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ON THE SURJECTIVITY OF THE POWER MAPS OF
ALGEBRAIC GROUPS IN CHARACTERISTIC ZERO

Pralay Chatterjee

Abstract. In this paper we study the surjectivity of the power maps g �→ gn

for algebraic groups over an algebraically closed field of characteristic zero. We
describe certain necessary and sufficient conditions for surjectivity to hold, and
using these results we determine the set of n for which it holds in the case of
simple algebraic groups. The results are also applied to study the exponentiality
of algebraic groups.

1. Introduction

Let G be an algebraic group over an algebraically closed field K of character-
istic zero; the underlying field satisfying these conditions will be considered fixed
throughout, in general without further mention. Let n be a natural number and
Pn : G → G be the n-th power map defined by Pn(g) = gn for all g ∈ G. Our
object in this paper is to describe conditions under which the map is surjective.

Let L(G) be the Lie algebra of G over K. We denote by Ad the adjoint
representation of G over L(G). An element g ∈ G is said to be Pn-regular if the
linear transformation Ad(g) : L(G) → L(G) does not have a non trivial n-th
root of unity in K as an eigenvalue. For X ∈ L(G) and a subgroup H of G, we
denote by ZH(X) the subgroup {h ∈ H | Ad(h)X = X }. Also, we shall use
the notation Pn for the n-th power map of any algebraic group, including for
subgroups of a given group.

The following is the main technical result in the paper. An analogous result
was proved in [Ch] in the case of connected solvable (real) Lie groups.

Theorem A. Let G be a connected algebraic group, T a maximal torus of G
and n a natural number. Then the following conditions are equivalent.

1. Pn : G → G is surjective.
2. For any t ∈ T there exists t̃ ∈ T such that t̃ is Pn-regular and Pn(t̃) = t.
3. For any g ∈ G there exists g̃ ∈ G such that g̃ is Pn-regular and Pn(g̃) = g.
4. Pn : ZT (X) → ZT (X) is surjective for every nilpotent X ∈ L(G).

The equivalence of conditions (1) and (4) as above readily implies that if Pn

is surjective for G then it is surjective for all its connected subgroups of maximal
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rank; for Borel subgroups of G surjectivity of Pn holds only if it holds for G (see
Corollary 3.6). From Theorem A we deduce also the following characterisation.

Corollary B. Let G be a connected algebraic group and n be a natural number.
Then the following are equivalent.

1. Pn : G → G is surjective.
2. Pn : ZG(s)0 → ZG(s)0 is surjective for every semisimple element s ∈ G.
3. Pn : ZG(u) → ZG(u) is surjective for every unipotent element u ∈ G.

We show also that the last condition in Corollary B is equivalent to the
power map Pn : ZG(u)/ZG(u)0 → ZG(u)/ZG(u)0 of the finite quotient group
being surjective for all unipotent elements u in G (see Theorem 4.1).

We apply Theorem 4.1 together with a special case of a result of T. A. Springer
and R. Steinberg (cf. [S-St], Theorem 3.17, § III) to determine for all simple
algebraic groups the set of n such that Pn is surjective, proving Theorem C
(see below). Let G be a connected simple algebraic group. We consider the
root system associated to G with respect to some maximal torus of G. Let ∆
be the set of simple roots with respect to an order in the root system and let
h =

∑
α∈∆ mαα be the highest root. A prime p is said to be a bad prime for

the simple group G if p divides mα for some α ∈ ∆. Now if G is connected and
semisimple then a prime p is said to be a bad prime for G if p is bad for some
simple factor of G.

Theorem C. Let G be a connected semisimple algebraic group. Then Pn : G →
G is surjective if and only if n is coprime to the bad primes for G and the order
of the center of G. In particular, if G is a connected simple algebraic group then
Pn : G → G is surjective if and only if one of the following conditions holds
(depending on the type of G).

1. G is of type Al, l ≥ 1 and n is coprime to the order of the center of G.
2. G is of type either Bl, l ≥ 2 or Cl, l ≥ 3 or Dl, l ≥ 4, and n is coprime

to 2.
3. G is of type either E6 or E7 or F4 or G2, and n is coprime to 6.
4. G is of type E8 and n is coprime to 30.

Hence for any semisimple algebraic group G the map Pn is surjective whenever
n is coprime to 30m, where m is the order of its center.

The characterisations of the surjectivity of power maps Pn also yield an ex-
plicit determination of the set of n with surjective Pn for certain algebraic groups
which are not semisimple. Motivated by the equivalence of conditions (1) and
(4) in Theorem A we associate to every algebraic group a natural number mG,
depending on the weights in the adjoint representation of the group, and show
that Pn is surjective if and only if n is coprime to mG (see Corollary 5.1). We
compute mG for a class of semidirect products (see Example 5.2)

Following M. Moskowitz (cf. [Mo]), we say that an algebraic group G is
exponential if every element of G is contained in a connected abelian algebraic



POWER MAPS OF ALGEBRAIC GROUPS 743

subgroup of G. We note that in the case when G is a complex algebraic group
this is equivalent to the exponential map (from the Lie algebra to the Lie group
G) being surjective. From Theorem A we deduce the following criterion for
exponentiality of connected algebraic groups, which can be readily applied in
many situations; see also Corollary 6.4 for another similar result.

Corollary D. Let G be a connected algebraic group and let T be a maximal
torus in G. Then the following conditions are equivalent.

1. G is exponential.
2. ZT (X) is connected for every nilpotent element X ∈ L(G).

Corollary E. Let G be a connected algebraic group. If G is exponential then
every connected algebraic subgroup H of maximal rank is exponential. A Borel
subgroup of G is exponential if and only if G is exponential.

The last statement in Corollary E was proved earlier by M. Moskowitz (see
[Dj-H] and [Mo]) in the case of complex reductive algebraic groups. Corollary E
also has the following interesting consequence.

Corollary F. For any m ≥ 1, every connected algebraic subgroup of the general
linear group GLm(K) having rank m is exponential.

The paper is organised as follows. In the following section we recall some
facts and prove some preliminary results. In Section 3 we prove Theorem A,
Corollary B and discuss some other consequences. Theorem 4.1 and Theorem C
will be proved in Section 4. In Section 5 we introduce the integer mG associated
to a connected algebraic group G and prove some results relating surjectivity of
power maps. Finally, in Section 6 we deal with the exponentiality of algebraic
groups, proving Corollaries D, E and F.

2. Preliminaries

In this section we fix some notation, which will be used throughout the pa-
per. We also recall some known facts and prove some basic results about the
power maps. Unless mentioned otherwise, all the algebraic groups considered
are defined over an algebraically closed field K of characteristic zero.

2.1. Notation. Let G be a connected algebraic group defined over K. We
denote the Lie algebra of G over K by L(G). We denote by Z(G) the center of
G. For a (Zariski-) closed subgroup H of G and a subset S of G, ZH(S) will
denote the closed subgroup consisting of all elements of H which commute with
every element of S. For X ∈ L(G) and H a closed subgroup of G, ZH(X) denotes
the closed subgroup {h ∈ H | Ad(h)X = X }. For a closed subgroup H of G the
connected component of H containing the identity element is denoted by H0.
The unipotent radical of G will be denoted by Ru(G). The set of eigenvalues
of a linear operator A on a finite dimensional vector space will be denoted by
SpecA.
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2.2. Some definitions and facts. The reader is referred to [B] and [S] for
generalities in the theory of algebraic groups. Let G be an algebraic group. For
any element x ∈ G the semisimple and the unipotent Jordan components of x
will be denoted by xs and xu respectively; then we have x = xs xu = xu xs. As
the characteristic of the field K is zero, every element of finite order is semisimple.
The Zariski closure of the group generated by any nontrivial unipotent element
is connected and one-dimensional; in other words every unipotent element is
contained in a unique connected unipotent (algebraic) subgroup of dimension
one. For any X ∈ L(G) there exists a semisimple element Xs and a nilpotent
element Xn such that [Xs, Xn] = 0 and X = Xs + Xn; this is the additive
version of Jordan decomposition. When G is embedded in a general linear group
GLn(K), and the Lie algebra of the latter is realised as Mn(K), the nilpotent
elements of L(G) correspond to nilpotent matrices in Mn(K).

We recall also that the nilpotent elements in L(G) and the unipotent elements
in G form algebraic subvarieties of the respective varieties and there is a canonical
rational isomorphism of the former onto the latter, given by the exponential
series and denoted by exp, satisfying exp(Ad(g)(X)) = gexp(X)g−1, for all
g ∈ G and for all nilpotent X in L(G).

An element x ∈ G is said to be regular if dimZG(x) ≤ dimZG(g), for all
g ∈ G . If G is connected reductive then dimZG(y) ≥ rankG, for all y ∈ G, and
in this case x ∈ G is regular if and only if dimZG(x) = rankG. Our proof of
Theorem A crucially uses a result of R. Steinberg that every connected reductive
algebraic group admits regular unipotent elements (see [St] and [Hu], Sections
4.1-4.5). It is also known that each regular unipotent element u in a connected
reductive group G is contained in a unique maximal unipotent subgroup U and
ZG(u) = ZU (u)Z(G) (see [Hu], Sections 4.1-4.7); in particular, the semisimple
elements in ZG(u) are central in G. If G is a connected semisimple group and
if t ∈ G is a semisimple element then ZG(t)0 is a reductive subgroup of G (see
[Hu], Section 2.2).

2.3. Some basic results. We now prove some preliminary results which will
be used later.

Lemma 2.1. Let G be a connected algebraic group and x ∈ G be Pn-regular.
Then for X ∈ L(G), Ad(xn)(X) = X only if Ad(x)(X) = X. For a unipotent
element u in G, xn ∈ ZG(u) only if x ∈ ZG(u).

Proof. Let W = {Y ∈ L(G) | Ad(xn)(Y ) = Y }. Then W is an Ad(x)-invariant
subspace. If λ is an eigenvalue of the restriction of Ad(x) to W then λn =
1 and since x is Pn-regular it follows that λ = 1. Also, the restriction is a
transformation of finite order and therefore the preceding condition implies that
it is the identity. This proves the first statement. The second statement is
deduced from the first one, by writing u as exp X for a nilpotent element X in
L(G).
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Lemma 2.2. Let G be a connected algebraic group and s a semisimple element
in G. Then for λ ∈ SpecAd(s), λ 	= 1, there exists a nontrivial nilpotent element
X ∈ L(G) such that Ad(s) (X) = λ X.

Proof. Let T be a maximal torus of G containing s. Consider the weight space
decomposition of L(G) with respect to T . Let ∆ be the set of non-zero weights.
Then

SpecAd(s) = {α(s) |α ∈ ∆} ∪ {1 }.
We note that for a non-zero weight α, the corresponding weight space consists
of nilpotent elements of L(G). This proves the lemma.

Lemma 2.3. Let G be a connected algebraic group. An element g ∈ G is con-
tained in Pn(G) if and only if gs ∈ Pn(ZG(gu)). The map Pn : G → G is
surjective if and only if for every unipotent element u ∈ G and for any semisim-
ple element s ∈ ZG(u) we have s ∈ Pn(ZG(u)).

Proof. Let g ∈ Pn(G). Thus g = hn for some h ∈ G. Hence for the Jordan
components we have gs = hs

n and gu = hu
n. As the Zariski closure of the

cyclic subgroups generated by gu and hu are the same, hs commutes with gu,
and hence gs ∈ Pn(ZG(gu)). This proves the ‘only if’ part in the first assertion,
and the ‘if’ part is clear. The second statement follows immediately from the
first one.

The forthcoming assertions in this section and their proofs are variations of
similar results in [D-M]. We include proofs for lack of references in a suitable
form.

Lemma 2.4. Let N be a nilpotent Lie algebra over K and let θ be a Lie auto-
morphism of N . Let F = {x ∈ N | θ(x) = x} and suppose that F +[N ,N ] = N .
Then θ is the identity automorphism.

Proof. Note that F is a Lie subalgebra. Let N0 = N and Ni = [N ,Ni−1],
defined inductively for all i = 1, 2, . . . . Then we have

N = F + N1 = F + [F + N1,F + N1] ⊆ F + N2.

Now applying the argument repeatedly and we get that, N = F + Ni, for all
i ≥ 1. As N is a nilpotent Lie algebra Nk = 0 for some k. Hence N = F , which
means that θ is the identity automorphism.

We recall that an automorphism ψ of an algebraic group is said to be semisim-
ple if its derivative dψ on the Lie algebra is a semisimple linear transformation.

Corollary 2.5. Let U be a connected unipotent algebraic group over K and let
ψ be a semisimple automorphism of U . If the automorphism of U/[U, U ] induced
by ψ is the identity automorphism then so is ψ.

Proof. The proof follows immediately from Lemma 2.4 applied to the Lie algebra
endomorphism of L(U) defined by the differential of ψ.
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3. Characterisation of the surjectivity of Pn

In this section we prove Theorem A and deduce some consequences of the
theorem. It is known that in a connected reductive group regular unipotent
elements exist and any semisimple element centralizing some regular unipotent
element must be central (see §2.2). The following proposition assures the exis-
tence of unipotent elements with the above property, in any connected algebraic
group.

Proposition 3.1. Let G be a connected algebraic group. Then there exists a
unipotent element ũ ∈ G such that for g ∈ ZG(ũ) if g is semisimple then g ∈
Z(G).

Proof. Let H be a Levi subgroup of G and let π : G → H be the natural
projection map from G to H. We write U for Ru(G). Let p be the projection of
G onto G′ = G/[U, U ]. Let U ′ = p(U). Note that p is an isomorphism of H onto
its image. We identify them. Since H is a reductive group all the elements of the
subgroup Z(H) are semisimple. Therefore L(U ′) is a direct sum of eigenspaces
L(U ′)λ with respect to Ad(Z(H)), where λ runs through the weights of Z(H)
in L(U ′), acting by adjoint representation. We denote by ∆ the set of weights
of Z(H) appearing in the weight space decomposition of L(U ′) with respect to
the adjoint action of Z(H). Fix a regular unipotent element u in H. Observe
that for every weight λ ∈ ∆ the weight space L(U ′)λ remains invariant under
Ad(u). We choose Xλ in L(U ′)λ such that Xλ /∈ (Ad(u−1) − Id)(L(U ′)λ). Let
v′λ = expXλ, vλ a lift to U of v′λ, and v′ (resp. v) the product of the v′λ (resp.
vλ). The claim is that ũ = uv satisfies the conclusion of the Proposition 3.1.

Let g be a semisimple element with g ∈ ZG(ũ). Note that the Levi subgroups
are the maximal reductive subgroups of G and are conjugate under Ru(G).
Therefore, as g is semisimple, the elements g and π(g) are conjugate (under
Ru(G)). Hence to prove g ∈ Z(G) it suffices to show that π(g) ∈ Z(G). We
shall now show that π(g) ∈ Z(G).

As g commutes with ũ, it follows that π(g) commutes with π(ũ) = u, hence
π(g) ∈ Z(H) (see §2.2).

We note that p(g) = π(g)w for some w ∈ U ′. We also know that p(g)
commutes with uv′. In other words,

π(g)wuv′w−1π(g)−1 = u.v′.

As π(g) ∈ Z(H) and as U ′ is abelian it follows that

u−1wuw−1v′ = π(g)−1v′π(g) (∗).
Note that w = exp(

∑
λ∈∆ Wλ), for some Wλ ∈ L(U ′)λ and v′ = exp(

∑
λ∈∆ Xλ).

From the equation (∗) it follows that, for all λ ∈ ∆,

(Ad(u−1) − Id)(Wλ) = (Ad(π(g)−1) − Id)(Xλ).

This implies that, for all λ ∈ ∆, we have

(Ad(u−1) − Id)(Wλ) = (λ(π(g))−1 − 1)Xλ.
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We recall that for each λ ∈ ∆, Xλ /∈ (Ad(u−1) − Id)(L(U ′)λ). This along with
the above equation yields that λ(π(g)−1) = 1, for all λ ∈ ∆. Thus Ad(π(g))
acts trivially on L(U ′), hence π(g) acts trivially on U by Corollary 2.5. Hence
π(g) ∈ Z(G). This completes the proof of the proposition.

Lemma 3.2. Let G be a connected algebraic group such that Pn : G → G is
surjective. Then for any semisimple element s ∈ G there exists a semisimple
element t ∈ Z(ZG(s)0) such that s = tn.

Proof. Let s be a semisimple element in G. We shall now apply Proposition 3.1
to the group ZG(s)0. Let ũ be a unipotent element of ZG(s)0 for which the
contention of Proposition 3.1 holds. As Pn : G → G is surjective, by Lemma 2.3
there exists t ∈ ZG(ũ) such that tn = s. Now as t ∈ G is semisimple we
can choose a torus T of G such that t ∈ T . As tn = s we have s ∈ T and
hence T ⊂ ZG(s)0. This shows that t ∈ ZG(s)0. Then by Proposition 3.1,
t ∈ Z(ZG(s)0). This completes the proof.

Lemma 3.3. Let G be a connected algebraic group and let n be a positive integer.
Let s ∈ G be a semisimple element and t ∈ Z(ZG(s)0) be such that tn = s. Then
t is Pn-regular.

Proof. Suppose that t is not Pn-regular. Then by Lemma 2.2, there exists a
nilpotent element X ∈ L(G) and λ ∈ K such that X 	= 0, λ 	= 1, λn = 1 and
Ad(t)X = λX. Then Ad(s)X = Ad(tn)X = X and hence X ∈ L(ZG(s)0). By
the hypothesis t ∈ Z(ZG(s)0) and this implies that Ad(t)X = X. But this is a
contradiction, as X 	= 0 and λ 	= 1. This completes the proof.

Lemma 3.4. Let G be a connected algebraic group and let T be a maximal torus
in G. Suppose that Pn : G → G is surjective. Then for any s ∈ T there exists
t ∈ T such that t is Pn-regular and tn = s.

Proof. Let s ∈ T be given. Let H be a (reductive) Levi subgroup such that
T ⊂ H. By the Levi decomposition G = H Ru(G). By Lemmas 3.2 and 3.3
there exists y ∈ G such that y is Pn-regular in G and yn = s. Let y = t u, where
t ∈ H and u ∈ Ru(G). As u is contained in a normal unipotent group (namely
Ru(G)), SpecAd(tu) = SpecAd(t). Hence the element t is also Pn-regular. Note
that tn = s and hence t ∈ ZH(s)0. Now, ZH(s)0 is a reductive group and hence
admits a regular unipotent element. Let w be a regular unipotent element in
ZH(s)0. Let W be a nilpotent element in L(ZH(s)0) such that exp(W ) = w.
As s ∈ Z(ZH(s)0), we have Ad(s)W = Ad(tn)W = W . Since t is Pn-regular
in G it follows that Ad(t)W = W . Hence t ∈ ZZH(s)0(w). As w is a regular
unipotent element in ZH(s)0 this implies that t ∈ Z(ZH(s)0). We note also
that T is a maximal torus in ZH(s)0. In a connected reductive group all central
elements are contained in every maximal torus. Hence t ∈ T . This completes
the proof.

We now prove Theorem A.
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Proof of Theorem A. The implication (1 ⇒ 2) is assured by Lemma 3.4. We
now prove (2 ⇒ 3). Let g ∈ G be given. Then c gs c−1 ∈ T , for some c ∈ G.
From the hypothesis of (2) it follows that c gs c−1 = zn, for some point z of
T which is Pn-regular in G. As the conjugate of a Pn-regular point is again
Pn-regular, it follows that gs = xn, for some Pn-regular point x. Hence by
Lemma 2.1 x ∈ ZG(gu). As gu is unipotent there exists a unipotent element
v ∈ G such that vn = gu. The Zariski closures of the cyclic subgroups generated
by gu and v are the same. This implies in particular that ZG(gu) = ZG(v). Thus
x ∈ ZG(v) and hence (xv)n = xnvn = gsgu = g. Also as x is Pn-regular and v
is unipotent, the element xv is Pn-regular. This proves (2 ⇒ 3).

The implication (3 ⇒ 1) is trivial and (2 ⇒ 4) follows immediately from
Lemma 2.1. We now prove (4 ⇒ 1). Let g ∈ G be given. Since gs is contained
in a conjugate of T , in proving that g ∈ Pn(G) we may assume without loss of
generality that gs ∈ T . Observe that gu = exp(X), for some nilpotent element
X ∈ L(G). From the hypothesis of (4), it follows that gs = zn, for some
z ∈ ZT (X) = ZT (gu). Thus the proof of Theorem A is complete.

Corollary 3.5. Let G be a connected algebraic group and let G′ = G/Z(G).
Then Pn : G → G is surjective if and only if Pn : Z(G) → Z(G) and Pn : G′ →
G′ are surjective.

Proof. Suppose that Pn : G → G is surjective and let z ∈ Z(G). Then by
Theorem A there exists a Pn-regular point y ∈ G such that yn = z. Since
z ∈ Z(G) this implies that Ad(yn)(X) = X, for all X ∈ L(G). As y is Pn-
regular, by Lemma 2.1 it follows that Ad(y)(X) = X for all X ∈ L(G). This
implies that y ∈ Z(G). Thus Pn : Z(G) → Z(G) is surjective. Also, clearly
Pn : G′ → G′ is surjective. The converse follows easily from an elementary
argument.

Corollary 3.6. Let G be a connected algebraic group. If Pn : G → G is surjec-
tive then for every connected algebraic subgroup H of maximal rank Pn : H → H
is surjective. If B is a Borel subgroup of G then Pn : B → B is surjective if and
only if Pn : G → G is surjective.

Proof. Let H be a subgroup of maximal rank. Let T be a maximal torus of H;
then T is a maximal torus of G. Let t ∈ T . As Pn : G → G is surjective, by
Theorem A there exists t̃ ∈ T such that t̃n = t and t̃ is Pn-regular in G. Then t̃
is Pn-regular in H. We now apply Theorem A to the group H to conclude that
Pn : H → H is surjective.

Now let B be a Borel subgroup of G. Then B is of maximal rank and hence
if Pn : G → G is surjective, then by the first part proved above Pn : B → B is
surjective. Conversely suppose that Pn : B → B is surjective. Now the proof is
immediate from the fact that conjugates of any Borel subgroup fill up the group
G. We give another proof of the converse without using the above fact. Let T
be a maximal torus in B; then it is also a maximal torus in G. Let t ∈ T be
arbitrary. By Theorem A there exists t̃ ∈ T such that t̃n = t and t̃ is Pn-regular,
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as an element of B. Considering the decomposition of L(G) into weight spaces
with respect to T it is easy to see that an element of T which is Pn-regular as an
element of B is also Pn-regular as an element of G. Therefore by Theorem A the
above conclusion, for an arbitrary t in T , implies that Pn : G → G is surjective.
This completes the proof of the corollary.

We now prove Corollary B.

Proof of Corollary B. We first observe that 1 is a special case of 2 (for s = 1)
and also of 3 (for u = 1). Hence the implications (2 ⇒ 1) and (3 ⇒ 1) follow
immediately. For any semisimple element s, ZG(s)0 is of maximal rank and
hence (1 ⇒ 2) follows form Corollary 3.6. Given a unipotent element u ∈ G and
g ∈ ZG(u) there exists by Theorem A a Pn-regular element g̃ ∈ G such that
g̃n = g. The element u can be expressed as exp X for some nilpotent X ∈ L(G),
and since g ∈ ZG(u) we get that Ad(g̃n)X = X. Since g̃ is Pn-regular it follows
that Ad(g̃)X = X and hence g̃ ∈ ZG(u). This proves (1 ⇒ 3). Using the Jordan
decomposition it is easy to show that if g ∈ G then g ∈ ZG(gs)0. This proves
the corollary.

4. Characterisation of surjectivity through finite subquotients

It is clear that since T is abelian condition (4) as in Theorem A is equivalent
to the power map Pn : ZT (X)/ZT (X)0 → ZT (X)/ZT (X)0 being surjective
for every nilpotent X ∈ L(G). Since for a finite group Pn being surjective is
equivalent to n being coprime to its order, such a result can be used together
with Theorem A in determining the set of n for which Pn is surjective for an
algebraic group. The following theorem has a similar flavour and it will also be
applied in proving Theorem C.

Theorem 4.1. Let G be a connected algebraic group. Then Pn : G → G is sur-
jective if and only if n is coprime to the order of the finite group ZG(u)/ZG(u)0,
for every unipotent element u ∈ G.

We first prove a lemma, in preparation of the proof of Theorem 4.1.

Lemma 4.2. Let G be a connected algebraic group and s ∈ G be a semisimple
element. Let m and n be coprime integers. If sm has a Pn-regular n-th root then
so does s.

Proof. Let t̃ ∈ G be a Pn-regular n-th root of sm. Let T be a maximal torus
containing s and let H be a (reductive) Levi subgroup of G such that T ⊂ H. We
consider the Levi decomposition G = H Ru(G) of G. Let t ∈ H and w ∈ Ru(G)
be such that t̃ = tw. Then sm = tn. Also, as t̃ is Pn-regular and w ∈ Ru(G) it
follows that t is Pn-regular. For any X ∈ L(T ) we have Ad(tn)X = Ad(sm)X =
X, and as t is Pn-regular, by Lemma 2.1 we get Ad(t)X = X. This shows that
t ∈ ZG(T ); in particular t commutes with s.

As m and n are coprime there exist integers a, b such that am + bn = 1.
Since s and t commute, we have that (sb ta)n = sbntan = sam+bn = s; that
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is, sb ta is a n-th root of s. We next show that sb ta is a Pn-regular element.
As Ad(s) and Ad(t) can be simultaneously diagonalised and sm = tn every
eigenvalue of Ad(sb ta) has the form λb µa, where λ ∈ SpecAd(s), µ ∈ SpecAd(t)
and λm = µn, and if (λb µa)n = 1, then λ = λam+bn = λbnµan = 1. As λm = µn

we have µn = 1. Since t is Pn-regular it follows that µ = 1 and hence λb µa = 1.
This shows that sb ta is a Pn-regular element. Thus the lemma is proved.

Proof of Theorem 4.1. Suppose Pn : G → G is surjective, and let u ∈ G be any
unipotent element. Then by Corollary B it follows that Pn : ZG(u) → ZG(u)
is surjective, and hence the induced map Pn : ZG(u)/ZG(u)0 → ZG(u)/ZG(u)0

is surjective. As ZG(u)/ZG(u)0 is a finite group this implies that its order is
coprime to n.

To prove the converse we first note that Pn is surjective if and only if Pp

is surjective for all prime divisors p of n, and hence we may assume n itself
to be a prime. Now suppose that n is a prime and that Pn : G → G is not
surjective. Then by Theorem A there exists a semisimple element which has no
Pn-regular n-th root. Let s be such an element for which, furthermore, ZG(s) is
of maximum possible dimension. Let M = ZG(s)0. Clearly s ∈ Z(M). As s has
no Pn-regular n-th root, it follows from Lemma 3.3 that s has no n-th root in
Z(M). Since Z(M) is an abelian algebraic group, this implies that the element
sZ(M)0 has no n-th root in the quotient group Z(M)/Z(M)0. Hence n, which
is a prime, must divide the order of sZ(M)0 in Z(M)/Z(M)0.

Let ord(.) denote the order of an element in a group. Now ord(sZ(M)0)
can be expressed as nkm where k ≥ 1 and m is coprime to n. We shall apply
Proposition 3.1 to the group M . Let ũ be a unipotent element of M for which
the contention of Proposition 3.1 holds. Clearly, s ∈ ZG(ũ). We claim that n
divides the order of the element sZG(ũ)0 in the quotient group ZG(ũ)/ZG(ũ)0.
If possible suppose that n is coprime to ord(sZG(ũ)0). Since snkm ∈ Z(M)0, it
follows that snkm ∈ ZG(ũ)0. Thus ord(sZG(ũ)0) divides nkm. As n is coprime
to ord(sZG(ũ)0) we conclude that ord(sZG(ũ)0) divides m. Thus sm ∈ ZG(ũ)0.
Let T be torus in ZG(ũ)0 such that sm ∈ T . Clearly, T ⊂ ZG(sm)0. Now
as m is coprime to n, by Lemma 4.2 it follows that sm also has no Pn-regular
n-th root in G. Thus by maximality of the dimension of ZG(s) it follows that
M = ZG(sm)0. Thus T ⊂ M and hence T ⊂ ZM (ũ). As T is a connected group
consisting of semisimple elements, by Proposition 3.1 it follows that T ⊂ Z(M)0.
Hence sm ∈ Z(M)0. Thus ord(sZ(M)0) divides m. This is a contradiction since
n divides ord(sZ(M)0) and m is coprime to n. Thus n divides the order of the
element sZG(ũ)0 in the quotient group ZG(ũ)/ZG(ũ)0. Hence the order of the
quotient group ZG(ũ)/ZG(ũ)0 is divisible by n. Therefore Pn : ZG(ũ)/ZG(ũ)0 →
ZG(ũ)/ZG(ũ)0 is not surjective. This completes the proof.

We shall next apply Theorem 4.1 to prove Theorem C. We also need the
following lemma which is a special case of a result due to T. A. Springer and R.
Steinberg.
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Lemma 4.3. Let G be a connected simple adjoint group and let u ∈ G be an
unipotent element. Then any prime divisor of the order of ZG(u)/ZG(u)0 is a
bad prime for G.

Proof. This is a special case of the Theorem 3.17, Section III of [S-St].

We next note a converse of Lemma 4.3.

Lemma 4.4. Let G be a connected simple adjoint group and p be a bad prime
for G. Then there exists a unipotent element u ∈ G such that p divides the order
of ZG(u)/ZG(u)0.

Proof. Let T be a maximal torus of G. We consider the root system associated
to G with respect to T . Let ∆ be the set of simple roots with respect to an
order in the root system. Let us denote the highest root

∑
α∈∆ mαα by λ. Let

p be any bad prime, so that p divides some coefficient, mα0 say, of the highest
root λ =

∑
α∈∆ mαα. As G is adjoint there exists a unique t ∈ T such that

α0(t) = ω, a primitive p-th root of 1, and α(t) = 1 for every other simple root
α. Clearly the order of t is p. We denote the group ZG(t)0 by H. Note that H
is a reductive subgroup of G (cf. §2.2) containing T . We observe that the set
{λ }∪{α ∈ ∆ |α 	= α0 } of roots of G will also be roots of H with respect to the
maximal torus T . This implies that Z(H) is finite (and hence H is semisimple).
Let u be a regular unipotent element of H. We claim t 	∈ ZG(u)0. If not, then
t ∈ T1 for some torus T1 in ZG(u)0. Clearly, u commutes elementwise with T1.
However, in the semisimple group H only finitely many semisimple elements
can commute with the regular unipotent element u, viz., those of the center (cf.
§2.2). This contradiction establishes the claim. Hence p divides the order of
ZG(u)/ZG(u)0.

For a connected simple algebraic group G let B(G) denote the set of bad
primes for G. The relevant facts on B(G) and order of centers of G for con-
nected simple algebraic groups may be summarized as follows (see Theorem 4.3,
Section I of [S-St] and Section 1.11 of [C])

Proposition 4.5. Let G be a simple algebraic group and m be the order of the
center of G. Then we have the following.

1. B(G) = ∅ and m divides l + 1 if G is of type Al, l ≥ 1.
2. B(G) = {2} and m divides 4, if G is of type Bl, l ≥ 2, or Cl, l ≥ 3 or

Dl, l ≥ 4.
3. B(G) = {2, 3} and m divides 6 if G is of type E6, E7, F4 or G2.
4. B(G) = {2, 3, 5} and m = 1 if G is of type E8.

Proof of Theorem C. By Corollary 3.5 Pn : G → G is surjective if and only if
Pn : Z(G) → Z(G) and Pn : G′ → G′ are surjective, where G′ = G/Z(G) is
the adjoint group of G. Since Pn : Z(G) → Z(G) is surjective if and only if n
is coprime to the order of Z(G) to prove Theorem C it suffices to show that if
G has trivial center then Pn is surjective if and only if n is coprime to the bad
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primes for G. When G has trivial center it is a direct product G =
∏

l Gl, where
Gi, i = 1, . . . , l are connected simple algebraic adjoint groups. A prime is bad
for G if and only if it is bad for some Gi and Pn is surjective for G if and only if
it is surjective for each Gi. Therefore it suffices to prove the theorem for simple
algebraic groups with trivial center and for this case we apply Theorem 4.1,
Lemma 4.3 and Lemma 4.4 to conclude the proof. This completes the proof of
the first part of Theorem C. The proof of the latter parts follow immediately
from Proposition 4.5.

5. Conditions for the surjectivity of Pn

In this section we discuss some procedures, suggested by the results of earlier
sections, to determine the set of n for which Pn is surjective.

Let G be a connected algebraic group. Let T be a maximal torus of G and
let B be a Borel subgroup of G containing T . Let X(T ) denote the group of
(algebraic) characters on T and CT denote the finite set of nonzero elements in
X(T ) that appear in the weight space decomposition of L(B), with respect to
the Ad-action of T on L(G). For any subset Q = {q1, . . . , qk} of CT let m(Q)
denote the height of q1∧· · ·∧qk in

∧k
X(T ), the k-fold exterior product of X(T )

as a Z-module; we recall that the height of an element in a free Z-module is the
(positive) g.c.d. of the coordinates with respect to a Z-basis. We define mG to
be the smallest positive integer divisible by m(Q) for all subsets Q of CT .

Corollary 5.1. Let G be a connected algebraic group. Then Pn : G → G is
surjective if and only if n is coprime to the integer mG.

Proof. In view of Corollary 3.6 it suffices to prove that Pn : B → B is surjective
if and only if n is coprime to mG. As in the beginning of the proof of Lemma 4.4
we note that for any nilpotent element Y ∈ L(B) there exists a subset SY of
CT such that ZT (Y ) = ∩χ∈SY

kerχ. It can be verified that the prime factors of
| ∩χ∈SY

kerχ/(∩χ∈SY
kerχ)0| (| · | stands for the order of the group) are the same

as the prime factors of m(SY ); see Theorem 3.9 of [J] for a more general result in
this respect. We note also that |ZT (Y )/ZT (Y )0| = |∩χ∈SY

kerχ/(∩χ∈SY
kerχ)0|.

Hence it follows that an integer n is coprime to mG if and only if n is coprime
to |ZT (Y )/ZT (Y )0|, for all nilpotent Y ∈ L(B). The corollary now follows from
Theorem 4.1.

In the following example we determine the integers mG for certain class of
algebraic groups G, illustrating the method suggested by the above corollary.

Example 5.2. Let l ≥ 1, r ≥ 1 and d be three integers. We denote the vector
space of l × r matrices over K by Ml×r(K). Let Bl and Tl denote the group
of upper triangular and diagonal matrices in GLl(K) respectively. Consider
the rational group representation ρ : GLl(K) → AutK(Ml×r(K)), defined by
ρ(g)X = (detg)d g X, for all g ∈ GLl(K) and X ∈ Ml×r(K); abstractly this is
just the component-wise representation on V r, where V = K

l and the action
on each component is given by the natural representation; we use the above
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form for notational convenience. Let H(d, l, r) denote the algebraic group de-
fined as the semidirect product Ml×r(K)�ρ GLl(K) and let B(d, l, r) denote the
Borel subgroup Ml×r(K) �ρ Bl of H(d, l, r). Note that the image of the natural
inclusion of Tl in H(d, l, r) is a maximal torus in H(d, l, r) and we identify Tl

with its image. Consider the numbers mH(d,l,r). Firstly it may be observed
that mH(d,l,r) = mH(d,l,1), since the set of weights (with respect to Tl) corre-
sponding to the Borel subgroups B(d, l, r) and B(d, l, 1) are the same. Thus it
suffices to determine mH(d,l,1) for l ≥ 1 and d as above. Consider the special
case of H(d, 2, 1) = H, say. We write T for T2 and B for B2. Let χi, i = 1, 2,
denote the character on T given by diag(t1, t2) �→ ti. We then observe that
{χ1χ2

−1, χ1
dχ2

d+1, χ1
d+1χ2

d } is the set of characters on T that appear in the
weight space decomposition of L(B) with respect to the maximal torus T . With
respect to the basis {χ1, χ2}, in additive notation the set corresponds to{(

1
−1

)
,

(
d

d + 1

)
,

(
d + 1

d

) }
.

From this we see that mH = |2d + 1|. Consequently by Corollary 5.1 Pn :
H(d, 2, r) → H(d, 2, r) is surjective if and only if n is coprime to 2d + 1.

Analogous, though somewhat more complicated computations show that
mH(d,l,r) = |ld + 1|, whenever ld + 1 	= 0. Hence by Corollary 5.1 if ld + 1 	= 0
then Pn : H(d, l, r) → H(d, l, r) is surjective if and only if n is coprime to ld+1.
We note that ld + 1 = 0 if and only if l = 1 and d = −1; in this case H(d, l, r) is
the direct product of GL1(K) and M1×r(K) and hence Pn is surjective for all n.

It may be seen in particular that for any positive integers l and r, mH(0,l,r) = 1
and hence Pn : H(0, l, r) → H(0, l, r) is surjective for all n.

Remark 5.3. The above example shows that for a connected algebraic group G
surjectivity of Pn : G/Ru(G) → G/Ru(G) does not necessarily imply surjectivity
of Pn : G → G.

6. Applications to exponentiality of algebraic groups

In this section we apply the results on the surjectivity of power maps to study
the ‘exponentiality’ of algebraic groups.

It may be recalled that a Lie group is said to be exponential if the exponen-
tial map exp : L(G) → G is surjective (see [Dj-H] for instance). In [Mo] M.
Moskowitz introduced an analogous notion for algebraic groups. An algebraic
group G is said to be exponential if each point of G is contained in a connected
abelian algebraic subgroup of G. It is easy to see that for complex algebraic
groups the two notions coincide.

It is known that a (real) Lie group is exponential if and only if Pn is surjective
for all n; see [H-L] and [M]. The following lemma assures that the analogous
statement is true also for the generalized notion of exponentiality in the case of
algebraic groups; the short proof of the lemma given below is due to S. G. Dani.
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Lemma 6.1. Let G be an algebraic group. Then G is exponential if and only if
Pn : G → G is surjective for all integers n.

Proof. Suppose that Pn : G → G is surjective for all n. Let g ∈ G be given. Let
H be the connected component of the identity in ZG(g) and let m = |ZG(g)/H|
(which is finite). Let x be such that xm = g. Then x ∈ ZG(g) and hence
g = xm ∈ H. Furthermore g is contained in the center of H. Since every
semisimple element is contained in a torus and the maximal tori are all conjugate,
it is clear that any central semisimple element belongs to all maximal tori (see
[B]). We apply this fact along with the Jordan decomposition to conclude that
the center of any connected algebraic group is contained in a connected abelian
algebraic subgroup; if T is a maximal torus in H, TRu(Z(H)0) is a connected
abelian algebraic subgroup containing Z(H). Therefore G is exponential. The
converse is obvious.

We obtain another proof of the classification of exponential semisimple alge-
braic groups due to M. Wüstner (cf. [W])

Corollary 6.2. [Wüstner] Let G be a connected semisimple algebraic group.
Then G is exponential if and only if G isomorphic to the direct product∏m

i=1 PSLni
(K) for some finitely many integers n1, · · · , nm with ni ≥ 2.

Proof. The proof follows immediately from Theorem C and Lemma 6.1.

Proofs of Corollaries D, E and F. In light of Lemma 6.1, Corollaries D and F
follow from Theorem A and Corollary 3.6 respectively. Corollary F is immediate
from Corollary E and the fact that GLm(K) is an exponential group of rank m.

Remark 6.3. The last statement in Corollary E was proved earlier by
M. Moskowitz in the case of complex reductive groups (cf. Corollary 13, [Mo] and
Theorem 4.6, [Dj-H]) using the classification theorem for exponential complex
semisimple groups due to M. Wüstner (cf. [W] and Corollary 6.2).

Corollary 6.4. Let G be a connected algebraic group. Then the following con-
ditions are equivalent

1. G is exponential.
2. ZG(s)0 is exponential for every semisimple element s ∈ G.
3. ZG(u) is exponential for every unipotent element u ∈ G.
4. mG = 1

Moreover if G is exponential then Z(G) is connected.

Proof. The equivalence of first four statements readily follows from Corollary B,
Corollary 5.1, and Lemma 6.1. The proof of the last statement is immediate
from Corollary 3.5 and Lemma 6.1.

We conclude the paper with the following remarks.
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Remark 6.5. In [Dj] it is proved that if G is a complex algebraic group then
exp : L(G) → G is surjective if and only if the groups ZG(u) are connected
for every unipotent element u ∈ G (also see [Dj-H]). By Corollary 6.4, if exp :
L(G) → G is surjective then the subgroups ZG(u) are not only connected but
are also exponential, for all unipotent elements u ∈ G. Thus Corollary 6.4
strengthens the above result of [Dj] in one direction.

Remark 6.6. Let H(d, l, r) be the class of algebraic groups as in Example 5.2,
where d, l, r are integers and l, r ≥ 1. Then in view of Corollary 6.4 H(d, l, r)
is exponential if and only if dl is 0 or −1 or −2. In particular H(0, l, r) is
exponential for all positive integers r and l. In the case when the field K = C

the last statement was proved earlier in [Mo] (see Theorem 6 of [Mo]).

Remark 6.7. Following the notation of [Mo] we define, for any integers l ≥ 1
and d, G(d, l) to be the group{(

g v
0 (det(g))−d

)
| g ∈ GLl(C), v ∈ Ml×1(C)

}
.

In Corollary 7 of [Mo] it is asserted that, if d 	= 1 then G(d, l) is exponential for
all integers l ≥ 1. The assertion is however is not correct. It may be seen that
G(d, 2) and H(d, 2, 1) are isomorphic as algebraic groups, and by Remark 6.6
H(d, 2, 1) is not exponential for d ≥ 2.

Remark 6.8. An element g in a connected real Lie group G is said to have
finite index if there exists an integer r such that gr is contained in the image
of the exponential map. The smallest positive integer for which this holds is
called the index of g; if there does not exist such an integer, we say that g has
infinite index. In the case when G is a connected complex algebraic group it is
shown in [Dj-H] that the index of an element g is the same as the order of the
element gsZG(gu)0 in the quotient group ZG(gu)/ZG(gu)0. In view of this fact
and Theorem A it is easy to see that, for a connected complex algebraic group
G the n-th power map Pn : G → G is surjective if and only if the index of every
element of G is coprime to the integer n.
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