
ADS SPACE AND THERMAL CORRELATORS

By

Pinaki Banerjee

THE INSTITUTE OF MATHEMATICAL SCIENCES , CHENNAI .

For

Post M.Sc Course work

HOMI BHABHA NATIONAL INSTITUTE

June, 2012



CERTIFICATE

Certified that the work contained in the thesis entitled :
"AdS Space And Thermal Correlators" by Pinaki Banerjee,
has been carried out under my supervision.

(Prof. Balachandran Sathiapalan)
Theoretical Physics Group

The Institute of Mathematical Sciences , Chennai .



ACKNOWLEDGEMENTS

I would like to extend my deepest gratitude to my guide Prof. Bala Sathi-
apalan for all the motivation during the course of this work and for providing
me the opportunity to work under his guidance. I don’t want to miss the oppor-
tunity to thank those teachers from Visva Bharati and my school whose friendly
accompany taught me a lot. I thank Prathyush for some fruitful discussions.
Lastly and most importantly, I wish to thank my family for love and support.



Abstract

Real time correlators are essential in the study of finite temperature field theory
when the system is out of equilibrium. Different methods of obtaining such
correlators are studied in detail for simple harmonic oscillator which is (0+1)d
QFT. We also review the complications to formulate AdS/CFT correspondence
in Minkowski space and then the recipe for calculating the real time two point
functions in that space. A well known result using this recipe is reproduced.
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1
Introduction

The idea of gauge/gravity duality presents the most beautiful link between
string theory and our observable world. It is also an excellent place to pursue
our theoretical understanding of strongly-interacting quantum systems, gravity
and string theory itself. Historically it came out of string theory. But in the past
few years this duality has proven its independent existence as an effective de-
scription of strongly-interacting quantum systems. Such an effective description
forgets its stringy origin and it has some important properties that are believed
to be universal to many other strongly-interacting systems. The AdS/CFT corre-
spondence is becoming the most promising toolkit for condensed matter physi-
cists [8, 9, 10] to understand some strongly coupled systems such as real-time,
finite temperature behavior of strongly interacting quantum many-body sys-
tems, especially those near quantum critical points [1]. Such systems can not be
solved accurately by the usual arsenal of field theoretic methods.

The AdS/CFT correspondence was first proposed by Maldacena in 1997 [2].
This duality allows physical observables in a conformal field theory (CFT) to
be computed using a gravity theory (which is historically a particular super-
string theory) in anti-de-Sitter (AdS) space. When the CFT on the boundary
of AdS space is strongly interacting, naively the corresponding gravity theory
in the bulk approaches its classical limit, i.e , Einstein gravity. In this limit,
correlation functions of a generic operator in the CFT can be calculated using
the Einstein field equations only. These correlation functions are interesting be-
cause they encode information about excitations coupled to the operator in the
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Chapter 1. Introduction

many-body system. They and specially some nonlocal observables called Wil-
son loops, which can be geometrically calculated using AdS/CFT, can tell us
whether the system exhibits some instability such as phase transitions [3] .

So far these are just words. To use the above mentioned duality quantita-
tively, we should have some precise procedure which will relate the field the-
oretic quantities to their gravity theory equivalents. Such a prescription was
given in [4]. It states that the partition function of the QFT coincides with the
gravity theory partition function restricted to its boundary. Formally, let Φi be
fields in gravity theory, and let Oi be their dual operators in the gauge theory.
As the gauge theory is living on the boundary of the space-time the string the-
ory lives, Φi are called bulk fields and Oi will be called boundary operators.

The statement of the duality is following :

〈
exp

(∫
Sd

Φi
0Oi
)〉

CFT
= ZQG[Φi

0] (1.1)

where ZQG[Φi
0] is the partition function of Quantum Gravity, with boundary

conditions that Φi goes to Φi
0 on the boundary. This is in Euclidean signature.

It avoids some complications related to boundary conditions that we discuss in
detail later in this thesis. But we don’t have a very useful idea of what ZQG is
(except in perturbation theory)! However, in the limit where the gravity theory
becomes classical we can do the path integral by saddle point. The sharpness of
saddle dictates how classical the gravity theory is. Treating Φi

0 as the sources of
boundary field theory one can calculate the two point functions by taking func-
tional derivative of ZQG with respect to Φi

0.

Working in Euclidean space is very common and convenient too. One can
always analytically continue the results to Minkowski space whenever needed.
However, in many cases extraction of Lorentzian-signature AdS/CFT result di-
rectly from bulk gravity theory is inevitable. For example, gauge theory at finite
temperature and density can only be understood by real time Green’s functions.
In principle, one can try to get the real time propagators using the analytic prop-
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Chapter 1. Introduction

erties of Euclidean Green’s functions. But this procedure is fruitful only when
Euclidean correlators are exactly known for all Matsubara frequencies. In prac-
tice, sometimes we are compelled to use some approximation for gravity calcu-
lations (e.g, in non-extremal backgrounds). Therefore, we have to have some
prescription for computing Minkowski correlators directly from gravity which
was done by Son and Starinets [5]. This prescription and reproducing some
useful sample calculations following that prescription are central goals of this
thesis. These results match beautifully with the corresponding outcomes from
CFT side.

This thesis is structured as follows. In chapter 2, we review the geometries
of AdS space. We discuss some basic properties of correlators in QFT in chapter
3. For some illustration we calculate the correlators for harmonic oscillator in
chapter 4, and show that they follow the properties stated previously. Propaga-
tors for free scalar field are obtained by generalizing those results in Minkowski
space and some technical ambiguities of these correlators are also discussed. In
chapter 5, we shade some light on AdS/CFT correlators in Euclidean space and
also discuss about the difficulties of Minkowski space formulation. Then we
look for the way out, which is the famous Son-Starinets prescription for calculat-
ing Minkowski space correlators in chapter 6. In this chapter we also reproduce
some results applying that prescription. We apply it for zero temperature field
theory but it is also applicable to finite temperature. Chapter 7 consists of some
concluding remarks and outlook on the whole idea of Minkowski space correla-
tors. The appendices are devoted to various important and detailed calculations
outside the main line of the thesis.

*****
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2
AdS Space

Anti de Sitter space is a space of Lorentzian signature (−,+,+, . . . ,+) but of con-
stant negative curvature. Thus is an analog of the Lobachevsky space, which is a
space of Euclidean signature and of constant negative curvature. It is maximally
symmetric space. The word "Anti" is there because de Sitter space is defined as
the space of Lorentzian signature and of constant positive curvature which is an
analog of the sphere (sphere is the space of Euclidean signature and constant
positive curvature). Before jumping into the geometry of AdS space which is
relevant to this thesis, let us introduce a more general space to which it belongs
[7].

2.1 Some Quadric surfaces

AdS space is an important member of the family of homogeneous spaces which
can be defined by quadric surfaces. We can stick only to diagonal quadrics as
any quadric form can be diagonalized. The signature plays a crucial role in this
case.
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Chapter 2. AdS Space

Sphere

A sphere Sd of radius R is defined as a positive definite quadric

d+1∑
i=1

X2
i = R2 (2.1)

embedded in an Euclidean d+1 dimensional space. This is invariant under
SO(d+1).

Hyperboloid

Now if we change the sign as following

d∑
i=1

X2
i − U2 = ±R2 (2.2)

that will give us a hyperboloid of one sheet or two sheets depending on plus
and minus sign respectively. Both of the spaces have varying curvature.

Hyperbolic, de Sitter and Anti-de Sitter space

We will see how the same surface (Hyperboloid) is embedded in flat Minkowski
space with the metric

ds2 =
d∑
i=1

dX2
i − dU2 (2.3)

The quadric

d∑
i=1

X2
i − U2 = −R2 (2.4)

as Euclidean case will give rise to hyperboloid with two sheets due to the
negative sign. But unlike previous case due to embedding in Minkowski space
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Chapter 2. AdS Space

it is now maximally symmetric space whose curvature is necessarily constant.
The upper sheet of this hyperboloid is defined as Hyperbolic space, Hd. Its sym-
metry group is SO(1 , d).

The other quadric with positive sign

d∑
i=1

X2
i − U2 = R2 (2.5)

in Minkowski space is called de Sitter space, dSd .

Let us now define Anti-de Sitter space,AdSd. It is defined by the quadric with
another extra minus sign.

d−1∑
i=1

X2
i − U2 − V 2 = −R2 (2.6)

embedded in a flat d+1 dimensional space with the metric (‘Minkowski met-
ric’ with one extra minus sign!)

ds2 =
d−1∑
i=1

dX2
i − dU2 − dV 2 (2.7)

The AdS space remains invariant under SO(2 , d-1) and allows closed time-
like curve. On the other hand, dS space has closed space but no closed time-like
curve. More mathematically, the topology of AdSd is Rd−1 ⊗ S1. Where as
topology of the dSd is Sd−1 ⊗R1.

2.2 Anti-de Sitter space in different co-ordinates

In order to calculate correlation functions in AdS space one has to choose a co-
ordinate system. The metric of AdS space will be different depending on co-
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Chapter 2. AdS Space

ordinate system one uses. And the choice has non trivial consequence [11].

Global co-ordinates

A co-ordinate system which covers all the space is called global co-ordinates.
Let us first find out the form of the metric of AdS3. Generalization to higher
dimension will be straight forward. Global co-ordinates for AdS3 are defined by

U = R cosh ρ sin τ V = R cosh ρ cos τ

X1 = R sinh ρ cosφ X2 = R sinh ρ sinφ

These yield the metric

ds2 = R2(− cosh2 dτ 2 + dρ2 + sinh2 ρ dφ2) (2.8)

where 0 ≤ ρ ≤ ∞ , 0 ≤ φ ≤ 2π and 0 ≤ τ ≤ 2π.

Therefore for AdSd we will have the metric in global co-ordinates as follow-
ing [6]

ds2
d = R2(− cosh2 dτ 2 + dρ2 + sinh2 ρ d~Ω

2

d−2) (2.9)

The change of co-ordinate, tan θ = sinh ρ gives the metric

ds2
d =

R2

cos2 θ
(−dτ 2 + dθ2 + sin2 θd~Ω

2

d−2) (2.10)

Poincare Co-ordinates

The Poincare co-ordinate system can be introduced by first defining the light
cone co-ordinates

u ≡ V −Xd−1

R2
,

v ≡ V +Xd−1

R2
(2.11)
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Chapter 2. AdS Space

So, by this change of co-ordinates we have absorbed the time-like co-ordinate,
V . Redefine the other co-ordinates as

xi ≡
Xi

uR
(space-like)

t ≡ U

uR
(time-like) (2.12)

Therefore (2.6) becomes

R4uv +R2u2
(
t2 − x̄2

)
= R2 (2.13)

where x̄2 =
d−2∑
i=1

x2
i .

From this equation we can express v in terms of t, u and xi to get

V =
1

2u
{1 + u2(R2 + x̄2 − t2)}

Xd−1 =
1

2u
{1 + u2(−R2 + x̄2 − t2)}

Xi = Ruxi

Xd = Rut. (2.14)

It is very convenient to change the co-ordinate z ≡ 1
u

. The Poincare coordi-
nates z, x̄, t are defined by following relations

V =
1

2z
(z2 +R2 + x̄2 − t2)

Xi =
Rxi
z

Xd−1 =
1

2z
(z2 −R2 + x̄2 − t2)

Xd =
Rt

z
. (2.15)
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Chapter 2. AdS Space

In this coordinates AdS metric takes the form

ds2 =
R2

z2
{dz2 + (dx̄)2 − dt2} (2.16)

Here z behaves as radial coordinate and the AdS space in two regions, de-
pending on whether z > 0 or z < 0. These are known as Poincare charts.

*****
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3
Correlators in QFT

3.1 In Minkowski space

The main topic of this thesis is all about thermal Green’s functions and comput-
ing them from gravity theory. Therefore let us review some general well known
properties about different Green’s functions [5]. Let Ô be a local, Bosonic op-
erator in a finite temperature quantum field theory. Retarded and advanced
propagators for Ô are respectively defined by

G̃R(k) = −i
∫
d4xe−ik.xθ(t)〈[Ô(x), Ô(0)]〉 (3.1)

G̃A(k) = i

∫
d4xe−ik.xθ(−t)〈[Ô(x), Ô(0)]〉 (3.2)

Here gµν = diag(−1, 1, 1, 1) and 〈#, ∗〉 := expectation value in thermal state.

From these definitions it can be shown that (See Appendix A)

G̃R(k)∗ = G̃R(−k) = G̃A(k)

And for parity invariant systems, Re G̃R,A are even functions of ω ≡ k0 and
Im G̃R,A are odd functions of ω.
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Chapter 3. Correlators in QFT

Now lets consider symmetrized Wightman function

G̃(k) =
1

2

∫
d4xe−ik.x〈Ô(x)Ô(0) + Ô(0)Ô(x)〉 (3.3)

All other correlators can be written in terns of G̃R, G̃A and G̃. As an useful
example, Feynman propagator is

G̃F (k) = −i
∫
d4xe−ik.x{Ô(x)Ô(0)}〉 (3.4)

=
1

2
{G̃R(k) + G̃A(k)} − iG̃(k) (3.5)

From the spectral representation of G̃R and G̃ we get (See Appendix B)

G̃(k) = − coth
( ω

2T

)
Im G̃R(k) (3.6)

And for known G̃R(k) we can calculate

G̃F (k) = Re G̃R(k) + i coth
ω

2T
Im G̃R(k). (3.7)

So as T→ 0, (3.7) becomes

G̃F (k)

∣∣∣∣
T=0

= Re G̃R(k) + i sign(ω) Im G̃R(k) (3.8)

Taking the limit ω → 0 in (3.6), we can get another useful formula

G̃(0,k) = − lim
ω→0

2T

ω
Im G̃R(k) = 2iT

∂

∂ω
G̃R(ω,k)

∣∣∣∣
ω=0

(3.9)

3.2 In Euclidean space

In Euclidean space one has to normally deal with Matsubara propagators

G̃E(kE) =

∫
d4xE e

−ikE.xE 〈TE{Ô(xE)Ô(0)}〉 (3.10)
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Chapter 3. Correlators in QFT

TE denotes Euclidean time ordering. The Matsubara propagators are defined
only at discrete values of the frequency ωE . For Bosonic Ô they are multiples of
2πT .

We can always relate the Euclidean and Minkowski propagators. The re-
tarded propagator GR(k) (as a function of ω) can always be continued analyti-
cally to the whole upper half plane and at complex values of ω equal to 2πiTn,
reduces to the Euclidean propagator

G̃R(2πiTn,k) = −G̃E(2πTn,k) (3.11)

Similarly if we analytically continue the advanced propagator to the lower
half plane gives Matsubara propagator at ω = −2πiTn,

G̃A(−2πiTn,k) = −G̃E(−2πTn,k) (3.12)

In particular for n= 0 one gets

G̃R(0,k) = G̃A(0,k) = −G̃E(0,k) (3.13)

*****
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4
Correlators for (0+1)D QFT

After reviewing the definition and basic properties of correlation functions let
us verify some of the relations for the simplest case, quantum field theory in
(0+1)D. This is nothing but simple harmonic oscillator (SHO) with only one
independent variable, namely time (t). (See Appendix B for very brief review of
SHO.)

Ground state Correlators

To calculate correlators of two observables P and Q at ground state one has to
compute the quantity of the generic form

fPQ(t, t′) ≡〈0|P̂ (t)Q̂(t′)|0〉

=〈0|eiĤtP̂ e−iĤteiĤt′Q̂e−iĤt′ |0〉

=〈0|eiĤte−iÊ0tP̂ e−iĤt
′
e−iĤt

′
Q̂|0〉

=〈0|eiĤ(t−t′)P̂ e−iĤ(t−t′)Q̂|0〉

=〈0|P̂ (t− t′)Q̂|0〉

So, this type of quantities depend only on the time difference between to two
points in time. Therefore, instead of considering two different times for the
arguments of correlator with out any loss of generality we can define correlation
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Chapter 4. Correlators for (0+1)D QFT

functions as following

fPQ(t) = 〈0|P̂ (t− t′)Q̂|0〉

Now we will compute different Green’s functions for simple harmonic oscil-
lator at both zero and finite temperature. For detailed calculations see Appendix
C and Appendix D.

4.1 Green’s functions at zero temperature

1. Feynman Green’s function

In real space the Feynman Green’s function is defined as

GF (t) ≡ −i〈0|T{x̂(t)x̂(0)}|0〉

where T is the time-ordering operator.

Therefore, the Feynman propagator will be

GF (t) =
−i
2ω0

e−iω0|t| (4.1)

In Fourier space Feynman propagator will be

G̃F (ω) =

∞∫
−∞

dt e−iωtGF (t)

=
−i
2ω0

0∫
−∞

dt ei(ω0−ω)t +
−i
2ω0

∞∫
0

dt e−i(ω0+ω)t

Now to make the integrals to be convergent we have to add or subtract a
small parameter iε inside the exponent and at last take the limit ε → 0. The

14



Chapter 4. Correlators for (0+1)D QFT

Feynman Green’s function in momentum space will be given by

G̃F (ω) =
1

ω2 − ω2
0 + iε

(4.2)

2. Retarded Green’s function

In real space retarded Green’s function for oscillator will be

GR(t) = −iθ(t)〈0|[x̂(t), x̂(0)]|0〉 = −θ(t) 1

ω0

sin(ω0t) (4.3)

In Fourier space the retarded correlator is

G̃R(ω) =
−i
2ω0

∞∫
0

dt(e−iω0t − eiω0t)e−iωt

Therefore

G̃R(ω) =
1

ω2 − ω2
0 − sgn(ω)iε

(4.4)

3. Advanced Green’s function

In real space advanced Green’s function for oscillator is

GA(t) = +iθ(−t)〈0|[x̂(t), x̂(0)]|0〉 = θ(−t) 1

ω0

sin(ω0t) (4.5)

In Fourier space the advanced correlator is

G̃A(ω) =
i

2ω0

0∫
−∞

dt(e−iω0t − eiω0t)e−iωt

Therefore

G̃A(ω) =
1

ω2 − ω2
0 + sgn(ω)iε

(4.6)
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Chapter 4. Correlators for (0+1)D QFT

4. Symmetrized Wightman function

Wightman function is defined as

G(t) =
1

2
〈0|{x̂(t)x̂(0) + x̂(0)x̂(t)}|0〉 (4.7)

In Fourier space the function will be

G̃(ω) =

∞∫
−∞

dte−iωtG(t) (4.8)

So

G̃(ω) =
i

2

{
1

ω2 − ω2
0 + iε

− 1

ω2 − ω2
0 − iε

}
(4.9)

4.2 Real time Green’s functions at finite temperature

We have defined the Hamiltonian of harmonic oscillator previously. At finite
temperature, to get the correlation functions, the states between which the ex-
pectation value has to be calculated are not ground state |0〉 but |n〉. Where

|n〉 =
(a†)n√
n!
|0〉

and the corresponding energy of the state is

εn = ω0

(
n+

1

2

)
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Chapter 4. Correlators for (0+1)D QFT

Now, we can write down the partition function for the oscillator as

Z =
∑

{all states}

e−βEn

=
∞∑
n=0

e−β(n+ 1
2
ω0)

=e−βω0/2

∞∑
n=0

(
e−βω0

)n
=

exp−βω0/2

(1− e−βω0)
(4.10)

1. Feynman Green’s function

In real space the correlation function,

〈x̂(t)x̂(0)〉

=
1

Z

∞∑
n=0

e−β(n+ 1
2
ω0)〈n|x̂(t)x̂(0)|n〉

=
1

2ω0

[
e−iω0t + e−βω0eiω0t

(1− e−βω0)

]
The Feynman Green’s function will be

GF (t) =
−i
2ω0

{
e−iω0|t| + e−βω0eiω0|t|

(1− e−βω0)

}
(4.11)

In Fourier space

G̃F (ω) =

∞∫
0

dte−iωtGF (t)

Now we have to consider two regions of integration for t. Taking care of all
those as previous calculation we end up with the Feynman Green function in

17



Chapter 4. Correlators for (0+1)D QFT

Fourier space

G̃F (ω) =
1

(1− e−βω0)

{
1

(ω2 − ω2
0 + iε)

− e−βω0

(ω2 − ω2
0 − iε)

}
(4.12)

2. Retarded Green’s function

In real space : Retarded Green’s function

GR(t) ≡ −iθ(t)
∑
n

e−βEn

Z
〈n|[x̂(t), x̂(0)]|n〉 (4.13)

GR(t) =
1

2ω0

θ(t)[−2 sin (ω0t)] (4.14)

This expression of Green’s function is identical to the retarded Green’s func-
tion of oscillator at zero temperature (C.5).

GR(t) = −θ(t) 1

ω0

sin (ω0t) (4.15)

In Fourier space : We have computed the retarded Green’s function in mo-
mentum space at zero temperature. So, obviously at finite temperature also we
have the same expression as (C.7)

G̃R(ω) =
1

ω2 − ω2
0 − sign(ω) iε

(4.16)

3. Advanced Green’s function

In real space : Advanced Green’s function

GA(t) ≡ +iθ(−t)
∑
n

e−βEn

Z
〈n|[x̂(t), x̂(0)]|n〉 (4.17)

18



Chapter 4. Correlators for (0+1)D QFT

GA(t) =
1

ω0

θ(−t)[sin (ω0t)] (4.18)

This expression of Green’s function is identical to the advanced Green’s func-
tion of oscillator at zero temperature (4.5)

GA(t) = θ(−t) 1

ω0

sin (ω0t) (4.19)

In Fourier space : Here also as retarded Green’s function at finite temperature
we have the same expression as (4.10)

G̃A(ω) =
1

ω2 − ω2
0 + sgn(ω)iε

(4.20)

4. Wightman function:

Wightman function is defined as

G(t) =
1

2
〈0|{x̂(t)x̂(0) + x̂(0)x̂(t)}|0〉 (4.21)

So,

G(t) =
1

2ω0

(1 + e−βω0)

(1− e−βω0)
cosω0t (4.22)

Therefore, in Fourier space the function will be

G̃(ω) =

∞∫
−∞

dte−iωtG(t) (4.23)

So

G̃(ω) =
i

2

(
1 + e−βω0

1− e−βω0

){
1

ω2 − ω2
0 + iε

− 1

ω2 − ω2
0 − iε

}
(4.24)
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Chapter 4. Correlators for (0+1)D QFT

• Relationships between different Green’s functions

Now we will show that the different Green’s functions of SHO satisfy the re-
lations stated in previous chapter. Here we focus only on correlators at finite
temperature. The zero temperature results are special case of these.

Consider the following combination

1

2
[G̃R(ω) + G̃A(ω)]− iG̃(ω)

=
1

2

[
1

ω2 − ω2
0 − sgn(ω)iε

+
1

ω2 − ω2
0 + sgn(ω)iε

]
+

1

2

(
1 + e−βω0

1− e−βω0

)[
1

ω2 − ω2
0 + iε

− 1

ω2 − ω2
0 − iε

]
=

1

(1− e−βω0)

{
1

ω2 − ω2
0 + iε

− e−βω0

ω2 − ω2
0 − iε

}
=G̃F (ω)

So

G̃F (ω) =
1

2
[G̃R(ω) + G̃A(ω)]− iG̃(ω) (4.25)

From the previous relation (4.25) we can write

G̃F (ω) =
1

2
[G̃R(ω) + G̃A(ω)]− iG̃(ω)

= ReGR(ω)− iG̃(ω)

= ReGR(ω) + i coth
( ω

2T

)
Im G̃R(ω)

where we have used the following relations :

G̃R(ω) = (G̃A(ω))
∗

G̃(k) = − coth
( ω

2T

)
Im G̃R(k)

Therefore,

G̃F (ω) = ReGR(ω) + i coth
( ω

2T

)
Im G̃R(ω) (4.26)
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Chapter 4. Correlators for (0+1)D QFT

• Comments on correlators at T 6= 0

We have derived the different correlators for simple harmonic oscillator which
we know as (0+1)d quantum field theory. These results can easily be general-
ized to usual free scalar field theory in (3+1)d. So ω should be replaced by four
vector k and ω0 by m, mass of the scalar field. Therefore we can write the prop-
agators for free scalar field as following.

Zero temperature :

G̃F (k) =
1

k2 −m2 + iε
(4.27)

G̃R,A(k) =
1

k2 −m2 ∓ sgn(ω)iε
; ω ≡ k0 (4.28)

G̃(k) =
i

2

{
1

k2 −m2 + iε
− 1

k2 −m2 − iε

}
(4.29)

Finite temperature :

G̃F (k) =
1

(1− e−|k0|β)

{
1

(k2 −m2 + iε)
− e−β|k0|

(k2 −m2 − iε)

}
(4.30)

=
1

(1− e−|k0|β)

{
1

(k2 −m2 + iε))
− e−β|k0|

(k2 −m2)
− iπδ(k2 −m2)e−β|k0|

}
=

{
1

(k2 −m2 + iε)
− 2πiδ(k2 −m2)

eβ|k0| − 1

}
G̃(k) =

i

2

(
1 + e−β|k0|

1− e−β|k0|

){
1

k2 −m2 + iε
− 1

k2 −m2 − iε

}
(4.31)

G̃R,A(k) will be same as they are for T=0 (see(4.28)).

Following the above real time formalism we arrived at a very convenient
form of Green’s function (4.31). It has two parts : one is same as zero tem-
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Chapter 4. Correlators for (0+1)D QFT

perature, the other part is due to temperature. However, the real time Green’s
function we got here are often ambiguous as pointed out in [12]. For example,
in higher loop calculations pathologies like product of delta functions at the
same point will appear. To avoid these ambiguities one can use other methods
namely Schwinger-Keldysh [13, 15, 16] and Thermofield dynamics [17] where
one doubles the degrees of freedom by introducing ghost fields. By Schwinger-
Keldysh method the Green’s function comes out to be a 2×2 matrix, as there
are two different type of fields. We won’t discuss about these type of Green’s
function in this thesis. But just mention how they look like.

G̃F (ω) =

(
1

ω2−ω2
0+iε
− i2π

eβω0−1
δ(ω2 −m2) i2πe−βω0/2

1−e−βω0 δ(ω2 −m2)
i2πe−βω0/2

1−e−βω0 δ(ω2 −m2) −1
ω2−ω2

0−iε
− i2π

eβω0−1
δ(ω2 −m2)

)
(4.32)

G̃11
F (ω) is the free field propagator which we have derived earlier. But the

most interesting fact is that if a mass term is added to the free Lagrangian, due
to the structure of the propagator no pathologies like power of delta functions
appear in perturbation series. All such terms get canceled [13].

*****
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5
AdS/CFT Correlators

5.1 In Euclidean space

Let us first recall the AdS/CFT formulation in Euclidean space [4, 5] . For his-
torical significance and definiteness we talk about the famous correspondence
between N=4 SYM theory and classical gravity (SUGRA) on AdS5× S5. The
Euclidean version of the metric (Poincare patch) for this manifold is given by

ds2 =
R2

z2
(dτ 2 + dx2 + dz2) +R2d~Ω5

2
(5.1)

z = 0 corresponds to the boundary of AdS5 where the four dimensional quan-
tum field theory lives. Consider a field Φ in the bulk which is coupled to an
operator Oi on the boundary such that the interaction Lagrangian is ΦO. We
know, AdS/CFT correspondence then states〈

e
∫
∂M Φ0O

〉
= e−Scl[Φ] (5.2)

where Scl[Φ] is the action of classical solution to the equation of motion for Φ in
the bulk metric with the boundary condition : Φ|z=0 = Φ0.

The metric (4.1) corresponds to the zero-temperature field theory. To study
field theory in finite temperature one has to modify the above metric to a non-
extremal one

ds2 =
R2

z2

(
f(z)dτ 2 + dx2 +

dz2

f(z)

)
+R2d~Ω5

2
(5.3)
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Chapter 5. AdS/CFT Correlators

where f(z) = 1 − z4/z4
H and zH = (πT )−1. T is Hawking temperature. τ is the

Euclidean time co-ordinate which is periodic, τ ∼ τ + T−1 and z is between 0
and zH .

5.2 Difficulties in Minkowski Space

In Minkowski space also one can try to put down the correspondence in follow-
ing way 〈

ei
∫
∂M Φ0O

〉
= eiScl[Φ] (5.4)

But there are some difficulties with this Minkowski version of the dual-
ity. The basic problem is with the boundary condition. In Euclidean case Φ

is uniquely determined by its value at the boundary z = 0 and the require-
ment of regularity at horizon, z = zH . So, the Euclidean correlator is unique.
In Minkowski space, unlike the previous case, both modes are oscillatory and
Therefore the regularity at horizon does not work. To pick a solution one has to
have a more refined boundary condition there. From physical perspective one
important boundary condition is the incoming wave at z = zH . This wave goes
inside the horizon but cannot escape from there. But even if we choose such a
boundary condition, the Minkowski version (5.4) will still be problematic. Let
us see where the problem lies. We will start with the AdS part of the metric (5.3),
which can be written as

ds2 = gzzdz
2 + gµν(z)dxµdxν (5.5)

Consider a fluctuation of scalar field, φ on this background space-time. For
any curved (d+1) dimensional space-time the action due to scalar field reads

S =

∫ √
−g dd+1x

[
DµφDµφ+m2φ2)

]
(5.6)

where µ runs from 0 to d; and Dµ is the covariant derivative.
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Chapter 5. AdS/CFT Correlators

For this AdS5 space we can write the action as

S = K

∫
d4x

zH∫
zB

dz
√
−g
[
gzz(∂zφ)2 + gµν(∂µφ)(∂νφ) +m2φ2

]
(5.7)

as for scalar field φ, Dµφ = ∂µφ and K is normalization constant (for dilaton
K= −π3R5/4κ2

10, κ10 is the 10 dimensional gravitational constant) and m is the
mass of the scalar.

We can write the action (5.6) in the following way

S = K

∫ √
−g d4x

∫
dz
[
DA(φDAφ)− φDAD

Aφ+m2φ2)
]

(5.8)

where A consists of {µ = 0, 1, 2, 3} and z.

S = K

∫ √
−g d4x

∫
dz[−φ(�−m2)φ︸ ︷︷ ︸
SEOM

] +K

∫ √
−gd4x

∫
dz[DA(φDAφ)]︸ ︷︷ ︸

SBoundary

(5.9)

The equation of motion (EOM) for φ

(�−m2)φ = 0 (5.10)

=⇒ 1√
−g

∂z(
√
−ggzz∂zφ) +

1√
−g

∂µ(
√
−ggµν∂νφ)−m2φ = 0

gµν(z) is a function of z only. So, EOM will be

1√
−g

∂z(
√
−ggzz∂zφ) + gµν∂µ∂νφ)−m2φ = 0 (5.11)

It has to be solved using the boundary condition at z = zB. Lets take the
solution to be

φ(z, x) =

∫
d4k

(2π)4
eik.xfk(z)φ0(k) (5.12)
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Chapter 5. AdS/CFT Correlators

φ0(k) is determined by the boundary condition

φ(zB, x) =

∫
d4k

(2π)4
eik.xφ0(k) ; fk(zB) = 1. (5.13)

Now substituting (5.13) into the EOM, (5.11) we get

1√
−g

∂z(
√
−ggzz∂zfk)− (gµνkµkν +m2)fk = 0 (5.14)

• Boundary condition on fk :

1. fk(zB)=1, and

2. Satisfies the incoming wave boundary condition at horizon (z = zH).

Let us look at the action on shell (i.e, when φ satisfies the EOM). Clearly from
(5.9), the action reduces only to a boundary term

SBoundary = K

∫ √
−g d4x

∫
dz[DA(φDAφ)]

= K

∫ √
−g dσk (φDkφ)

where dσk is a hyper-surface perpendicular to k direction. Now if the surface
is chosen to be perpendicular to z direction (as we are integrating over z from
z = zB to z = zH) the action reduces to

SBoundary = K

∫ √
−g dσz {φDzφ}

= K

∫ √
−g d4x {φ gzz ∂zφ}

∣∣∣∣zH
zB

(5.15)

Now substituting (5.13) into (5.15) and integrating over z we get

SBoundary =

∫
d4k

(2π)4

{
φ0(−k)F(k, z)φ0(k)

}∣∣∣∣zH
zB

(5.16)

where

F(k, z) = K
√
−ggzzf−k(z)∂zfk(z). (5.17)
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Chapter 5. AdS/CFT Correlators

If we want to calculate Green’s function, we can use equality (5.4). We can
find the two point function taking the second derivative of classical action with
respect to φ0, the boundary value of φ.

Therefore, using (5.16) the Feynman Green’s function is

G̃(k) = F(k, z)

∣∣∣∣zH
zB

−F(−k, z)

∣∣∣∣zH
zB

(5.18)

The problem with this Green’s function is, it is completely real. But retarded
Green’s functions are complex in general. Noticing the fact that f ∗k (z) = f−k(z)

and using the equation of motion (5.14), it can be easily shown that imaginary
part of F(k, z)

ImF(k, z) =
K

2i

√
−ggzz[f ∗k∂zfk − fk∂zf ∗k ] (5.19)

is independent of radial co-ordinate z, i.e, ∂zImF(k, z) = 0. Therefore, in each
term of (5.18), the imaginary part at horizon z = zH and at boundary z = zB

cancel each other.
To avoid the problem we can throw the contribution from horizon term. But

from reality of field equation one can show, F(−k, z) = F∗(k, z). Therefore,
imaginary parts cancel again. So, G̃(k) is still real.

*****
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6
Prescription for Minkowski Space

Correlators

To get the complex retarded Green’s function we will follow the prescription
by Son and Satrinets which they proposed as a conjecture in [5] and proved or
rather justified in [14]. The conjecture is

G̃R(k) = −2F(k, z)

∣∣∣∣
zB

(6.1)

To justify the above conjecture we will just pick up one case of zero temper-
ature field theory and reproduce the two point functions following [5].

The prescription is as follows

1. Find a solution to the (5.14) with following properties:

• It equals to 1 at boundary z = zB;

• For time-like momenta : It satisfies incoming wave boundary condition
at horizon.
For space-like momenta : The solution is regular at horizon.

2. The retarded Green’s function is given by G = −2F∂M , where F is defined
as (5.17) and only contribution from boundary has to be taken.

Now, we have seen earlier that ImF(k, z) is independent of radial co-ordinate
z. So we can calculate it at any convenient value of z; in particular at horizon.
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Chapter 6. Prescription for Minkowski Space Correlators

6.1 Sample calculations and comparison with CFT

results

To see whether the prescription works, let us consider the following systems
whose green’s functions are already known using other methods.

• At zero temperature

Let us use the above prescription to calculate the retarded (advanced) Green’s
function of the operator O = 1

4
F 2 at zero temperature. Here the action is of

minimally coupled massless scalar field in the background AdS5. The horizon
is at zH =∞ and the boundary is at zB = 0. Now the mode equation reads (see
Appendix E)

f ′′k (z)− 3

z
f ′k(z)− k2fk(z) = 0 (6.2)

For spacelike momenta, k2 > 0, we can follow the steps identical to the Eu-
clidean case (see Appendix E)

G̃R(k) =
N2k4

64π2
ln k2; k2 > 0 (6.3)

The extra minus sign is due to the Lorentzian signature.

For timelike momenta, we introduce q =
√
−k2. The solution to the equation

(6.2) with the mentioned boundary conditions will be

fk(z) =


z2H

(1)
2 (qz)

ε2H
(1)(qε)
ν

if ω > 0;

z2H
(2)
2 (qz)

ε2H
(2)(qε)
2

if ω < 0.

Now, f−k = f ∗k . Calculating F from (5.17) and using the prescription (6.1),
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Chapter 6. Prescription for Minkowski Space Correlators

we get

G̃R(k) =
N2K4

64π2
(ln k2 − iπ sgn ω) (6.5)

From (6.3) and (6.5) we can write the complete retarded Green’s function as

G̃R(k) =
N2K4

64π2
(ln |k2| − iπθ(−k2)sign(ω)) (6.6)

As z →∞, F(k, z) does not go to zero rather it becomes purely imaginary in
that limit.

F(k, z →∞) =
iN2K4sign(ω)

128π
= ImF(k, ε) (6.7)

This we could guess from the fact of flux conservation (5.19). So, imaginary
part of the Green’s function can be calculated independently from the asymp-
totic behavior of the solution at the horizon.

We can now use the relation (3.8) to get the Feynman propagator at zero
temperature

G̃F (k) =
N2K4

64π2
(ln |k2| − iπθ(−k2)) (6.8)

Evidently, we can obtain the same propagator by Wick rotating the Euclidean
correlator

G̃E(kE) = −N
2K4

E

64π2
ln k2

E (6.9)

Therefore, the prescription gives the correct answer for retarded Green’s
function at zero temperature.

• At finite temperature

We have checked the prescription at zero temperature. The same procedure
can be applied to compute the retarded Green’s functions of two dimensional
CFT dual to the non-extremal BTZ black hole. And if the result is analytically
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Chapter 6. Prescription for Minkowski Space Correlators

continued to complex frequencies we can reproduce the well known Matsubara
correlators for thermal field theory.

*****
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7
Conclusion

Although there are Euclidean correlators to study phenomena at finite temper-
ature the real time methods are essential for describing a system which is away
from its equilibrium. While Wick rotated, the time coordinate of Minkowski
space becomes merely a spatial coordinate. Therefore to describe a system that
is not in equilibrium one can again analytically continue that coordinate to res-
cue the good old notion of time. But This procedure is not always feasible in
practice, as one has to know all the Matsubara frequencies exactly. Moreover,
The process may involve some pathologies like poles in that complex domain.
On the other hand ordinary real time methods are useful to study those non-
equilibrium phenomena. But there appear some ambiguities in quantum level.
For example, if as perturbation a mass term is added to the Lagrangian of the
free propagator, pathologies like power of Dirac delta functions at the same
point arise. We don’t have any fruitful technique to tackle this ambiguity. So,
as a way out one can think of different methods to handle the problem unam-
biguously. Schwinger-Keldysh technique is one of them. In this method instead
of making time purely imaginary, one considers a specific loop in complex time
domain and at last take the real time segment to be infinitely extended. The
Green’s function comes out from this procedure is not a complex number but a
2×2 complex matrix. Its structure is such that the above mentioned pathologies
are bypassed due to cancellation of ambiguous terms [13].

In the context of AdS/CFT also thermal correlators play a significant role to
describe boundary CFT at finite temperature. The AdS/CFT correspondence
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is originally formulated in Euclidean space. To obtain Minkowski space corre-
lators one has to formulate it in Minkowski space. But in this space unlike Eu-
clidean case the solution is not uniquely determined by its value at the boundary
and regularity at the horizon. Even if the incoming wave boundary condition at
horizon which is physically relevant can not help. Because, the Green’s function
obtained using this formulation is completely real, where as it should be com-
plex in general. One prescription to obtain complex correlators is to drop the
contribution from the horizon. And following this recipe zero and finite tem-
perature CFT correlators can be computed from the gravity calculation in AdS

space.

*****
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A
Relationships among different

Green’s functions

Retarded and advanced Green’s functions are defined as following

G̃R(k) = −i
∫
d4xe−ik.xθ(t)〈[Ô(x), Ô(0)]〉 (A.1)

G̃A(k) = i

∫
d4xe−ik.xθ(−t)〈[Ô(x), Ô(0)]〉 (A.2)

G̃R(k)∗ = i

∫
d4xeik.xθ(t)〈[Ô(x), Ô(0)]〉∗

= i

∫
d4xeik.xθ(t)

{
〈Ô†(0)Ô†(x)〉 − 〈Ô†(x)Ô†(0)〉

}
= −i

∫
d4xeik.xθ(t)〈[Ô(x), Ô(0)]〉 ; O’s are Hermitian

= G̃R(−k) (A.3)
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Appendix A. Relationships among different Green’s functions

G̃A(k) = i

∫
d4xe−ik.xθ(−t)〈[Ô(x), Ô(0)]〉

= i

∫
d4xe−ik.xθ(−t)〈[Ô(0), Ô(−x)]〉 ; space time translational invariance

= i

∫
d4xeik.xθ(t)〈[Ô(0), Ô(x)]〉 ; x→ −x

= −i
∫
d4xeik.xθ(t)〈[Ô(x), Ô(0)]〉

= G̃R(k)∗ (A.4)

Therefore ,

G̃R(k)∗ = G̃R(−k) = G̃A(k) (A.5)

*****
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B
Very brief review of SHO in quantum

mechanics

The Hamiltonian of an 1D harmonic oscillator of unit mass is given by

Ĥ =
p̂2

2
+
ω2

0x̂
2

2
; Putting ~ = 1 (B.1)

Now, lets define the creation and annihilation operators as following.

â =

√
ω0

2
x̂+

i√
2ω0

p̂ (B.2)

â† =

√
ω0

2
x̂− i√

2ω0

p̂ (B.3)

So,
[â, â†] = 1 and â|0〉 = 0

Therefore, we can write x̂ and p̂ as below.

x̂ =

√
1

2ω0

(â+ â†) (B.4)

p̂ =− i
√
ω0

2
(â− â†) (B.5)
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Now, we can express the Hamiltonian as following way.

Ĥ =ω0(â†â+
1

2
)

|n〉 =
(a†)n√
n!
|0〉

Therefore energy,

εn = ω0(n+
1

2
)

In Heisenberg picture we know for an operatorP̂ (t)

P̂ (t) = eiĤtP̂ e−iĤt (B.6)

So, if ρ does not have explicit time dependence, equation of motion will be

i
dρ̂(t)

dt
= [ρ̂, Ĥ]

For SHO

[â, Ĥ] =ω0â

=⇒ â(t) =âe−iω0t

Similarly, â†(t) = â†eiω0t

*****
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C
Computing different Green’s

functions of SHO at T=0

Here we will compute Feynman, retarded, advanced and symmetrized Wight-
man Green’s functions for 1D SHO at zero temperature.

• Feynman Green’s function

Consider the correlation function

〈0|x̂(t)x̂(0)|0〉 ; t > 0

=
1

2ω0

〈0|[â(t) + â†(t)][â+ â†]|0〉

=
1

2ω0

〈0|[âe−iω0t + â†eiω0t][â+ â†]|0〉

=
1

2ω0

〈0|ââ†|0〉e−iω0t

=
1

2ω0

e−iω0t
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For t<0, one has to calculate the quantity

〈0|x̂(0)x̂(t)|0〉

=
1

2ω0

〈0|ââ†|0〉e+iω0t

=
1

2ω0

e+iω0t

From these two expressions finally we can write

GF (t) ≡ −i〈0|T [x̂(t)x̂(0)]|0〉 =
1

2ω0

e−iω0|t| (C.1)

The Green’s function in momentum space will be

G̃F (ω) =

∫
dte−iωtGF (t)

=
−i
2ω0

∫
dte−iωte−iω0|t|

Case 1 : t>0

G̃+(ω) =
−i
2ω0

∫ ∞
0

dte−i(ω0+ω)t

= lim
ε→0

−i
2ω0

∫ ∞
0

dte−i(ω0+ω−iε)t

=
−i
2ω0

lim
ε→0

e−i(ω0−ω)t

−i(ω0 − ω − iε)

∣∣∣∣t=∞
t=0

=
−1

2ω0

[
1

(ω0 + ω − iε)

]
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Case 2 : t<0

G̃−(ω) =
−i
2ω0

∫ 0

−∞
dtei(ω0−ω−iε)t

=
−i
2ω0

[
1

i(ω0 − ω − iε)
− 0

]
=

1

2ω0

[
1

(ω − ω0 + iε)

]

Therefore, the Green function in momentum space is given by

G̃F (ω) =
1

2ω0

[
G̃+(ω) + G̃−(ω)

]
=

1

2ω0

lim
ε→0

{
1

(ω − ω0 + iε)
− 1

(ω + ω0 − iε)

}
(C.2)

We can simplify G̃F (ω) further assuming ω0 > 0 and finite and keeping only
linear order in ε.

G̃F (ω) =
1

2ω0

lim
ε→0

{
2ω0 − 2iε

ω2 − ω2
0 + 2iω0ε

}

=⇒ G̃F (ω) =

[
1

ω2 − ω2
0 + iε

]
(C.3)
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• Retarded Green’s function

GR(t) = −iθ(t)〈0|[x̂(t), x̂(0)]|0〉 (C.4)

= −iθ(t)
{
〈0|x̂(t)x̂|0〉 − 〈0|x̂(0)x̂(t)|0〉

}
= −iθ(t) 1

2ω0

{
e−iω0t − eiω0t

}
= −θ(t) 1

ω0

sin(ω0t)

So ,

GR(t) = −iθ(t)〈0|[x̂(t), x̂(0)]|0〉 = −θ(t) 1

ω0

sin(ω0t) (C.5)

In Fourier space :

G̃R(ω) =
−i
2ω0

∞∫
0

dt(e−iω0t − eiω0t)e−iωt

=
−i
2ω0

lim
ε→0

{ ∞∫
0

dte−i(ω0+ω−iε)t −
∞∫

0

dtei(ω0−ω+iε)t

}

=
1

2ω0

lim
ε→0

{
1

−ω − ω0 + iε
− 1

−ω + ω0 + iε

}
Therefore ,

G̃R(ω) =
1

ω2 − ω2
0 − 2iωε

(C.6)

This is very clear from (C.6) and (C.3) that for harmonic oscillator at T=0, if
ω < 0, the Feynman and retarded Green’s functions are same. In general we can

41



Appendix C. Computing different Green’s functions of SHO at T=0

write

G̃R(ω) =
1

ω2 − ω2
0 − sgn(ω)iε

(C.7)

• Advanced Green’s function

GA(t) = +iθ(−t)〈0|[x̂(t), x̂(0)]|0〉 (C.8)

= iθ(−t)
{
〈0|x̂(t)x̂|0〉 − 〈0|x̂x̂(t)|0〉

}
= iθ(−t) 1

2ω0

{
e−iω0t − eiω0t

}
= θ(−t) 1

ω0

sin(ω0t)

So ,

GA(t) = +iθ(−t)〈0|[x̂(t), x̂(0)]|0〉 = θ(−t) 1

ω0

sin(ω0t) (C.9)

In Fourier space :

G̃A(ω) =
i

2ω0

0∫
−∞

dt(e−iω0t − eiω0t)e−iωt

=
i

2ω0

lim
ε→0

{ 0∫
−∞

dte−i(ω0+ω+iε)t −
0∫

−∞

dtei(ω0−ω−iε)t
}

=
1

2ω0

lim
ε→0

{
1

(−ω − ω0 − iε)
− 1

(−ω + ω0 − iε)

}
Therefore

G̃A(ω) =
1

(ω2 − ω2
0 + 2iωε)

(C.10)

This is very clear from (C.6) and (C.3) that for harmonic oscillator at T=0, the
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Appendix C. Computing different Green’s functions of SHO at T=0

Feynman and advanced Green’s functions are same if ω > 0. In general we can
write

G̃A(ω) =
1

(ω2 − ω2
0 + sgn(ω)iε)

(C.11)

•Wightman function

Fourier space Wightman function is defined as

G̃(ω) =

∞∫
−∞

dte−iωtG(t)

=
1

2

1

2ω0

 ∞∫
−∞

dte−i(−ω+ω0)t +

∞∫
−∞

dte−i(−ω−ω0)t


=

1

4ω0

 0∫
−∞

dt
{
e−i(−ω+ω0+iε)t + e−i(−ω−ω0+iε)t

}
+

∞∫
0

dt
{
e−i(−ω+ω0−iε)t + e−i(−ω−ω0−iε)t

}
=

1

4ω0

[
i

(−ω + ω0 + iε)
+

i

(−ω − ω0 + iε)
+

i

(−ω + ω0 − iε)
+

i

(−ω − ω0 − iε)

]

Therefore

G̃(ω) =
i

2

{
1

ω2 − ω2
0 + iε

− 1

ω2 − ω2
0 − iε

}
(C.12)

*****
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D
Computing different Green’s

functions of SHO at T6=0

• Feynman Green’s function

• In real space : The correlation function

〈x̂(t)x̂(0)〉

=
1

Z

∞∑
n=0

e−β(n+ 1
2
ω0)〈n|(âe−iω0t + â†eiω0t)(â+ â†)|n〉

=
1

2ω0

exp−βω0

Z

∞∑
n=0

e−βnω0)
{
〈n|ââ†|n〉e−iω0t + 〈n|â†â|n〉e+iω0t

}
=

1

2ω0

e−βω0

Z

{
∞∑
n=0

(n+ 1)e−iω0te−βω0n+
∞∑
n=0

neiω0te−βω0n

}

=
1

2ω0

e−βω0

Z

{
e−iω0t

∞∑
n=0

(n+ 1)rn + eiω0t

∞∑
n=0

nrn

}

where,
r = e−βω0
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Appendix D. Computing different Green’s functions of SHO at T6=0

But we know that

∞∑
n=0

(n+ 1)rn =
1

(1− r)2
(D.1)

∞∑
n=0

rn =
1

(1− r)
(D.2)

=⇒
∞∑
n=0

nrn =
∞∑
n=0

(n+ 1)rn −
∞∑
n=0

rn

=
1

(1− r)2
− 1

(1− r)
=

r

(1− r)2

Therefore

〈x̂(t)x̂(0)〉

=
1

2ω0

e−βω0

Z

[
e−iω0t

(1− e−βω0)2
+

e−βω0eiω0t

(1− e−βω0)2

]
=

1

2ω0

[
e−iω0t + e−βω0eiω0t

(1− e−βω0)

]

Now if we calculate 〈x̂(0)x̂(t)〉 then the terms we get are 〈n|ââ†|n〉eiω0t and
〈n|â†â|n〉e−iω0t . Evidently, only there will be a change of sign to time, i.e,
t→ −t .

Therefore, the Green’s function will be

G(t) =
−i
2ω0

{
e−iω0|t| + e−βω0eiω0|t|

(1− eβω0)

}
(D.3)

• In Fourier space : To take the Fourier transformation we have to split the
integral in two parts .
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Appendix D. Computing different Green’s functions of SHO at T6=0

1. For t > 0 :

G̃+(ω) =
−i
2ω0

1

(1− e−βω0)

∞∫
0

dte−iωt
(
e−iω0t + e−βω0eiω0t

)

=
−i
2ω0

1

(1− e−βω0)

 ∞∫
0

dte−i(ω0+ω−iε)t + e−βω0

∞∫
0

dtei(ω0−ω+iε)t


=
−i
2ω0

1

(1− e−βω0)

[
i

(−ω − ω0 + iε)
+

ie−βω0

(−ω + ω0 + iε)

]
(D.4)

2. For t < 0 :

G̃−(ω) =
−i
2ω0

1

(1− e−βω0)

0∫
−∞

dte−iωt
(
eiω0t + e−βω0e−iω0t

)

=
−i
2ω0

1

(1− e−βω0)

 0∫
−∞

dtei(ω0−ω−iε)t + e−βω0

0∫
−∞

dte−i(ω0+ω+iε)t


=
−i
2ω0

1

(1− e−βω0)

[
−i

(−ω + ω0 − iε)
− ie−βω0

(−ω − ω0 − iε)

]
(D.5)

Therefore, from (D.4) and (2) we can calculate the Green’s function in
Fourier space

G̃F (ω) = G̃+(ω) + G̃−(ω)

=
−i
2ω0

1

(1− e−βω0)

[
i(ω + ω0 − iε− ω + ω0 − iε)

ω2 − (ω0 − iε)2
+ e−βω0

i(ω − ω0 − iε− ω − ω0 − iε)
ω2 − (ω0 − iε)2

]
(D.6)
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Appendix D. Computing different Green’s functions of SHO at T6=0

So the Feynman Green function in Fourier space is given by

G̃F (ω) =
1

(1− e−βω0)

{
1

(ω2 − ω2
0 + iε)

+
1.e−βω0

(ω2 − ω2
0 − iε)

}
(D.7)

• Retarded Green’s function

• In real space : Retarded Green’s function is defined as

GR(t) ≡ −iθ(t)
∑
n

e−β(n+ 1
2
ω0)

Z
〈n|[x̂(t), x̂(0)]|n〉 (D.8)

=
−i
2ω0

θ(t)

[
e−iω0t

(1− e−βω0)
+

e−βω0eiω0t

(1− e−βω0)
− eiω0t

(1− e−βω0)
− e−βω0e−iω0t

(1− e−βω0)

]
= −θ(t) 1

ω0

sin (ω0t)

This expression of Green’s function is identical to the retarded Green’s
function of oscillator at zero temperature (C.5)

GR(t) = −θ(t) 1

ω0

sin (ω0t) (D.9)

• In Fourier space : We have computed the retarded Green’s function in mo-
mentum space at zero temperature. So, obviously at finite temperature
also we have the same expression as (C.7)

G̃R(ω) =
1

ω2 − ω2
0 − sgn(ω)iε

(D.10)
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Appendix D. Computing different Green’s functions of SHO at T6=0

• Advanced Green’s function

• In real space : Advanced Green’s function is defined as

GA(t) ≡ +iθ(−t)
∑
n

e−β(n+ 1
2
ω0)

Z
〈n|[x̂(t), x̂(0)]|n〉 (D.11)

=
i

2ω0

θ(−t)
[

e−iω0t

(1− e−βω0)
+

e−βω0eiω0t

(1− e−βω0)
− eiω0t

(1− e−βω0)
− e−βω0e−iω0t

(1− e−βω0)

]
= θ(−t) 1

ω0

sin (ω0t)

This expression of Green’s function is identical to the advanced Green’s
function of oscillator at zero temperature. (C.9)

GA(t) = θ(−t) 1

ω0

sin (ω0t) (D.12)

• In Fourier space : Advanced Green’s function in momentum space at finite
temperature we be same as at zero temperature

G̃A(ω) =
1

ω2 − ω2
0 + sgn(ω)iε

(D.13)

•Wightman function

Wightman function is defined as

G(t) =
1

2
〈0|{x̂(t)x̂(0) + x̂(0)x̂(t)}|0〉 (D.14)

=
1

2

1

2ω0

{
e−βω0(e−iω0t + eiω0t) + (e−iω0t + eiω0t)

(1− e−βω0)

}
(D.15)

=
1

4ω0

{
(1 + e−βω0)

(1− e−βω0)
2 cosω0t

}
(D.16)

(D.17)
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Appendix D. Computing different Green’s functions of SHO at T6=0

So

G(t) =
1

2ω0

(1 + e−βω0)

(1− e−βω0)
cosω0t (D.18)

Fourier space Wightman function is

G̃(ω) =

∞∫
−∞

dte−iωtG(t)

=
1

2ω0

(
1 + e−βω0

1− e−βω0

) ∞∫
−∞

dte−i(−ω+ω0)t +

∞∫
−∞

dte−i(−ω−ω0)t


This expression is exactly same as the zero temperature Wightman function

up to a factor
(

1+e−βω0

1−e−βω0

)
. Therefore in Fourier space the function will be ,

G̃(ω) =
i

2

(
1 + e−βω0

1− e−βω0

){
1

ω2 − ω2
0 + iε

− 1

ω2 − ω2
0 − iε

}
(D.19)

*****
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E
Correlators in Euclidean AdS/CFT at

zero temperature

To compute the Euclidean two point function of a CFT operator O on uses the
AdS/CFT correspondence

〈e
∫
∂M φ0O〉 = e−SE [φ] (E.1)

SE[φ] is classical gravity action and φ0 is boundary value of bulk field, φ.
At T=0, M = AdS5 × S5 (no black hole in the bulk).
Euclidean AdS5 metric is

ds2
5 =

R2

z2
(dz2 + dx2) (E.2)

x are coordinates inR4. The action of massive scalar field on this background
is

SE = K

∫
d4x

zH=∞∫
zB=ε

dz
√
g
[
gzz(∂zφ)2 + gµν(∂µφ)(∂νφ) +m2φ2

]
(E.3)

where, K = πR5

4κ210
; and κ10 = 10 dimensional gravitational constant.
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Appendix E. Correlators in Euclidean AdS/CFT at zero temperature

SE =K

∫
d4x

∫
dz

(
R2

z2

) 5
2
{
z2

R2
(∂zφ)2 +

z2

R2
(∂iφ)2 +m2φ2

}
(E.4)

=
π3R5

4κ2
10

.
R5

R2

∫
d4x

∫
dz

1

z3

(
∂zφ)2 +

z2

R2
(∂iφ)2 +

R2m2

z2
φ2

}
(E.5)

SE =
π3R8

4κ2
10

∫
dz

∫
d4xz−3

(
∂zφ)2 +

z2

R2
(∂iφ)2 +

R2m2

z2
φ2

}
(E.6)

Now, the Fourier representation of the field is

φ(z, x) =

∫
d4k

(2π)4
eik.xfk(z)φ0(k) (E.7)

Substituting (E.7) into (E.6) and integrating over x coordinates

SE = π3R84κ2
10

∫
dz

∫
d4k

(2π)4

1

z3
{(∂zfk)(∂zf−k) + k2fkf−k +

R2m2

z2
fkf−k}φ0(k)φ0(−k)

(E.8)

EOM of fk will be

∂L

∂f−k
= ∂i

∂L

∂(∂if−k)
+ ∂z

∂L

∂(∂zf−k)
(E.9)

=⇒ 1

z3

(
k2 +

R2m2

z2

)
fk =

d

dz

(
1

z3

dfk
dz

)
; fk ≡ fk(z)

f ′′k (z)− 3
z
f ′k(z)−

(
k2 + m2R2

z2

)
= 0 (E.10)
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Appendix E. Correlators in Euclidean AdS/CFT at zero temperature

Its general solution is

φk(z) = Az2Iν(kz) +Bz2I−ν(kz) (E.11)

where, ν =
√

4 +m2R2 and Iν(kz) is modified Bessel functions of first kind. The
solution is regular at z =∞ and equals to 1 at z = ε, therefore,

fk(z) =
z2Kν(kz)

ε2Kν(kε)
(E.12)

On shell, the action reduces to the boundary term

SE =
π3R8

4κ2
10

∫
d4kd4k′

(2π)8
φ0(k)φ0(k′)F(z, k, k′)

∣∣∣∣∞
ε

(E.13)

The two point function is given by

〈O(k)O(k′)〉 =Z−1 δ2Z[φ0]

δφ0(k)δφ0(k′)

∣∣∣∣
φ0=0

(E.14)

=− 2F(z, k, k′)

∣∣∣∣∞
ε

=− (2π)4δ4(k + k′)
π3R8

2κ2
10

fk′(z)∂zfk(z)

z3

∣∣∣∣∞
ε

From (E.13) we get

〈O(k)O(k′)〉 = −π
3R8

2κ2
10

ε2(∆−d)(2π)4δ4(k + k′)k2ν21−2ν Γ(1− ν)

Γ(ν)
+ ... (E.15)

where dots denote terms analytic in k and/or those vanishing in the ε→ 0 limit.
Substituting κ10 = 2π

5
2R4/N [18]

〈O(k)O(k′)〉 =− N2

8π2
ε2(∆−4)(2π)4δ4(k + k′)

k2∆−4Γ(3−∆)

22∆−5Γ(∆− 2)
(E.16)

For integer ∆, the propagator will be

〈O(k)O(k′)〉 = − (−1)∆

(∆− 3)!

N2

8π2
(2π)4δ4(k + k′)

k2∆−4

22∆−5
ln k2 (E.17)
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Appendix E. Correlators in Euclidean AdS/CFT at zero temperature

For massless case (∆ = 4), we have

〈O(k)O(k′)〉 = − N2

64π4
(2π)4δ4(k + k′)k4 ln k2 (E.18)

*****
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