′ . Then T is G(R)-conjugate to T ′ if and only if
θ is WR-conjugate to θ ′. Moreover all maximal R-tori of G containing a maximal R-split torus
of G are G(R)-conjugate.

See [15, Proposition 1.3 and Corollary 1.4] for a proof.
Recall that if G is a connected reductive group defined over R and s ∈ G(R) is a semisim-

ple element then ZG(s)0 is a connected reductive group defined over R containing s. The next
corollary gives a description of maximal R-split tori in ZG(s)0.

Corollary 5.7. Let G be a Zariski connected complex reductive group defined over R. Let s be a
semisimple element in G(R). Then any maximal R-split torus of ZG(s)0 will be G(R)-conjugate
to a standard R-split torus Sθ (of type θ ), for some θ ⊂ �R. Moreover, if θ ′ ⊂ �R then some
G(R)-conjugate of the standard R-split torus Sθ ′ is a maximal R-split torus of ZG(s)0 if and
only if θ and θ ′ are WR-conjugate.

Proof. As s ∈ G(R), the group ZG(s)0 is defined over R. Also note that as s is semisimple the
rank of ZG(s)0 is the same as the rank of G. Now let S be a maximal R-split torus of ZG(s)0.
Then we can find a maximal R-torus of ZG(s)0, say T containing S. Clearly T is a maximal
R-torus of G. Moreover as S ⊂ T ⊂ ZG(s)0 and as S is a maximal R-split torus of ZG(s)0 we
conclude that S is the R-split part of T . Now we apply Theorem 5.5 to see that T is G(R)-
conjugate to a maximal R-torus having a standard R-split torus, say Sθ , as its R-split part. Hence
S = aSθa

−1 for some θ ⊂ �R and a ∈ G(R).
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Now suppose θ ′ ⊂ �R and b ∈ G(R) so that bSθ ′b−1 is a maximal R-split torus of ZG(s)0.
Let S′ = bSθ ′b−1 and let T ′ be a maximal R-torus of ZG(s)0 containing S′. As T and T are
maximal R-tori of ZG(s)0 containing the maximal R-split tori (of ZG(s)0), S and S′ respectively,
by the last part of Theorem 5.6, we conclude that T and T ′ are ZG(s)0(R) conjugate. Hence
a−1T a and b−1T ′b are G(R) conjugate. But Sθ is the R-split part of a−1T a and Sθ ′ is the
R-split part of b−1T ′b. Hence by Theorem 5.6 θ and θ ′ are WR conjugate. Converse is clear as
θ and θ ′ are WR conjugate implies Sθ and Sθ ′ are NG(S)(R)-conjugate. �
Definition 5.8. Recall that WR is acting on ΦR and consider its corresponding action on the set
of subsets of ΦR. Two subsets σ1, σ2 of ΦR are said to be equivalent if there is a w ∈ WR such
that w(σ1) = σ2. The equivalence class of the subset σ of ΦR is denoted by σ . Now we are in a
position to define the type of an R-rational semisimple element in a reductive group G defined
over R. Let s ∈ G(R) be a semisimple element. Let S′ be a maximal R-split torus of ZG(s)0.
Now by Corollary 5.7, S′ is G(R)-conjugate to a standard R-split torus Sθ , for some θ ⊂ �R.
We define the type of s to be θ . Note that this is well defined because of Corollary 5.7. Moreover
if g ∈ G(R) then we define the type of g to be the type of gs where gs is the semisimple part
of g. A subset θ of �R is said to be admissible if there is a maximal R-torus T with Sθ being its
R-split part, that is, Sθ = Tsp.

Remark 5.9. Note that type of g is �R if and only if ZG(gs)
0/Z(ZG(gs)

0) is R-anisotropic if
and only if ZG(gs)

0/Z(ZG(gs)
0)(R) is a compact (connected group). This tells us that if type

of g is �R then the element g is semisimple. Also note that type of g is ∅ (here ∅ denotes the
empty set) if and only if R-rank of ZG(gs)

0 is the same as the R-rank of G.

Remark 5.10. Note that if T is a maximal R-torus of G then there is an element s ∈ T (R) so that
ZG(s)0 = T . We have, T (R) is Zariski dense in T and the set consisting of elements x ∈ T for
which ZG(x)0 = T is a nonempty Zariski open subset in T . Thus there is an element s ∈ T (R)

so that ZG(s)0 = T . This says that θ ⊂ �R is an admissible set if and only if there is an element
g ∈ G(R) of type θ . Further it can also be observed easily that θ ⊂ �R is an admissible set if and
only if the semisimple group ZG(Sθ )/Z(ZG(Sθ )) admits an R-anisotropic maximal torus over
R (see [15]).

Retain the notations introduced in Definition 5.8. We next prove Theorem 5.11 which tells
us when an R-rational element in G(R) can be G(R)-conjugated to lie in a certain solvable
R-subgroup which in turn lies in a standard parabolic subgroup. Note that if θ, θ ′ ⊂ �R and if
they are equivalent then θ is admissible if and only if θ ′ is so. Let AG be a set of all mutually
nonequivalent admissible subsets of �R. Now for each θ in AG we fix a maximal R-torus,
say Tθ , with Sθ as the R-split part. Thus any maximal R-torus of G is G(R)-conjugate to exactly
one standard maximal torus Tθ of type θ , for some θ ∈ AG. Also note that as Sθ is the R-split part
of Tθ we have, Tθ ⊂ ZG(Sθ ) ⊂ Pθ , where Pθ is the standard R-parabolic subgroup corresponding
to θ (see Section 2).

Theorem 5.11. Let G be a Zariski connected complex reductive group defined over R and
g ∈ G(R). Let g be of type θ for some θ ∈ AG. Let Pθ be the standard R-parabolic subgroup
corresponding to θ ⊂ �R. Then the following hold.
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(1) Suppose that there is α ∈ G(R) so that αSθα
−1 is a maximal R-split torus of ZG(gs)

0.
Then ZG(gs)

0 ∩ αPθα
−1 is a minimal R-parabolic subgroup of ZG(gs)

0 with ZG(gs)
0 ∩

αZG(Sθ )α
−1 as a Levi part and ZG(gs)

0 ∩ αRuPθα
−1 as the unipotent radical.

(2) There is a δ ∈ G(R) so that δgsδ
−1 ∈ Tθ (R) and δguδ

−1 ∈ RuPθ (R).

Consequently, if g is of type θ then g can be G(R)-conjugated to lie in TθRuPθ (R) ⊂ Pθ(R).

Proof. Let s = gs and u = gu. As g is of type θ , a G(R)-conjugate of Sθ is a maximal R-split
torus of ZG(s)0.

First we prove part (1) of the theorem. Without loss of generality we may assume that α = e.
Thus Sθ is a maximal R-split torus in ZG(s)0.

Claim 1. Let v ∈ ZG(s)0 ∩ Pθ(R) be a unipotent element. Then v ∈ RuPθ .

To prove the claim we first recall that

Pθ = ZG(Sθ )RuPθ .

Now as Sθ ⊂ ZG(s)0, clearly s ∈ ZG(Sθ ). As v ∈ Pθ(R) it follows that v = v1v2 where v1 ∈
ZG(Sθ )(R) and v2 ∈ RuPθ (R). As v is unipotent we observe that v1 is unipotent. Now as s ∈
ZG(Sθ ) and v ∈ ZG(s)0 we have

v1v2 = v = svs−1 = sv1s
−1sv2s

−1.

As sv2s
−1 ∈ RuPθ and sv1s

−1 ∈ ZG(Sθ ) we conclude that sv1s
−1 = v1. Hence v1 ∈ ZG(Sθ ) ∩

ZG(s)0 = ZZG(s)0(Sθ ). Now as Sθ is a maximal R-split torus in ZG(s)0 we conclude that
ZZG(s)0(Sθ )/Sθ has R-rank zero. Thus all elements of ZZG(s)0(Sθ )(R) are semisimple. Note
that v1 is a unipotent element in ZZG(s)0(Sθ )(R) and hence we conclude that v1 = e. So v = v2
and hence v ∈ RuPθ . This completes the proof of Claim 1.

As s ∈ ZG(Sθ ) ⊂ Pθ it follows from Corollary 5.2 that ZG(s)0 ∩ Pθ is a parabolic subgroup
of ZG(s)0 which is defined over R. We will show that ZG(s)0 ∩ Pθ is a minimal R-parabolic
subgroup of ZG(s)0. Note that as Sθ is a maximal R-split torus of ZG(s)0 and as ZG(s)0 ∩ Pθ

is a parabolic subgroup of ZG(s)0, it follows that there is a minimal R-parabolic subgroup P ′ of
ZG(s)0 satisfying

ZZG(s)0(Sθ ) ⊂ P ′ ⊂ ZG(s)0 ∩ Pθ .

Claim 2. RuP
′ ⊂ RuPθ .

As RuP
′(R) is Zariski dense in RuP

′, to prove this claim it is enough to show that RuP
′(R) ⊂

RuPθ . Let v ∈ RuP
′(R). Hence v ∈ ZG(s)0 ∩Pθ(R) is unipotent. Now by Claim 1 it follows that

v ∈ RuPθ . This completes the proof of Claim 2.
Since ZZG(s)0(Sθ ) ⊂ P ′ and P ′ is a minimal R-parabolic in ZG(s)0 it follows that P ′ =

ZZG(s)0(Sθ )RuP
′.

Claim 3. ZG(s)0 ∩ Pθ = (ZG(s)0 ∩ ZG(Sθ ))(ZG(s)0 ∩ RuPθ ).
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To prove this claim we first want to show that

ZG(s) ∩ Pθ = (
ZG(s) ∩ ZG(Sθ )

)(
ZG(s) ∩ RuPθ

)
.

Let x ∈ ZG(s) ∩ Pθ . Then x = yz where y ∈ ZG(Sθ ) and z ∈ RuPθ . Now yz = x = sxs−1 =
sys−1szs−1, with sys−1 ∈ ZG(Sθ ) and szs−1 ∈ RuPθ . Hence y = sys−1, z = szs−1. Thus y ∈
ZG(s)∩ZG(Sθ ) and z ∈ ZG(s)0 ∩RuPθ . We now complete the proof Claim 3. Note that RuPθ is
a unipotent group and hence ZG(s)0 ∩ RuPθ = ZG(s)∩ RuPθ . Now if x̄ ∈ ZG(s)0 ∩ Pθ then, by
the above observation, there exist ȳ ∈ ZG(s) ∩ ZG(Sθ ) and z̄ ∈ ZG(s) ∩ RuPθ such that x̄ = ȳz̄.
Note that z̄ ∈ ZG(s)0 ∩ RuPθ and hence ȳ ∈ ZG(s)0 ∩ ZG(Sθ ). This completes the proof of
Claim 3.

Now by Claim 3 it follows that

P ′ ⊂ ZG(s)0 ∩ Pθ = (
ZG(s)0 ∩ ZG(Sθ )

)(
ZG(s)0 ∩ RuPθ

)
= ZZG(s)0(Sθ )

(
ZG(s)0 ∩ RuPθ

)
.

Recall that by Claim 2 we have RuP
′ ⊂ ZG(s)0 ∩ RuPθ . Since P ′ is a minimal R-parabolic

subgroup of ZG(s)0, the group RuP
′ is a maximal unipotent R-subgroup of ZG(s)0. Hence

RuP
′ = ZG(s)0 ∩ RuPθ . Thus

P ′ = ZZG(s)0(Sθ )RuP
′ = ZZG(s)0(Sθ )

(
ZG(s)0 ∩ RuPθ

) = ZG(s)0 ∩ Pθ .

This completes the proof of (1). We now prove part (2) of the theorem. Again without loss
of generality we may assume that Sθ is a maximal R-split torus of ZG(s)0. Recall that if Sθ is
a maximal R-split torus of ZG(s)0 then by part (1) of the theorem it follows that ZG(s)0 ∩ Pθ

is a minimal parabolic subgroup of ZG(s)0 with ZZG(s)0(Sθ ) as a Levi part and ZG(s)0 ∩ RuPθ

as the unipotent radical. Hence ZG(s)0 ∩ RuPθ is a maximal R-unipotent subgroup of ZG(s)0.
Thus, as u ∈ ZG(s)0(R) is unipotent, it follows that there is a β ∈ ZG(s)0(R) such that βuβ−1 ∈
ZG(s)0 ∩ RuPθ . Now as Sθ is a maximal R-split torus of ZG(s)0 we can find a maximal R-torus
T ′ of ZG(s)0 such that Sθ ⊂ T ′. As s is in the center of the reductive group ZG(s)0 we have

s ∈ T ′ ⊂ ZZG(s)0(Sθ ).

Now note that both Tθ , T
′ are maximal R-tori of the reductive group Z(Sθ ) with a common

R-split part Sθ . So by Corollary 5.7 it follows that there is γ ∈ Z(Sθ )(R) such that γ T ′γ −1 = Tθ .
As β commutes with s we have (γβ)s(γβ)−1 = γ sγ −1 ∈ Tθ . Moreover as Z(Sθ ) normalizes
RuPθ it follows that (γβ)u(γβ)−1 ∈ RuPθ (R). We choose δ = γβ . This completes the proof
of (2). �
Proof of Theorem 1.6. (1): Recall that H is a Levi subgroup of G which is defined over R

and S is maximal R-split torus of G contained in H . Let g ∈ G(R). As a G(R)-conjugate of gs

lies in H(R) we will assume, without loss of generality, that gs ∈ H(R). Let gu = u1u2 where
u1 ∈ H(R) and u2 ∈ RuG(R). Then clearly u1 and u2 are both unipotent elements and fur-
ther, gs commutes both with u1 and u2. Recall that �H

R
is a set of simple roots in the root

system of H with respect to the maximal R-split torus SH . Now choose θ ⊂ �H
R

such that gs

is of type θ in H . Then by (2) of Theorem 5.11, there is α ∈ H(R) so that αgsα
−1 ∈ Tθ (R)
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and αu1α
−1 ∈ RuP

H
θ (R). Thus αgsα

−1 ∈ ZTθ (R)(αu1u2α
−1). Recall that Pθ = P H

θ RuG. Thus
RuPθ = RuP

H
θ RuG and RuPθ (R) ⊂ UG(R). Clearly, αu1u2α

−1 ∈ RuPθ (R). Thus there exists
X ∈ L(RuPθ (R)) such that ZTθ (R)(αu1u2α

−1) = ZTθ (R)(X). By the hypothesis of the statement
it now follows that αgsα

−1 ∈ Pn(ZTθ (R)(αguα
−1)). We now appeal to the equivalence of (1) and

(2) of Theorem 3.3 to see that αgα−1 has an n-th root in G(R).
(2): First observe that any maximal torus T of G which is defined over R can be G(R)-

conjugated to lie in H . Now appealing to Theorem 5.5, we see that T can be further G(R)

conjugated to Tθ for some admissible θ ⊂ �H
R

. We now apply (1) of Theorem 1.6 to complete
the proof.

(3): Let g ∈ G(R)∗. Then using the complete Jordan decomposition of g in G(R)∗ we get
g = gegp (see Section 2). Now observe that Tan(R) is a maximal (compact) torus of the maximal
compact subgroup of G(R)∗. Hence there is an α ∈ G(R)∗ such that αgeα

−1 ∈ Tan(R). The
proof now follows a path similar to that of (3) of Theorem 1.1 and hence is omitted. �
Remark 5.12. Theorem 1.6 gives only sufficient conditions for the surjectivity of Pn : G(R) →
G(R). However, the conditions are not necessary if n is even, as can easily be observed using
Example 5.3 [14]. At present it is not clear to the author, for n odd, if conditions of Theorem 1.6
are also necessary for the surjectivity of Pn : G(R) → G(R). However, in view of Theorem 1.1
we conclude that for a Zariski connected algebraic group G, the probable odd integers n for
which conditions of Theorem 1.6 do not become necessary must come from the set of integers n

for which Pn : G → G is not surjective.

6. Minimal parabolic subgroups, semiregular unipotent elements and power maps

In this section we prove Theorems 1.7, 1.8 and 1.9. We first need to recall some notations.
The reader is referred to Section 21 [2] for generalities on absolute and relative roots. As in the
previous sections, some of the notions and results remain valid for groups over general fields,
but for our purpose we will confine to the field of real numbers R. Let G be a Zariski connected
reductive algebraic group over R, S be a maximal R-split torus of G and ΦR be the set of
R-roots with respect to S. Let P be a minimal R-parabolic subgroup containing S. The set of
positive roots induced from P and the set of simple roots thereof are denoted by ΦR

+ and �R,
respectively. Let Φnd be the set of non-divisible roots (that is, roots α such that α/2 is not a
root) and let Φnd

+ = Φnd ∩ ΦR
+. For β ∈ ΦR we define L(G)β to be the root space in L(G)

corresponding to the root β . Now for α ∈ Φnd we define L(G)(α) = L(G)α , if 2α is not a root
and L(G)(α) = L(G)α +L(G)2α , if 2α is a root. For a root β ∈ ΦR we define Uβ = exp(L(G)β)

and for α ∈ Φnd we define U(α) = exp(L(G)(α)). Note that for β ∈ ΦR the subset Uβ need not
be a group, but for α ∈ Φnd the subset U(α) is a unipotent group over R; moreover U(α) = Uα ,
if 2α is not a root and U(α) = UαU2α , if 2α is a root (in this case U2α is the center of the group
U(α)). By Theorem 21.9 [2] the groups U(α) directly span RuP , that is, RuP = ∏

α∈Φ+
nd

U(α). We
need the following result from [1].

Theorem 6.1. (See [1].) We retain the notations as in the above paragraph. Let �R =
{α1, . . . , αn} and u ∈ RuP (R) be of the form

u = uα1 · · ·uαn ·
∏

β∈ΦR
+−�R

uβ

where uα ∈ U(α )(R), uβ ∈ U(β)(R). If uα 	= e for all i = 1, . . . , n then ZG(u)(R) ⊂ P .

i i i
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See Corollary 5 of [1] for a proof.

Proof of Theorem 1.7. In view of (2) of Theorem 1.3 it is enough to prove the theorem when G

is a semisimple group over R which is of R-rank one.
Let P ⊂ G be a minimal parabolic subgroup defined over R. Suppose that n is an odd integer

and that Pn : G(R) → G(R) is surjective. Let g ∈ P(R) and let S ⊂ P be a maximal R-split torus
of G. Let ΦR be the R-roots of G with respect to S. We now impose the ordering on ΦR with
respect to P . As G is of R-rank one �R consists of one element, say α. Then RuP = U(α). Let us
first assume that gu = e. Then gs = g. Now we can find an R-torus T ⊂ P such that gs ∈ T (R).
As n is odd the map Pn : T (R) → T (R) is surjective. Hence g has an n-th root in T (R) ⊂ P(R).
Now suppose gu 	= e. Then as gu ∈ P(R) it follows that gu ∈ U(α). Now as Pn : G(R) → G(R)

is surjective there is h ∈ G(R) such that g = hn. We will show that h ∈ P(R). Note that hs

commutes with gu and by Theorem 6.1 it follows that hs ∈ P(R). Moreover as hn
u = gu it follows

that the Zariski closure of the cyclic groups 〈hu〉 and 〈gu〉 are the same. Hence hu ∈ P(R). Thus
h ∈ P(R).

We now prove the converse. Now suppose that Pn : P(R) → P(R) is surjective. Let g ∈
G(R). As R-rank of G is one it follows that either ZG(gs)

0 is R-anisotropic or R-rank of
ZG(gs)

0 is one. In the first case as ZG(gs)
0 is R-anisotropic the real Lie group ZG(gs)

0(R)

is compact and hence we have that gu = e (this is because gu ∈ ZG(gs)
0(R)). Again as the

group ZG(gs)
0(R) is compact and connected we conclude that the exponential map exp :

L(ZG(gs)
0(R)) → ZG(gs)

0(R) is surjective and hence there is h ∈ ZG(gs)
0 so that gs = hn.

In the second case when R-rank of ZG(gs)
0 is one, by Theorem 5.11 the element g can be

G(R)-conjugated to lie in P(R). As Pn : P(R) → P(R) is surjective it follows that we can find
an n-th root of g in G(R). �

We now prove Theorem 1.8. Recall that a complex algebraic group G over R is R-quasisplit
if there is a Borel subgroup defined over R. This is equivalent to saying that P is solvable where
P is a minimal R-parabolic subgroup of G. Further, a reductive group G over R is R-quasisplit
if and only if ZG(S) = T , for some maximal torus T in G which is defined over R. We need the
following easy lemma.

Lemma 6.2. Let K be a compact abelian Lie group, not necessarily connected, and V 	= 0 be a
finite dimensional continuous R-representation of K . Then there is a vector v ∈ V , v 	= 0 such
that if an element g ∈ K fixes v, that is, gv = v then g fixes all the elements of V , that is, gx = x

for all x ∈ V .

Proof. As the group K is compact we may assume that V is an irreducible R-representation
of K . In fact, as the group K is abelian, and V is irreducible, by Schur’s Lemma, it is immediate
that every vector v ∈ V , v 	= 0 satisfies the property stated in the lemma. �

We need another lemma from [7] (a variant of this lemma also appears in [11]). We recall that
an automorphism ψ of an algebraic group is said to be semisimple if its derivative dψ on the Lie
algebra is a diagonalizable linear transformation.

Lemma 6.3. Let U be a unipotent complex algebraic group and let ψ be a semisimple automor-
phism of U . If the automorphism of U/[U,U ] induced by ψ is the identity automorphism then
so is ψ .
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Proof. See Corollary 2.5 of [7]. �
The proof of Theorem 1.8 is divided into two cases. In the first case it is shown that if G

is reductive and R-quasisplit then a semiregular unipotent element exists in P(R), where P is a
minimal R-parabolic subgroup of G. This part can also be proved using properties of centralizers
of regular nilpotent elements and Proposition 5.1 [23] where the analogous existence of regular
nilpotent elements is obtained in R-quasisplit reductive Lie algebras. However, our proof, in
this case is new and more direct. In the latter case, when G is not necessarily reductive but
R-quasisplit, a technique akin to the proof of Proposition 3.1 [7] is applied to prove the existence
of semiregular unipotent elements.

Proof of Theorem 1.8. Case 1: In this case we assume G to be reductive. Let P be a minimal
R-parabolic subgroup of G and let S be a maximal R-split torus of G with S ⊂ P . Let us consider
the R-roots ΦR with respect to S and we impose the ordering on ΦR induced by P . Since G is
R-quasisplit ZG(S) will be a torus, say T , over R. We retain the notations established in the
beginning of the section. Let �R = {α1, . . . , αn}. Then

L
(
RuP (R)

) = L(G)α1(R) + · · · + L(G)αn(R) +
∑

β∈ΦR
+−�R

L(G)β(R).

Claim 1. There exist elements vi ∈ L(G)αi
(R), for each i = 1, . . . , n, with vi 	= 0 which have the

following property. Let w ∈ L(RuP (R)) be any element of the form w = v1 +· · ·+vn + z, where
z ∈ ∑

β∈ΦR
+−�R

L(G)β(R). If g ∈ T (R) is any element satisfying Ad(g)w = w then g ∈ Z(P ).

Let K be the maximal compact subgroup of T (R). Then T (R) = KS(R)∗ where this product
is a direct product. Now note that for all α ∈ ΦR the real vector space L(G)α(R) is invariant
under the adjoint action of K . We now use Lemma 6.2 to choose vi ∈ L(G)αi

(R), for each
i = 1, . . . , n, such that if h ∈ K and Ad(h)vi = vi then Ad(h)x = x for all x ∈ L(G)αi

(R). Now
let g ∈ T (R) and z ∈ ∑

β∈ΦR
+−�R

L(G)β(R) be such that Ad(g)(
∑

vi + z) = ∑
vi + z. Then

Ad(g)vi = vi , for all i = 1, . . . , n. Now g = ks for some k ∈ K and s ∈ S(R)∗. Note that as αi(s)

is positive real for every i = 1, . . . , n and as K is compact we have Ad(s)vi = Ad(k)vi = vi , for
all i = 1, . . . , n. Thus Ad(s)x = x, Ad(k)x = x, for all x ∈ ∑

L(G)αi
(R). Now as

∑
L(G)αi

(R)

generates L(RuP (R)) as a Lie algebra it follows that Ad(s)y = y and Ad(k)y = y, for all
y ∈ L(RuP (R)). Hence Ad(g)y = y for all y ∈ L(RuP (R)). By exponentiating we get that
g commutes with all of RuP (R) and as ZG(S) = T is abelian it follows that g ∈ Z(P ).

Claim 2. Keeping the notations as the above, if g ∈ P(R) is a semisimple element with
Ad(g)(

∑
vi) = ∑

vi then g ∈ Z(P ).

Let g ∈ P(R) be a semisimple element. Then there is a unipotent element ū ∈ RuP (R) such
that ūgū−1 ∈ T (R). As Ad(g)(

∑
vi) = ∑

vi we have

Ad
(
ūgū−1)Ad(ū)

(∑
vi

)
= Ad(ū)

(∑
vi

)
.

Now Ad(ū)(
∑

vi) = ∑
vi +z for some z ∈ z ∈ ∑

β∈Φk
+−�k

L(G)β(R). So by Claim 1 it follows

that ūgū−1 ∈ Z(P ). Hence g ∈ Z(P ).
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Now we choose u = exp(
∑

vi). As vi 	= 0, for all i = 1, . . . , n it follows that the element u is
an element of the form given in Theorem 6.1. Applying Theorem 6.1 we also see that ZG(u) =
ZP (u). This completes the proof of Case 1.

Case 2: In this case G is not necessarily reductive. Let H be a reductive Levi factor of G,
defined over R, such that P ∩ H is a minimal R-parabolic subgroup of H . We denote P ∩ H

by PH . Clearly H is R-quasisplit with PH as a solvable minimal R-parabolic subgroup.
We first assume that the unipotent radical RuG is abelian. By Case 1, there is a unipotent

element u1 ∈ PH (R) which is semiregular in H . Let ρ denote the adjoint representation of H(R)

restricted to the Lie algebra L(RuG(R)). As H is a reductive group over R, the representation ρ

is completely reducible and let L(RuG(R)) = V1 +· · ·+Vn be the decomposition of L(RuG(R))

into H(R)-irreducible (real) subspaces Vi , i = 1, . . . , n. Let us denote the restriction of ρ on Vi

by ρi . As u1 is a unipotent element, the operators ρi(u
−1
1 ) − 1 are nilpotent operators on Vi

and consequently we may choose yi /∈ (ρi(u
−1
1 ) − 1)Vi . Let u2 = exp(

∑n
i=1 yi). Clearly, u2 ∈

RuG(R). We will now show that the unipotent element u = u1u2 ∈ P(R) is semiregular in G.
Let g ∈ ZG(u)(R) be a semisimple element. Then g = tz for some t ∈ H(R) and z ∈ RuG(R).
Note that z = exp(

∑n
i=1 wi) where wi ∈ Vi . As g commutes with u it follows that t commutes

with u1 and consequently, by Case 1, t ∈ Z(H). Further, as tzu1u2 = u1u2tz and t ∈ Z(H) we
get

tu1
(
u−1

1 zu1u2
) = tu1

(
t−1u2tz

)
.

In other words u−1
1 zu1u2 = t−1u2tz. Thus we have

u−1
1 exp

(
n∑

i=1

wi

)
u1 exp

(
n∑

i=1

yi

)
= t−1 exp

(
n∑

i=1

yi

)
t exp

(
n∑

i=1

wi

)
.

As RuG is abelian and Vi are H(R)-invariant subspaces, from the above equation it follows that,
for all i,

ρi

(
u−1

1

)
wi + yi = ρi

(
t−1)yi + wi.

In other words, (ρi(t
−1) − 1)yi = (ρi(u

−1
1 ) − 1)wi , for all i. But as yi /∈ (ρi(u

−1
1 ) − 1)Vi we

conclude that 1 is an eigenvalue of ρi(t
−1), for all i. Finally, as t ∈ Z(H) and Vi are H(R)-

irreducible, by Schur’s Lemma, ρi(t) = 1, for all i. Thus ρ(t) = 1. As exp : L(RuG(R)) →
RuG(R) is surjective we conclude that t commutes with all of RuG(R). Now the Zariski density
of RuG(R) in RuG forces t to commute with all of RuG. This implies that t ∈ Z(G). As g is
semisimple, appealing to the uniqueness of the Jordan decomposition, we get that t = g. Thus
g ∈ Z(G). This completes the proof of the case when RuG is abelian.

We next consider the situation when RuG is not necessarily abelian. Let G′ = G/[RuG,RuG]
and π : G → G′ be the natural projection map. Note that P ′ = π(P ) is a minimal parabolic sub-
group of G′ which is defined over R and RuG

′ is abelian. Moreover, we note that π(P (R)) =
P ′(R). By the above observation, there is a unipotent semiregular element u′ ∈ G′(R). We now
fix a unipotent element u ∈ P(R) so that π(u) = u′. We will show that u is a semiregular unipo-
tent element in G(R). Let g ∈ ZG(u)(R) be a semisimple element. Then π(g) ∈ ZG′(u′)(R)

is a semisimple element. Hence, by the case above, π(g) ∈ Z(G′). As π(H) is a Levi part of
G′ and as π(g) ∈ Z(G′) it follows that π(g) ∈ π(H). Observe that π is a bijection between H



P. Chatterjee / Advances in Mathematics 226 (2011) 4639–4666 4665
and its image π(H). Thus g can be assumed to be in Z(H). Moreover, as the action of g on
RuG/[RuG,RuG], induced by the conjugation by g on RuG is trivial, by Lemma 6.3, g com-
mutes with all of RuG. Thus g ∈ Z(G). This completes the proof. �
Lemma 6.4. Let G be a Zariski connected complex algebraic group over R and P be a mini-
mal R-parabolic subgroup. If s ∈ P(R) is a semisimple element then ZG(s)0 ∩ P is a minimal
R-parabolic subgroup of ZG(s)0.

Proof. As RuG ⊂ P , it follows that there exists a Levi subgroup F ⊂ G defined over R such
that s ∈ F ∩ P and F ∩ P is a minimal R-parabolic subgroup of F . Clearly, as s ∈ F and as
G = FRuG we have ZG(s)0 = ZF (s)0ZRuG(s). Recall that as F is reductive so is ZF (s)0, which
in turn forces ZF (s)0 to be a Levi subgroup of ZG(s)0 and ZRuG(s) to be the unipotent radical of
ZG(s)0. Let PF = F ∩ P . Then P = PF RuG and ZG(s)0 ∩ P = (ZF (s)0 ∩ PF )ZRuG(s). Now
as s ∈ PF (R) and PF is a minimal R-parabolic subgroup of F , by Theorem 5.11, ZF (s)0 ∩ PF

is a minimal R-parabolic subgroup of ZF (s)0. Hence (ZF (s)0 ∩ PF )ZRuG(s) = ZG(s)0 ∩ P is
a minimal R-parabolic ZG(s)0. �
Proof of Theorem 1.9. (1): In view of Lemma 4.1, it is enough to prove that there is an r ∈ G(R)

with the property that s = rn and r ∈ Z(ZG(s)0). As ZG(s)0 is R-quasisplit, by Theorem 1.8,
there is a unipotent element u ∈ ZG(s)0(R) which is semiregular in ZG(s)0. Now consider the
element g ∈ G(R) given by g = su. Since Pn : G(R) → G(R) is surjective, there is an h ∈ G(R)

with g = hn. Clearly, hn
s = s, hn

u = u. We also observe that h ∈ ZG(s)0(R). We further note that
hs commutes with u and hence hs ∈ ZZG(s)0(u). But as u is semiregular in ZG(s)0 we conclude
that hs ∈ Z(ZG(s)0). We set r = hs .

(2): Let now G be an R-quasisplit group and P be a minimal R-parabolic subgroup. Let
g ∈ P(R). Then by Lemma 6.4 it follows that ZG(gs)

0 ∩ P is a minimal R-parabolic subgroup
of ZG(gs)

0. But the group ZG(s)0 ∩ P is solvable, hence ZG(gs)
0 is a quasisplit group with

ZG(gs)
0 ∩ P as a minimal R-parabolic subgroup. Using part (1) of the theorem, we observe

that there is an r ∈ G(R) such that r ∈ Z(ZG(gs)
0) and gs = rn. As ZG(gs)

0 ∩ P is a minimal
R-parabolic subgroup of ZG(gs)

0 it follows that r ∈ ZG(gs)
0 ∩ P . Thus r ∈ Pn(ZP(R)(gu)).

Thus, by Theorem 3.3, g ∈ Pn(P (R)).
We next prove that Pn : Z(G(R)) → Z(G(R)) is surjective. Let g ∈ Z(G(R)). As gs ∈

Z(G(R)) it follows that ZG(gs)
0 = G and ZG(gs)

0 is R-quasisplit. So we use part (1) as above
to get r ∈ G(R) so that gs = rn and r ∈ Z(ZG(gs)

0) = Z(G). Similarly, using Theorem 3.3, g

has an n-th root in Z(G(R)). This completes the proof of the theorem. �
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