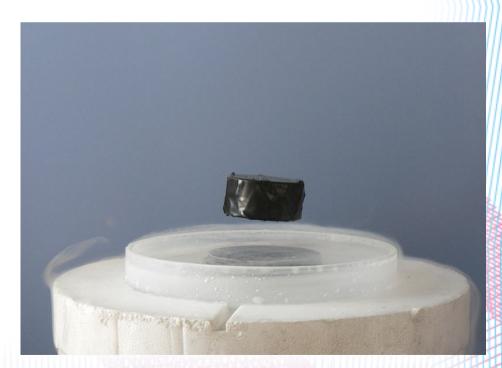

"Applied" String Theory

Pinaki Banerjee

The Institute of Mathematical Sciences, Chennai 12th July, 2013


Department of Physics, Visva Bharati

Disclaimer!!

I am not an expert in this subject!

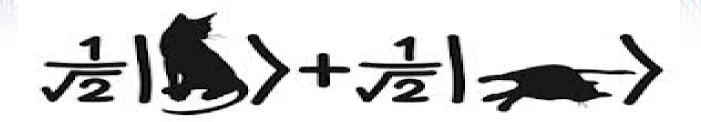
What is it all about?

The Fundamental Forces

Electromagnetic force

Weak force

Strong force


Gravity

What do we know so far?

Quantum Mechanics
 elementary particles, atoms,
 molecules, ...

 General Relativity stars, galaxies, ...

The Quantum World

- Uncertainty : $\Delta p \cdot \Delta x \ge \hbar/2$
- Observables: Hermitian operators in \mathcal{H} .
- States : Vectors (rays) in \mathcal{H} .
- Superposition
- Unitary evolution of states
- Entanglement

Quantum Field Theories

Action-at-a-distance.

X

Classical fields must be quantized.

√

Particles can be born, they can die!

Symmetries are Crucial

- Space-time symmetry
- 1. Lotrentz symmetry: 3 Boosts, 3 rotations
- 2. 4 Space-time symmetries

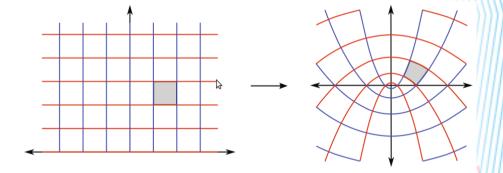
1 & 2 Poincare group

- Internal symmetry
- 1. Global symmetry
- 2. Local / Gauge symmetry

Beauty of Gauge Theories

Poincare + Gauge symmetries

Electromagnetic U(1)


WeakSU(2)

• Strong SU(3)

Gravity ??

What is a CFT?

- Naively, a QFT which is scale invarient.
- Imposes constraints on Green functions.
- Symmetry group SO(d,2)
- Of extreme theoretical interest.

The Relativistic world

Speed limit

Equivalence principle

Gravity is different ...

- Newton's 2^{nd} law: $F = m_I a$
- The law of Gravity: $F_G = \frac{G M_G m_G}{r^2}$

$$F_G = m_G g$$

• Inertial mass (m_I) = Gravitational mass (m_G)

$$F = F_G \qquad \qquad m_I a = m_G g$$

Einstein equation

$$G_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{4\pi G}{c^2} T_{\mu\nu}$$

Some solutions

Minkowski space

$$\Lambda = 0$$

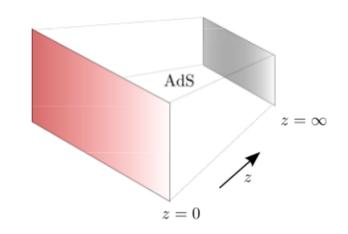
De Sitter space

$$\Lambda > 0$$

Anti de Sitter space

$$\Lambda < 0$$

What is AdS space?

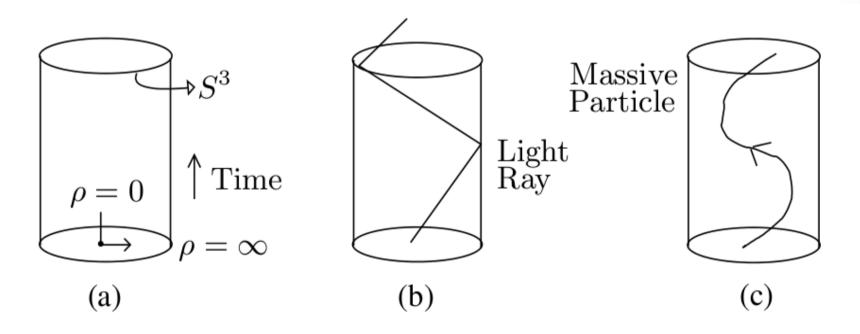

- AdS_{d+1} is the maximally symmetric spacetime in d+1 dimensions.
- It has constant negative curvature and is solution to Einstein eqn with negative cosmological constant.
- Its isometry group is SO(d,2).
 ** Same as CFT_d!!
- Its metric has different representations.

Geometry of AdS

Poincare patch:

$$ds^{2} = \frac{-dt^{2} + d\vec{x}^{2} + dz^{2}}{z^{2}}$$

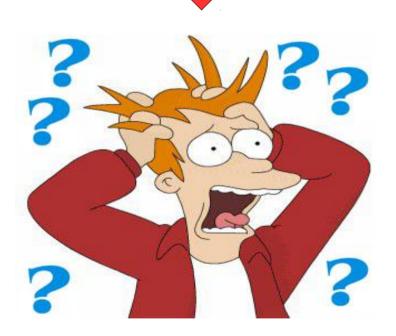
- Infinite number of Minkowski slices which are warped along z .
 - Poincare invariance along the "slice" coordinates.

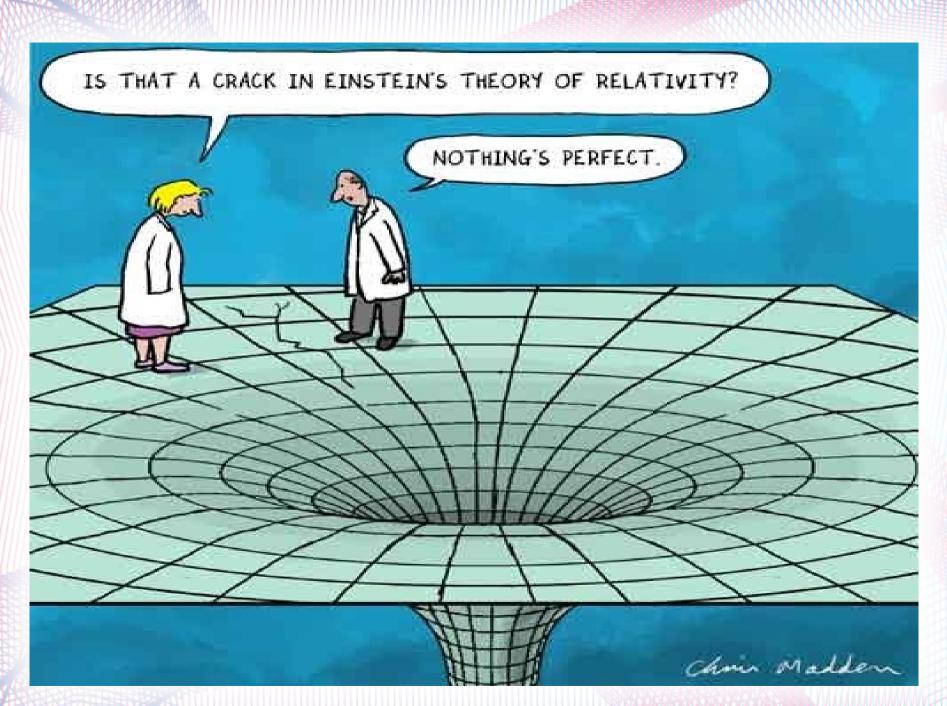


Scaling is evident.

$$\begin{array}{cccc}
t & \to & \lambda t \\
x & \to & \lambda x \\
z & \to & \lambda z
\end{array} \longrightarrow ds^2 \longrightarrow ds^2$$

Geometry of AdS

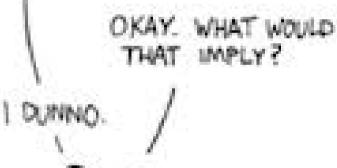

• Global AdS: $ds^2 = -\cosh^2 \rho \, dt^2 + d \, \rho^2 + \sinh^2 \rho \, d \, \Omega_{d-1}^2$



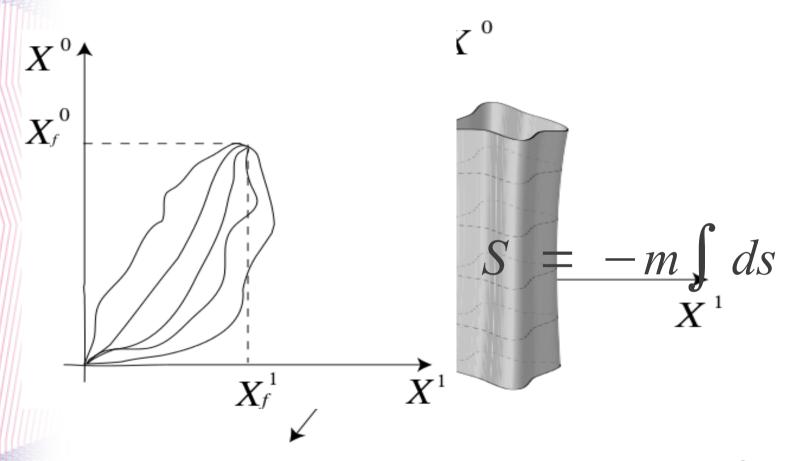
- Massless particles reach boundary in finite time
- Massive particles never reach!

Quantum Field Theory

General Relativity


Dept. Of Physics, Visva Bharati

Change the Paradigm!!

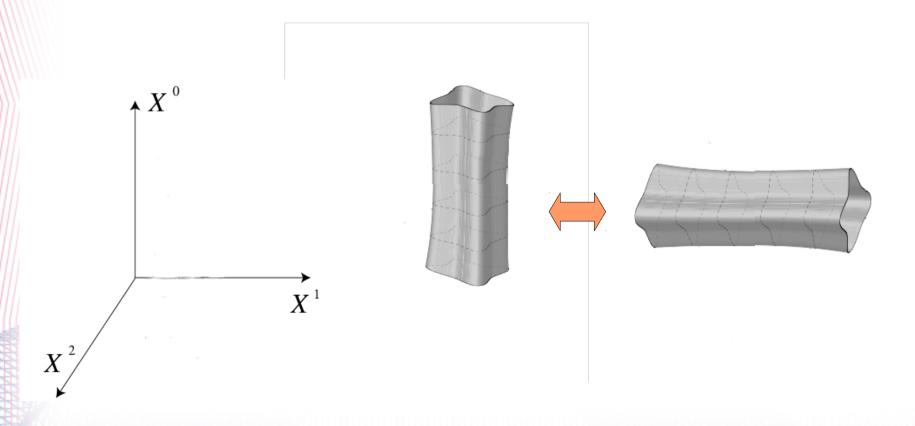

STRING THEORY SUMMARIZED:

I JUST HAD AN AWESOME IDEA. SUPPOSE ALL MATTER AND ENERGY IS MADE OF TINY, VIBRATING "STRINGS."

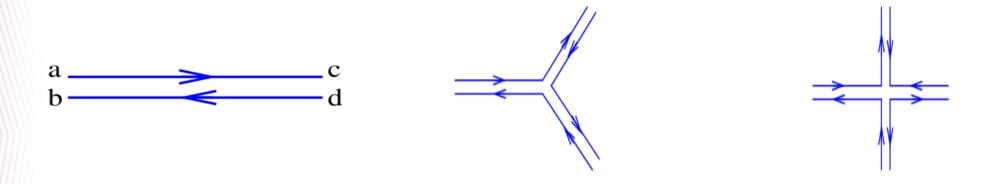
String Theory

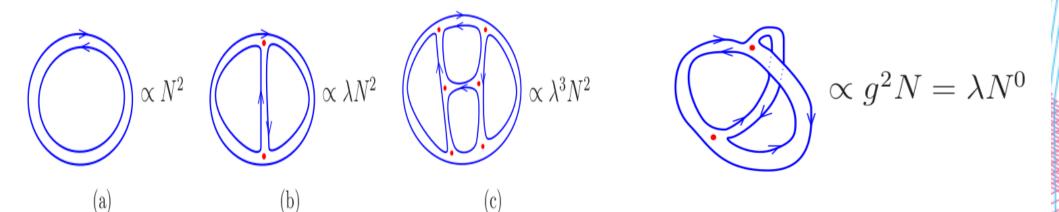
Nambu-Goto action :

$$S_{NG} = -T_0 \int d\tau d\sigma \sqrt{\mathbf{y}}$$

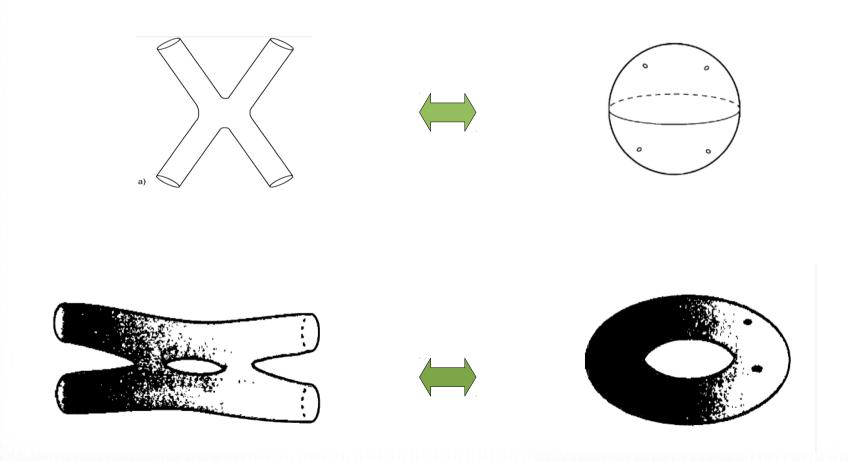

String Theory

- Bosonic string needs 26 spacetime dimensions!
- Has tachyon.
- No Fermions in its spectrum.
- Superstring lives in 10 dimensions.





1. Open string-closed string duality



2. Large-N gauge theories

String perturbation theory :

3. Idea of Holography

Black hole Entropy

$$\approx \frac{Area}{4}$$

AdS/CFT Correspondence

Maldacena '97

• Type IIB string theory in $AdS_5 \times S^5$

$$\mathcal{N}=4$$
 SU (N_c) SYM in M_4

Witten '98

$$Z_{AdS} \equiv Z_{CFT}$$

$$Z_{QG}(\phi_0^i) = \left\langle \exp(\int_{S^d} \phi_0^i O) \right\rangle_{CFT}$$

GKPW formula

The AdS/CFT Dictionary

$AdS^5 \times S_5$	$\mathcal{N} = 4 \text{ SYM}$
L_{AdS}	none
$G_{N(5)}$	$\frac{\pi}{2}L^3/N_c^2$
(string length) ℓ_s	$\lambda^{-1/4}L$
$(L/\ell_s)^4$	λ
(string coupling) g_s	$g_{YM}^2/4\pi$

The AdS/CFT Dictionary

$AdS^5 \times S_5$	$\mathcal{N} = 4 \text{ SYM}$
Fields ϕ	Operators \mathcal{O}
$\phi(r \to \infty)$	source, J coupled to \mathcal{O}
$g^{\mu u}$	$T^{\mu u}$
A^a_μ	J_{μ}^{a}

$\mathcal{N} = 4 \text{ SYM}$	$AdS^5 \times S_5$
T = 0	AdS_5
T > 0 (eq. plasma)	AdS_5 -Schwarzchild
entropy density $s = \frac{S}{V} = \frac{\pi^2}{2} N_c^2 T^3$	$\frac{A/4G}{V}$

Why so interesting?!!

- 1. $N_c \rightarrow \infty$, λ is fixed
 - Classical string theory

- 2. $L \gg l_s$, $\lambda \gg 1$
 - Classical supergravity!

$$g_s = \frac{g_{YM}^2}{4\pi}$$

$$\frac{L^4}{l_s^4} = g_{YM}^2 N_c = \lambda$$

Some interesting applications

- Entropy to viscosity ratio of QGP: $\frac{\eta}{s} = \frac{1}{4\pi}$
- AdS/QCD
- Holographic superconductivity
 - Quantum phase transition
- Quantum quench
- Physics out of equilibrium and ...

Disclaimer!!

Can
AdS/CFT
help me??!

www.shutterstock.com · 53960077

QCD vs N = 4 SYM Plasma

QCD	$\mathcal{N} = 4 \text{ SYM}$
adjoint gluons	adjoint gluons
fundamental quarks	adjoint fermions(4) + scalars(6)
asymptotic freedom	Conformal (scale invariant)

T = 0

confinement, hadrons, S-matrix	none
--------------------------------	------

<u>T> 0</u>

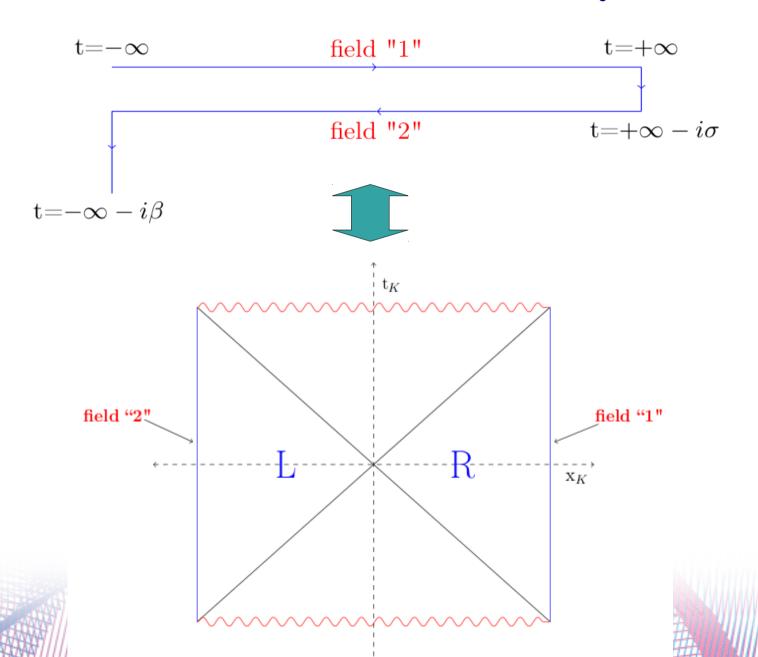
non-abelian plasma	✓
Debye screening	✓
Corr length $\xi < \infty$	✓
Hydrodynamics	✓

Brownian Motion

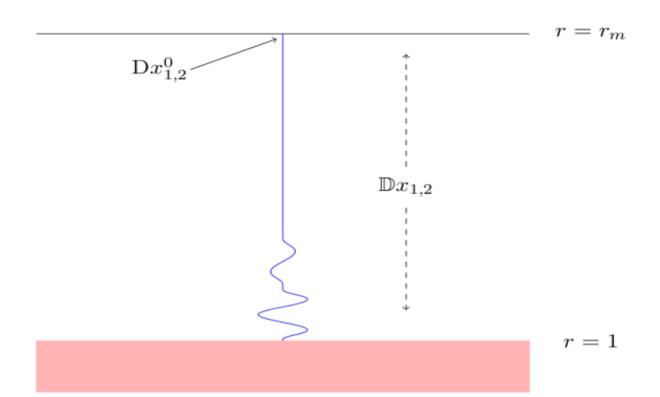
Dept. Of Physics, Visva Bharati

Langevin dynamics

$$M\frac{d^2x}{dt^2} + \eta \frac{dx}{dt} = \xi(t)$$

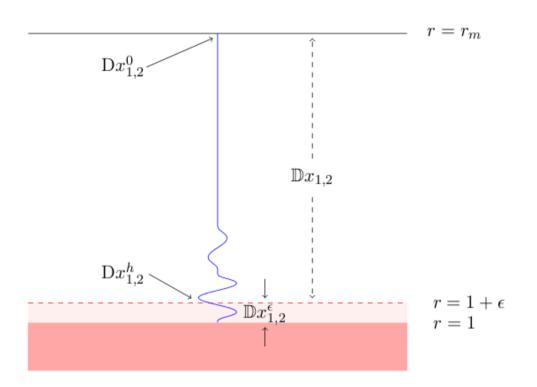

$$\langle \xi(t)\xi(\tilde{t})\rangle = 2T\eta\delta(t-\tilde{t})$$

- This is a form of Fluctuation-dissipation theorem.
- Quantum version of FD theorem :


$$\langle \xi(t)\xi(\tilde{t})\rangle = -Im G_R(t,\tilde{t})$$

• For ultimate long time scale : $\eta \frac{dx}{dt} = \xi$

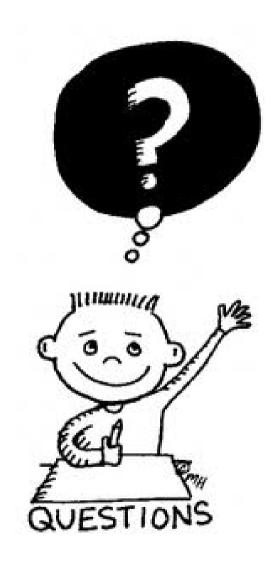
Contour & Gravity



Brownian motion in AdS/CFT

$$Z = \int [\mathrm{D}x_1^0][\mathrm{D}x_2^0] \underbrace{[\mathbb{D}x_1][\mathbb{D}x_2]e^{iS_1 - iS_2}}$$
$$\equiv \int [\mathrm{D}x_1^0][\mathrm{D}x_2^0]e^{iS_{\mathrm{eff}}^0}$$

Brownian motion in AdS/CFT



$$Z = \int [\mathbf{D}x_1^0 \mathbb{D}x_1 \mathbf{D}x_1^h] [\mathbf{D}x_2^0 \mathbb{D}x_2 \mathbf{D}x_2^0] e^{iS_1 - iS_2} \underbrace{[\mathbb{D}x_1^{\epsilon}][\mathbb{D}x_2^{\epsilon}] e^{iS_1^{\epsilon} - iS_2^{\epsilon}}}_{= \int [\mathbf{D}x_1^0 \mathbb{D}x_1 \mathbf{D}x_1^h] [\mathbf{D}x_2^0 \mathbb{D}x_2 \mathbf{D}x_2^0] e^{iS_1 - iS_2} e^{iS_{\text{eff}}^h}$$

Summary & Frontiers

- AdS/CFT is an extremely useful tool for theoretical physicists.
- It has versatile applications over different braches of physics viz., Quantum gravity, QCD, Cond. Mat, Stat. Mech ...
 - Few thousands of work exist in literature and a lot more to be done.
- Still it is a "conjecture" since 1997. Yet to be proved!

