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ON THE SURJECTIVITY OF THE POWER MAPS OF
SEMISIMPLE ALGEBRAIC GROUPS

Pralay Chatterjee

Abstract. In this paper we study the surjectivity of the power maps g �→ gn for
semisimple algebraic groups over an algebraically closed field of arbitrary charac-
teristic. We describe certain necessary and sufficient conditions for surjectivity to
hold. The results are applied to characterize the exponentiality of such groups.

1. Introduction

We fix an algebraically closed field K and let p denote the the characteristic
exponent of K. We recall that p is 1 if the characteristic of K is zero and
the characteristic of K otherwise. Unless mentioned otherwise all the algebraic
groups considered are defined over the field K.

Let G be a connected simple algebraic group. We consider the root system
associated to G with respect to some maximal torus of G. Let ∆ be the set of
simple roots with respect to an order in the root system and let h =

∑
α∈∆ mαα

be the highest root. A prime q is said to be a bad prime for the simple group G
if q divides mα for some α ∈ ∆. Now if G is connected semisimple then a prime
q is said to be a bad prime for G if q is bad for some simple factor of G. A prime
is said to be a good prime for G if it is not a bad prime.

Let n be a natural number and Pn : G → G be the n-th power map defined
by Pn(g) = gn for all g ∈ G. We now state the main theorem.

Theorem A. Let G be a connected semisimple algebraic group. Then Pn : G →
G is surjective if and only if n is prime to p, the bad primes for G and the order
of the center of G. In particular, if G is a connected simple algebraic group then
Pn : G → G is surjective if and only if n is prime to p and one of the following
conditions holds (depending on the type of G).

1. G is of type Al, l ≥ 1 and n is coprime to the order of the center of G.
2. G is of type either Bl, l ≥ 2 or Cl, l ≥ 3 or Dl, l ≥ 4, and n is coprime to

2 and .
3. G is of type either E6 or E7 or F4 or G2, and n is coprime to 6.
4. G is of type E8 and n is coprime to 30.

Hence for any semisimple algebraic group G the map Pn is surjective whenever
n is coprime to 30mp, where m is the order of its center.
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Following M. Moskowitz (cf. [Mo]), we say that an algebraic group G is ex-
ponential if every element of G is contained in a connected abelian algebraic
subgroup of G. From Theorem A we deduce the following criterion for exponen-
tiality of connected semisimple algebraic groups.

Corollary B. Let G be a connected semisimple algebraic group. Then the fol-
lowing are equivalent.

1. G is exponential.
2. Pn : G → G is surjective for all n prime to p and p is a good prime for G

if p > 1.
3. G is isogenous to a product of groups of type Al, l ≥ 1 and the reduced

center of G is trivial.

The author had earlier proved results characterizing surjectivity of the n-th
power maps and exponentiality of connected algebraic groups (not necessarily
semisimple) over algebraically closed fields of characteristic zero (see Theorem
A, Theorem 4.1, Corollary D and Corollary 6.2 of [Ch]). As a consequence
a result similar to Theorem A is proved for semisimple algebraic groups over
algebraically closed fields of characteristic zero (see Theorem C of [Ch]). It may
be mentioned that the overall approach followed in the proof of Theorem A is
similar to that of the proof of Theorem C in [Ch]. Various steps however call for
some essential modifications in the case of arbitrary characteristic.

Prefatory Note: After proving the analogous results in [Ch] for characteristic
zero I had been thinking in particular about the general case. Before the work
as presented here in this respect was completed, I was informed by Prof. A.
Borel that Prof. R. Steinberg had generalized the results of [Ch] to arbitrary
characteristic. The first version of the present manuscript was completed shortly
thereafter, without access to Prof. Steinberg’s arguments (see [St]). Subsequent
comparison shows that the present proof involves substantially different argu-
ments than [St], and may be of independent interest.

2. Preliminaries

We recall some basic facts that are needed in the proof of Theorem A. The
reader is referred to [B] for generalities in the theory of algebraic groups. Let G
be an algebraic group. For any element x ∈ G the semisimple and the unipotent
Jordan components of x will be denoted by xs and xu respectively; then we have
x = xs xu = xu xs. For an element g ∈ G let 〈g〉 denote the Zariski closure of
the group generated by g.

Theorem 2.1. Let G be a connected reductive algebraic group. Then G admits
a unipotent element u such that u is contained in a unique maximal unipotent
subgroup U . For any such u, ZG(u) = ZU (u) Z(G). In particular, the semisimple
elements in ZG(u) are central in G.
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Let T be a maximal torus in G. Consider an ordering in the root system
of G with respect to T . Let U be the unipotent radical of the Borel subgroup
associated to the set of positive roots. One can obtain such a unipotent element
u ∈ G by taking u to be any element in U whose components for the simple
roots are all nontrivial. See [Hu], Sections 4.1-4.5 for details.

We also need the following result.

Theorem 2.2. Let G be a connected semisimple algebraic group and s ∈ G be
a semisimple element. Then ZG(s)0 is reductive and all unipotent elements of
ZG(s) lie in ZG(s)0.

See [Hu], Section 2.2 for a proof of Theorem 2.2.
We now collect a preliminary result which will be used later.

Lemma 2.3. Let G be an algebraic group and p > 1. Then there exists a positive
integer kG such that for any unipotent element u ∈ G we have upkG = e. In
particular, if G admits a nontrivial unipotent element then Pp : G → G is not
surjective.

Proof. We first embed G in GLd(K) for some integer d. We next note that
for any unipotent matrix U in GLd(K) we have Upd

= Id. The proof is now
clear.

Corollary 2.4. Let G be an algebraic group. Let u ∈ G be an unipotent element.
If n is prime to p then there exists v ∈ 〈u〉 such that u = vn.

Proof. If p = 1 and u is different from identity then 〈u〉 is one dimensional
connected unipotent group. Hence the proof is clear in this case. If p > 1 the
proof follows from the lemma above.

3. Characterisation of the surjectivity of Pn

In this section we prove Theorem A. To prove Theorem A we need the fol-
lowing result.

Theorem 3.1. Let G be a connected semisimple algebraic group. Then Pn :
G → G is surjective if and only if n is prime to p and to the order of the finite
group ZG(u)/ZG(u)0, for all unipotent elements u ∈ G.

We first prove the following lemmas, in preparation of the proof of Theorem
3.1.
Definition: Let G be a connected algebraic group and s ∈ G be a semisimple
element. A semisimple element t ∈ G is said to be a Pn-regular n-th root of s if
tn = s and t ∈ Z(ZG(s)0).

Lemma 3.2. Let G be a connected semisimple algebraic group. Then Pn : G →
G is surjective if and only if n is prime to p and every semisimple element in G
has a Pn-regular n-th root.
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Proof. Assume that Pn : G → G is surjective. By Lemma 2.3 it follows that
n is coprime to the prime p. Let s ∈ G be a semisimple element. Note that
the group H = ZG(s)0 is reductive (cf. Theorem 2.2) and hence H contains
regular unipotent elements. Let u be a regular unipotent element in H. As Pn

is surjective there exists g ∈ G such that su = gn. Note that gn
s = s and hence

gs ∈ H. We also have gn
u = u and hence gs ∈ ZH(u). We now apply Theorem

2.1 to conclude that gs ∈ Z(H). Thus gs is a Pn-regular n-th root of s.
We now prove the converse. We assume that n is prime to p and that every

semisimple element in G has a Pn-regular n-th root. Let g ∈ G. Let h be a
Pn-regular n-th root of gs. Hence hn = gs and h ∈ Z(ZG(gs)0). Note that
gu ∈ ZG(gs)0 (cf. Theorem 2.2) and hence h commutes with gu. As n is prime
to p, by Corollary 2.4, there exists an element v ∈ 〈gu〉 such that gu = vn.
It is clear that h and v commute. Hence g = (hv)n. Thus Pn : G → G is
surjective.

Lemma 3.3. Let G be a connected semisimple algebraic group and let Pn : G →
G be surjective. Then Pn : ZG(u) → ZG(u) is surjective for every unipotent
element u ∈ G.

Proof. Applying Lemma 2.3 we first note that n must be prime to p. Let u be
an unipotent element in G and g ∈ ZG(u). Note that ZG(gs)

0 is reductive and
both u and gu lie in ZG(gs)

0 (cf. Theorem 2.2). As Pn : G → G is surjective, by
Lemma 3.2 it follows that gs has a Pn-regular n-th root, say t. In other words,
tn = gs and t ∈ Z(ZG(gs)

0). As n is coprime to p, by Corollary 2.4 there exists
v ∈ 〈gu〉 such that gu = vn. Hence g = (tv)n. Clearly tv ∈ ZG(u).

Corollary 3.4. Let G be a connected semisimple algebraic group. such that
Pn : G → G is surjective. Then Pn : Z(G) → Z(G) is surjective.

Proof. Let u be a unipotent element in G for which the contention of Theorem 2.1
holds. By Lemma 3.3, we have that Pn : ZG(u) → ZG(u) is surjective. Let U be
the maximal unipotent group containing u. Note that ZG(u) is a direct product
of the groups Z(G) and ZU (u) (cf. Theorem 2.1). Hence Pn : Z(G) → Z(G) is
surjective.

Lemma 3.5. Let G be a connected semisimple algebraic group and s ∈ G be a
semisimple element. Let m and n be coprime integers. If sm has a Pn-regular
n-th root then so does s.

Proof. Let t ∈ G be a Pn-regular n-th root of sm. First observe that s ∈
ZG(sm)0. Now as t ∈ Z(ZG(sm)0) we have that t and s commute. As m and
n are coprime there exists integers a, b such that am + bn = 1. Since s and t
commute, we have that (sb ta)n = sbntan = sam+bn = s; that is, sb ta is a n-th
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root of s. We next show that sb ta ∈ Z(ZG(s)0). This will prove that sb ta is a
Pn-regular n-th root of s. Observe that sb ta ∈ ZG(s)0. Let x ∈ ZG(s)0. Clearly,
x ∈ ZG(sm)0. As t is central in ZG(sm)0 it follows that x and t commutes. Thus
x commutes with sb ta. Hence sb ta ∈ Z(ZG(s)0).

Proof of Theorem 3.1. Suppose Pn : G → G is surjective. Clearly n is prime to
p (cf. Lemma 2.3). Let u ∈ G be any unipotent element. Then by Lemma 3.3
it follows that Pn : ZG(u) → ZG(u) is surjective, and hence the induced map
Pn : ZG(u)/ZG(u)0 → ZG(u)/ZG(u)0 is surjective. As ZG(u)/ZG(u)0 is a finite
group this implies that its order is prime to n.

To prove the converse we first note that Pn is surjective if and only if Pq is
surjective for all prime divisors q of n, and hence we may assume n itself to be
a prime. Now suppose that n is a prime different from p and that Pn : G → G
is not surjective. Then by Lemma 3.2 there exists a semisimple element which
has no Pn-regular n-th root. Let s be such an element for which, furthermore,
ZG(s) is of maximum possible dimension. Let M = ZG(s)0. Clearly s ∈ Z(M).
As s has no Pn-regular n-th root it follows that s has no n-th root in Z(M).
Since Z(M)0 is a torus of the reductive group M , it follows that the element
sZ(M)0 has no n-th root in the quotient group Z(M)/Z(M)0. Hence n, which
is a prime, must divide the order of sZ(M)0 in Z(M)/Z(M)0.

Let ord(.) denote the order of an element in a group. Now ord(sZ(M)0) can
be expressed as nkm where k ≥ 1 and m is prime to n. Let ũ be a unipotent
element of M for which the contention of Theorem 2.1 holds. Clearly, s ∈ ZG(ũ).
We claim that n divides the order of the element sZG(ũ)0 in the quotient group
ZG(ũ)/ZG(ũ)0. If possible suppose that n is prime to ord(sZG(ũ)0). Since
snkm ∈ Z(M)0, it follows that snkm ∈ ZG(ũ)0. Thus ord(sZG(ũ)0) divides
nkm. As n is prime to ord(sZG(ũ)0) we conclude that ord(sZG(ũ)0) divides
m. Thus sm ∈ ZG(ũ)0. Let T be torus in ZG(ũ)0 such that sm ∈ T . Clearly,
T ⊂ ZG(sm)0. Now as m is prime to n, by Lemma 3.5 it follows that sm also has
no Pn-regular n-th root in G. Thus by maximality of the dimension of ZG(s)
it follows that M = ZG(sm)0. Thus T ⊂ M and hence T ⊂ ZM (ũ). As T is
a connected group consisting of semisimple elements, by Theorem 2.1 it follows
that T ⊂ Z(M)0. Hence sm ∈ Z(M)0. Thus ord(sZ(M)0) divides m. This is a
contradiction since n divides ord(sZ(M)0) and m is prime to n. Thus n divides
the order of the element sZG(ũ)0 in the quotient group ZG(ũ)/ZG(ũ)0. Hence
the order of the quotient group ZG(ũ)/ZG(ũ)0 is divisible by n. This completes
the proof.

We shall next apply Theorem 3.1 to prove Theorem A. We also need the
following lemma which is a special case of a result due to T.A. Springer and R.
Steinberg.
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Lemma 3.6. Let G be a connected simple adjoint group and let u ∈ G be an
unipotent element. Then any prime divisor of the order of ZG(u)/ZG(u)0 is
either p or a bad prime for G.

Proof. Note that for any unipotent element ũ ∈ ZG(u) there exists a positive
integer r such that ũpr ∈ ZG(u)0. Combining this fact and Theorem 3.17,
Section III of [S-St] we get the proof.

We next note a converse of Lemma 3.6.

Lemma 3.7. Let G be a connected simple adjoint group and q be a bad prime
for G. Assume further that q is different from p. Then there exists a unipotent
element u ∈ G such that q divides the order of ZG(u)/ZG(u)0.

Proof. Let T be a maximal torus of G. We consider the root system associated
to G with respect to T . Let ∆ be the set of simple roots with respect to an order
in the root system. Let us denote the highest root

∑
α∈∆ mαα by λ. Let q be

any bad prime, so that q divides some coefficient, mα0 say, of the highest root
λ =

∑
α∈∆ mαα. As G is adjoint there exists a unique t ∈ T such that α0(t) = ω,

a primitive q-th root of 1, and α(t) = 1 for every other simple root α. Clearly
the order of t is q. We denote the group ZG(t)0 by H. Note that H is a reductive
subgroup of G containing T . We observe that the set {λ } ∪ {α ∈ ∆ |α �= α0 }
of roots of G will also be a set of roots of H with respect to the maximal torus
T . This implies that Z(H) is finite (and hence H is semisimple). Let u be
a unipotent element of H for which the contention of Theorem 2.1 holds. We
claim t �∈ ZG(u)0. If not, then t ∈ T1 for some torus T1 in ZG(u)0. Clearly,
u commutes element wise with T1. However, in the semisimple group H only
finitely many semisimple elements can commute with the unipotent element u,
viz., those of the center (cf. Theorem 2.1 ). This contradiction establishes the
claim. Hence q divides the order of ZG(u)/ZG(u)0.

For a connected simple algebraic group G let B(G) denote the set of bad
primes for G. The relevant facts on B(G) and order of centers of G for con-
nected simple algebraic groups may be summarized as follows (see Theorem 4.3,
Section I of [S-St] and Section 1.11 of [C])

Proposition 3.8. Let G be a simple algebraic group and m be the order of the
center of G. Then we have the following.

1. B(G) = ∅ and m divides l + 1 if G is of type Al, l ≥ 1.
2. B(G) = {2} and m divides 4, if G is of type Bl, l ≥ 2, or Cl, l ≥ 3 or

Dl, l ≥ 4.
3. B(G) = {2, 3} and m divides 6 if G is of type E6, E7, F4 or G2.
4. B(G) = {2, 3, 5} and m = 1 if G is of type E8.
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Proof of Theorem A. By Corollary 3.4 Pn : G → G is surjective if and only if
Pn : Z(G) → Z(G) and Pn : G′ → G′ are surjective, where G′ = G/Z(G).
Since Pn : Z(G) → Z(G) is surjective if and only if n is prime to the order of
Z(G) to prove Theorem A it suffices to show that if G has trivial center then
Pn is surjective if and only if n is prime to the bad primes for G and p. When
G has trivial center it is a direct product G =

∏
l Gl, where Gi, i = 1, . . . , l

are connected center-free simple algebraic groups. A prime is bad for G if and
only if it is bad for some Gi and Pn is surjective for G if and only if it is
surjective for each Gi. Therefore it suffices to prove the theorem for simple
algebraic groups with trivial center and for this case we apply Theorem 3.1,
Lemma 3.6 and Lemma 3.7 to conclude the proof. This completes the proof of
the first part of Theorem A. The proof of the latter parts follow immediately
from Proposition 3.8.

4. Application to exponentiality

In this section we apply Theorem A and Theorem 3.1 to prove Corollary B.
For an algebraic group G we denote the variety of unipotent elements of G

by UG and the variety of nilpotent elements of the Lie algebra of G by NG. We
need the following result due to T.A. Springer.

Theorem 4.1. Suppose G is a simply connected semisimple algebraic group and
p is a good prime for G. Then there exists a G-equivariant isomorphism from
NG to UG.

For a proof of Theorem 4.1 see Theorem 3.1 of [S].

Corollary 4.2. Suppose G is a connected reductive algebraic group and p is a
good prime for G. Then any unipotent element of G lies in a connected abelian
closed unipotent subgroup of G.

Proof. First observe that it is enough to prove the corollary for G semisimple.
We next note that a central isogeny between two semisimple groups H and H̃
induces isomorphisms of NH onto NH̃ and of UH onto UH̃ . This allows us to see
that Theorem 4.1 is valid for any connected semisimple algebraic group. Thus,
as p is good for G, there exists a G-equivariant isomorphism f : NG → UG. Let
u ∈ G be unipotent. We choose X ∈ NG such that u = f(X). Let S be the set of
elements f(tX), t ∈ K. Clearly S is a closed connected set containing the identity
of G. As f is a G-equivariant isomorphism it follows that S is a commutative
set of unipotent elements. So the group generated by S is connected, abelian,
unipotent and contains u.
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Remark 4.3. Here we mention a result similar to Corollary 4.2, but stronger if
we impose a condition on the unipotent elements. It is proved by D. Testerman
(see Theorem 0.1, [T]) that if G is a semisimple group and p is a good prime
for G then any unipotent element u of order p lies in a closed subgroup H of G,
with H being isomorphic to SL2(K) or PSL2(K).

We also need the following result due to T.A. Springer and R. Steinberg.

Theorem 4.4. Suppose G is a semisimple algebraic group and p is a bad prime
for G. Then there exists a unipotent element u ∈ G such that u /∈ ZG(u)0.

See 1.14 (d) in III of [S-St] for a proof of Theorem 4.4.
We now give two proofs of Corollary B. The first one uses Corollary 4.2 and

the second one does not.
Proof of Corollary B.

Proof 1: We first prove (1 ⇒ 2). As G is exponential every element lies in a
connected abelian closed subgroup. For a connected abelian group H, the power
map Pn : H → H is surjective if n is prime to p. To complete the proof of
the above implication we now assume p > 1 and show that p is good for G.
If p is bad then by Theorem 4.4 there exists an unipotent element u such that
u /∈ ZG(u)0. Now as G is exponential u will lie in a connected unipotent abelian
subgroup. Thus u ∈ ZG(u)0 and we arrive at a contradiction. Hence if p > 1
then p is good for G. We now prove (2 ⇒ 1). Let g ∈ G. First assume that
p > 1. As Pn is surjective for all n prime to p, it follows from Theorem 3.1
that the order of the finite group ZG(gu)/ZG(gu)0 is some power of p. Hence
gs ∈ ZG(gu)0. Let T be a torus in ZG(gu)0 containing gs. As p is good for G and
as ZG(T ) is a Levi subgroup of some parabolic subgroup of G it follows that p is
good for ZG(T ). Clearly gu ∈ ZG(T ). Now by Corollary 4.2, gu is contained in
a connected abelian unipotent subgroup U of ZG(T ). Then TU is a connected
abelian subgroup of G containing g. Now if p = 1 then it follows from Theorem
3.1 that ZG(gu) = ZG(gu)0. Let T be a torus in ZG(gu) containing gs. We note
that g is contained in the connected abelian group T 〈gu〉.

We now prove the equivalence of 2 and 3. If Pn : G → G is surjective for all n
prime to p then from Corollary 3.4 it follows that the order of Z(G) is a power
of p. The proof is now clear from Theorem A.

Proof 2: We now give the second proof of Corollary B. The implications (1 ⇒ 2)
and (2 ⇒ 3) are established as before. We now show (3 ⇒ 1). It suffices to show
that any element g in GLn(K) lies in a connected abelian closed subgroup. Let
A be the K-subalgebra generated by g in the algebra of n × n matrices Mn(K).
We observe that the intersection of A and GLn(K) is a closed, abelian subgroup
of GLn(K) which is also a irreducible subvariety containing g. This completes
the proof.
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