Conformal Blocks, Entanglement Entropy & Heavy States

Pinaki Banerjee

The Institute of Mathematical Sciences, Chennai

April 7, 2016

arXiv: 1601.06794

"Higher-point conformal blocks & entanglement entropy of heavy states"

with Shouvik Datta (ETH, Zürich) and Ritam Sinha (TIFR, Mumbai)

Overview

- Introduction
- Boundary Computation
- The Bulk Picture
- EE : An Application
- Conclusions

Introduction

Motivations

- AdS/CFT dominating [hep-th] for last two decades!
- ► Universal features of holography : Cardy formula, EE etc.
- Conformal blocks are very useful : Bootstrap, AGT, bulk locality and gravitational scattering, geodesics, ...
- Goal : To show conformal blocks with two heavy & arbitrary number of light operators factorize.
- Relevant in the context of EE for excited states with multiple intervals.

What are Conformal Blocks?

Consider a p-point correlator

$$\langle \mathcal{O}(z_1)\mathcal{O}(z_2)\mathcal{O}(z_3)\cdots\mathcal{O}(z_p)\rangle$$

• Insert p-3 resolutions of the identity

$$\sum_{\alpha,\beta,\xi,\dots} \langle \mathcal{O}_1(z_1)\mathcal{O}_2(z_2) | \alpha \rangle \langle \alpha | \mathcal{O}_3(z_3) | \beta \rangle \cdots \langle \zeta | \mathcal{O}_{p-1}(z_{p-1})\mathcal{O}_p(z_p) \rangle$$

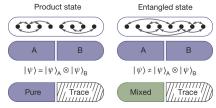
A typical term of this sum is called conformal block

 $\mathcal{F}_p(z_i, h_i, \tilde{h}_i) := \langle \mathcal{O}_1(z_1) \mathcal{O}_2(z_2) | \alpha \rangle \langle \alpha | \mathcal{O}_3(z_3) | \beta \rangle \cdots \langle \zeta | \mathcal{O}_{p-1}(z_{p-1}) \mathcal{O}_p(z_p) \rangle$

These are building blocks of CFT correlators.

What is entanglement entropy?

- Density matrix of a state is defined as $\rho_{tot} = |\Psi\rangle\langle\Psi|$
- ► EE is Von Neumann entropy of reduced density metrix $\rho_A = \text{Tr}_B(\rho_{tot})$

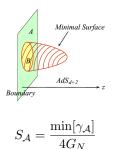


$$S_{\partial A} = -\operatorname{Tr}_A(\rho_A \log \rho_A).$$

 A measure of entanglement between subsystems. Vanishes for pure states.

What is entanglement entropy?

- Density matrix of a state is defined as $\rho_{tot} = |\Psi\rangle\langle\Psi|$
- ► EE is a geometric quantity



 A measure of entanglement between subsystems. Vanishes for pure states.

What is entanglement entropy?

- Density matrix of a state is defined as $\rho_{tot} = |\Psi\rangle\langle\Psi|$
- Disjoint intervals in 1+1 dimensional systems

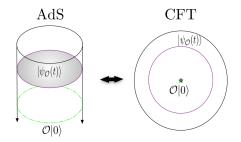
 $S_{\partial A} = -\operatorname{Tr}_A(\rho_A \log \rho_A).$

 A measure of entanglement between subsystems. Vanishes for pure states.

Which excited states?

Using the state-operator correspondence

$$|\psi\rangle = \mathcal{O}_H(0)|0\rangle$$
 and $\langle\psi| = \lim_{z,\bar{z}\to\infty} \bar{z}^{2h_H} z^{2h_H} \langle 0|\mathcal{O}_H(z,\bar{z}).$



 \$\mathcal{O}_H(0)\$ has very large scaling dimension. Corresponding states are heavy states.

Boundary Computation

Heavy-light correlators

$$\langle \mathcal{O}_1(z_1, \bar{z}_1) \mathcal{O}_2(z_2, \bar{z}_2) \cdots \mathcal{O}_p(z_p, \bar{z}_p) \rangle = \sum_{\{\tilde{h}_i\}} d_{\{\tilde{h}_i\}} \mathcal{F}(z_i, h_i, \tilde{h}_i) \bar{\mathcal{F}}(\bar{z}_i, h_i, \tilde{h}_i)$$

We are interested in

$$\langle \mathcal{O}_H(z_1, \bar{z}_1) \prod_{i=2}^{m+1} \mathcal{O}_L(z_i, \bar{z}_i) \mathcal{O}_H(z_{m+2}, \bar{z}_{m+2}) \rangle$$

Our correlator of interest in terms of cross-ratios

$$\left\langle \mathcal{O}_H(\infty) \left[\mathcal{O}_L(1) \prod_{i=3}^{m+1} \mathcal{O}_L(x_i) \right] \mathcal{O}_H(0) \right\rangle.$$

 \blacktriangleright We work in $c \rightarrow \infty$ limit for which

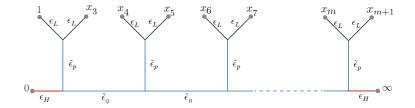
$$\mathcal{F}_{(p)}(z_i, h_i, \tilde{h}_i) = \exp\left[-\frac{c}{6}f_{(p)}(z_i, \epsilon_i, \tilde{\epsilon}_i)\right].$$

Heavy-light correlators

We shall also work in the heavy-light limit

$$\epsilon_H = \frac{6h_H}{c} \sim \mathcal{O}(1) , \quad \epsilon_L = \frac{6h_L}{c} \ll 1$$

And this particular OPE channel



Recall a typical conformal block looks like

 $\mathcal{F}_p(z_i, h_i, \tilde{h}_i) := \langle \mathcal{O}_1(z_1) \mathcal{O}_2(z_2) | \alpha \rangle \langle \alpha | \mathcal{O}_3(z_3) | \beta \rangle \cdots \langle \zeta | \mathcal{O}_{p-1}(z_{p-1}) \mathcal{O}_p(z_p) \rangle$

• Let's insert an additional operator, $\hat{\psi}(z)$

$$\Psi(z, z_i) := \langle \mathcal{O}_1(z_1) \mathcal{O}_2(z_2) | \alpha \rangle \langle \alpha | \hat{\psi}(z) \mathcal{O}_3(z_3) | \beta \rangle \cdots \langle \zeta | \mathcal{O}_{p-1}(z_{p-1}) \mathcal{O}_p(z_p) \rangle$$
$$= \psi(z, z_i) \mathcal{F}_{(p)}(z_i, h_i, \tilde{h}_i)$$

• Choose that $\hat{\psi}(z)$ obeys the null-state condition at level 2

$$\left[L_{-2} - \frac{3}{2(2h_{\psi} + 1)} L_{-1}^2 \right] |\psi\rangle = 0, \qquad \text{with, } h_{\psi} \stackrel{c \to \infty}{=} -\frac{1}{2} - \frac{9}{2c}$$

The differential operator representation gives an ODE

$$\frac{d^2\psi(z)}{dz^2} + T(z)\psi(z) = 0, \quad \text{ with, } T(z) = \sum_{i=1}^p \left[\frac{\epsilon_i}{(z-z_i)^2} + \frac{c_i}{z-z_i}\right]$$

• Here, $\epsilon_i = 6h_i/c$ and c_i are the accessory parameters

$$c_i = -\frac{\partial f_{(p)}(z_i, \epsilon_i, \tilde{\epsilon}_i)}{\partial z_i}$$
 satisfying $\frac{\partial c_i}{\partial z_j} = \frac{\partial c_j}{\partial z_i}$

Solve for the c_i , by using the monodromy properties of the solution $\psi(z)$ around the singularities of T(z).

- c_i can be obtained by studying monodromy properties of $\psi(z)$, around contours containing the operator insertions.
- Monodromy around a contour γ_k = info about the resultant operator which arises upon fusing the operators within γ_k

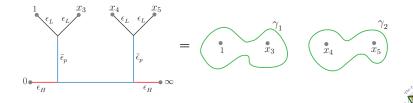
$$\widetilde{\mathbb{M}}(\gamma_k) = - \begin{pmatrix} e^{+\pi i\Lambda} & 0\\ 0 & e^{-\pi i\Lambda} \end{pmatrix} , \qquad \Lambda = \sqrt{1 - 4\tilde{\epsilon}_p}$$

• Perturbation theory in ϵ_L (heavy-light limit)

$$\begin{split} \psi(z) &= \psi^{(0)}(z) + \psi^{(1)}(z) + \psi^{(2)}(z) + \cdots, \\ T(z) &= T^{(0)}(z) + T^{(1)}(z) + T^{(2)}(z) + \cdots, \\ c_i(z) &= c_i^{(0)}(z) + c_i^{(1)}(z) + c_i^{(2)}(z) + \cdots, \quad \text{for } i = 3, 4, \dots, m+1. \end{split}$$

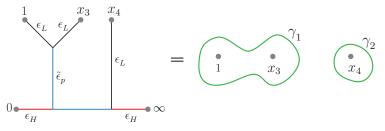
Choice of monodromy contour = Choice of OPE channel

- We choose the contours such that each of them contains a pair of light operators within.
- This is equivalent to looking at the OPE channel in which light operators fuse in pairs.
- This choice is geared towards entanglement entropy calculations.



Choice of monodromy contour = Choice of OPE channel

- We choose the contours such that each of them contains a pair of light operators within.
- This is equivalent to looking at the OPE channel in which light operators fuse in pairs.
- For 5-pt function (H-L-L-H)



- The monodromy conditions for all the contours form a coupled system of equations for the accessory parameters.
- Performing the exercise for 5- and 6-point blocks provides sufficient intuition to guess the solutions.
- ► For light operators located at x_p and x_q living with in a contour, the corresponding accessory parameters are

$$c_p = \frac{-\epsilon_L (x_q^{\alpha}(\alpha-1) + x_p^{\alpha}(\alpha+1)) + (x_p x_q)^{\alpha/2} \alpha \tilde{\epsilon}_p}{x_p (x_p^{\alpha} - x_q^{\alpha})},$$

$$c_q = \frac{-\epsilon_L (x_p^{\alpha}(\alpha-1) + x_q^{\alpha}(\alpha+1)) + (x_q x_p)^{\alpha/2} \alpha \tilde{\epsilon}_p}{x_q (x_q^{\alpha} - x_p^{\alpha})}.$$

The accessory parameters can now be used to obtain the conformal block

$$c_i = -\frac{\partial f_{(p)}(z_i, \epsilon_i, \tilde{\epsilon}_i)}{\partial z_i} \qquad \qquad \mathcal{F}_{(p)}(z_i, h_i, \tilde{h}_i) = \exp\left[-\frac{c}{6}f_{(p)}(z_i, \epsilon_i, \tilde{\epsilon}_i)\right]$$

Even-point conformal blocks

► The (m + 2)-point block factorizes into a product of m/2 4-point conformal blocks

$$\mathcal{F}_{(m+2)}(\{x_i\};\epsilon_L,\epsilon_H;\tilde{\epsilon}_p) = \prod_{\Omega_i \mapsto \{(p,q)\}} \exp\left[-\frac{c}{6}f_{(4)}(x_p,x_q;\epsilon_L,\epsilon_H;\tilde{\epsilon}_p)\right]$$
$$= \prod_{\Omega_i \mapsto \{(p,q)\}} \mathcal{F}_{(4)}(x_p,x_q;\epsilon_L,\epsilon_H;\tilde{\epsilon}_p).$$

 Ω_i : Indicates the OPE channels / monodromy contours.

Odd-point conformal blocks

► The (m + 2)-point block factorizes into a product of (m - 1)/2 4-point conformal blocks and a 3-point function

$$\mathcal{F}_{(m+2)}(\{x_i\};\epsilon_L,\epsilon_H;\tilde{\epsilon}_a) = (1)^{-\epsilon_L} \prod_{\substack{\boldsymbol{\Omega}_i^B \mapsto \{(p,q)\}}} \exp\left[-\frac{c}{6}f_{(4)}(x_p,x_q;\epsilon_L,\epsilon_H;\tilde{\epsilon}_a)\right]$$
$$= (1)^{-\epsilon_L} \prod_{\substack{\boldsymbol{\Omega}_i^B \mapsto \{(p,q)\}}} \mathcal{F}_{(4)}(x_p,x_q;\epsilon_L,\epsilon_H;\tilde{\epsilon}_a).$$

$$\text{ where, } f_{(4)}(x_i, x_j; \epsilon_L, \epsilon_H; \epsilon_p) = \epsilon_L \left((1-\alpha) \log x_i x_j + 2 \log \frac{x_i^\alpha - x_j^\alpha}{\alpha} \right) + 2 \tilde{\epsilon}_p \log \left[4 \alpha \frac{x_j^{\alpha/2} + x_i^{\alpha/2}}{x_j^{\alpha/2} - x_i^{\alpha/2}} \right]$$

Caveats

This factorization is true only ...

- 1 at large central charge.
- 2 in the heavy-light limit
- 3 for this specific choice of OPE channels

$$4 \ \tilde{\epsilon}_p \ll \epsilon_L$$

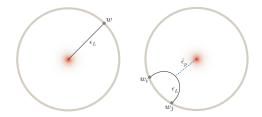
Bulk Picture

The dual geometry

The heavy excited state is dual to the conical defect geometry

$$ds^2 = \frac{\alpha^2}{\cos^2\rho} \left(-dt^2 + \frac{1}{\alpha^2} d\rho^2 + \sin^2\rho \, d\phi^2 \right), \quad \text{with } \alpha = \sqrt{1 - 24h_H/c}.$$

► The light operators are dual to bulk scalars of masses of O(c) and can be approximated by worldlines.

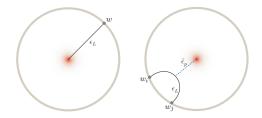


The dual geometry

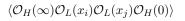
The heavy excited state is dual to the conical defect geometry

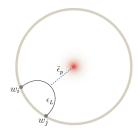
$$ds^2 = \frac{\alpha^2}{\cos^2\rho} \left(-dt^2 + \frac{1}{\alpha^2} d\rho^2 + \sin^2\rho \, d\phi^2 \right), \quad \text{with } \alpha = \sqrt{1 - 24h_H/c}.$$

The conformal blocks can be reproduced by considering lengths of suitable worldline configurations in the bulk.



4-point block from bulk



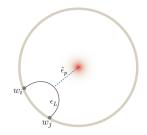


- The worldline action : $S = \epsilon_L l_L + \tilde{\epsilon}_p l_p$
- The "R-T lengths"

$$\begin{split} l_L(w_{ij}) &= 2 \log \left(\sin \frac{\alpha w_{ij}}{2} \right) + 2 \log \left(\frac{\Lambda}{2} \right), \\ l_p(w_{ij}) &= - \log \left(\tan \frac{\alpha w_{ij}}{4} \right). \end{split}$$

4-point block from bulk

 $\langle \mathcal{O}_H(\infty)\mathcal{O}_L(x_i)\mathcal{O}_L(x_j)\mathcal{O}_H(0)\rangle$

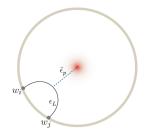


- The worldline action : $S = \epsilon_L l_L + \tilde{\epsilon}_p l_p$
- ▶ The (*w_i* dependent) contribution to the correlator

$$G(w_i, w_j) = e^{-\frac{c}{6}S(w_i, w_j)} = e^{-h_L l_L(w_{ij}) - \tilde{h}_p l_p(w_{ij})} = \frac{\left(\tan\frac{\alpha w_{ij}}{4}\right)^{\tilde{h}_p}}{\left(\sin\frac{\alpha w_{ij}}{2}\right)^{2h_L}}.$$

4-point block from bulk

 $\langle \mathcal{O}_H(\infty)\mathcal{O}_L(x_i)\mathcal{O}_L(x_j)\mathcal{O}_H(0)\rangle$

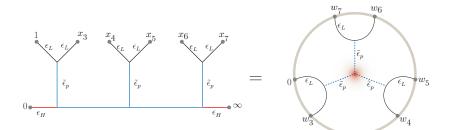


- The worldline action : $S = \epsilon_L l_L + \tilde{\epsilon}_p l_p$
- From cylinder to plane : $x_i = e^{iw_i}$ and $x_j = e^{iw_j}$

$$\mathcal{F}_{(4)}(x_i, x_j) = x_i^{-h_L} x_j^{-h_L} G(w_i, w_j) \bigg|_{w_{i,j} = -i \log x_{i,j}}$$
(Matches!)

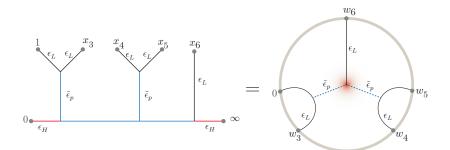
Higher point block from bulk

Even-point conformal blocks



Higher point block from bulk

Odd-point conformal blocks



EE : An Application

EE for excited states

- ► EE from Rényi entropy : $S_{\mathcal{A}}^{(n)} = \frac{1}{1-n} \log \operatorname{tr}_{\mathcal{A}} (\rho_{\mathcal{A}})^n$; $n \to 1$
- Effectively need to compute (for $n \rightarrow 1$)

$$G_n(x_i, \bar{x}_i) = \langle \Psi | \sigma(1)\bar{\sigma}(x_3)\sigma(x_4)\bar{\sigma}(x_5)\sigma(x_6)\bar{\sigma}(x_7)\dots\sigma(x_{2N})\bar{\sigma}(x_{2N+1}) | \Psi \rangle$$
$$= \langle 0 | \Psi(\infty) \sigma(1)\bar{\sigma}(x_3) \prod_{i=4,6,\cdots}^{2N} \sigma(x_i)\bar{\sigma}(x_{i+1}) \Psi(0) | 0 \rangle$$

Dimensions of the twist and anti-twist operators

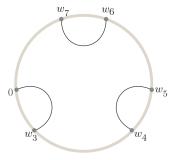
$$h_{\sigma} = h_{\bar{\sigma}} = \frac{c}{24} \left(n - \frac{1}{n} \right)$$

EE for excited states

▶ In the limit $n \to 1$ $\sigma, \overline{\sigma}$: Light operators Ψ : Heavy operator

$$S_{\mathcal{A}} = \lim_{n \to 1} S_{\mathcal{A}}^{(n)} = \frac{c}{3} \min_{i} \left\{ \sum_{\widetilde{\mathbf{\Omega}}_{i} \mapsto \{(p,q)\}} \log \frac{(x_{p}^{\alpha} - x_{q}^{\alpha})}{\alpha(x_{p}x_{q})^{\frac{\alpha-1}{2}}} \right\}.$$

with, $\alpha = \sqrt{1-24h_H/c}$



Conclusions & Outlook

Summary

- Higher point conformal blocks are tractable in the heavy-light limit.
- These conformal blocks can be reproduced precisely from the dual gravity picture.
- This is applied to find entanglement entropy of disjoint intervals in heavy states.
- This conformal block can be rewritten in terms of geodesic lengths (bulk locality?)

Outlook

Applications

- Tripartite information
- 2 Mutual information in local quenches
- 3 Scrambling, chaos, ...

Extensions

- 1 Higher spin holography
- One-loop corrections
- 3 Higher dimensions, ...

