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Introduction
Motivation

I AdS/CFT has been serving as a theoretician’s best tool in studying
strongly coupled systems analytically.

I Its predictions are mostly qualitative in nature, but they can be
quantitative too (e.g, η

s = 1
4π ).

I The duality has glued many phenomena appearing in apparently
different branches of physics together.

I Studying Brownian motion of a heavy particle using classical gravity
technique is one such example.
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Introduction
Langevin Dynamics

I The Langevin equation

M
d2x

dt2
+ γ

dx

dt
= ξ(t) (1)

with 〈ξ(t)ξ(t′)〉 = Γ δ(t − t′) (2)

I Expanding GR(ω) for small frequencies

GR(ω) = −∆Mω2 − iγω + . . .

I Fluctuation-Dissipation relation

iGsym(ω) = −(1 + 2nB) Im GR(ω) (3)
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Introduction
Retarded Green’s Function

I For small frequency

GR(ω) = −iγ ω −∆M ω2 − iρ ω3 + . . .

I Dimensional analysis

GR(ω) ∼ [M]3 ⇒

{
γ ∼ T2

∆M ∼ T
ρ ∼ T0

I At zero temperature : GR(ω) = −iρ ω3 ! Dissipative!
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Langevin Dynamics From Holography
Idea & Set-up

Brownian Particle

Boundary

Horizon

J. de Boer et al; Son & Teaney (2009)
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Langevin Dynamics From Holography
Retarded Green’s function : Holographic prescription

I Strongly coupled field theory ⇔ Weakly coupled gravity.〈
exp

(∫
Sd

φi0Oi

)〉
CFT

= ZQG (φi0) (5)

I Real time retarded Green’s function for scalar field theory can be
obtained by choosing ingoing boundary condition at the horizon.

GR(k) = K
√
−gg rr f−k(r)∂r fk(r)

∣∣∣∣
Boundary

(6)

Son & Starinets (2002)
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Langevin Dynamics From Holography
Retarded Green’s function : Holographic prescription

I Strongly coupled field theory ⇔ Weakly coupled gravity.〈
exp

(∫
Sd

φi0Oi

)〉
CFT

= ZQG (φi0)

I Real time retarded Green’s function for our case can be obtained by
choosing ingoing boundary condition at the horizon.

GR(ω) = T0(r)f−ω(r)∂r fω(r)

∣∣∣∣
Boundary

(7)
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Langevin Dynamics From Holography
Computing GR(ω) : 4 Steps

1 Solve the EOM for the string in that non-trivial background

fω(r) = C1f (1)
ω (r) + C2f (2)

ω (r) (8)

2 Impose ingoing wave boundary condition at the horizon

f R
ω (r) := C1f (1)

ω (r) +����C2f (2)
ω (r) (9)

3 Properly normalize it at the boundary

FR
ω (r) :=

f R
ω (r)

f R
ω (rB)

(10)

4 Compute the boundary action and take functional derivative w.r.t “source” to
obtain the retarded Green’s function G 0

R(ω).
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Langevin Dynamics From Holography
An Example : Brownian Motion in 1+1 Dimensions

String in BTZ

I String EOM

f ′′ω (r) +
2(2r 2 − 4π2T 2L4)

r(r 2 − 4π2T 2L4)
f ′ω(r) +

L4ω2

(r 2 − 4π2T 2L4)2
fω(r) = 0 (11)

I Two independent solutions

fω(r) = C1

P
iω

2πT
1 ( r

2πTL2 )

r
+ C2

Q
iω

2πT
1 ( r

2πTL2 )

r
(12)

I Ingoing & normalized solution

FR
ω (r) =

P
iω

2πT
1 ( r

2πTL2 )

r

P
iω

2πT
1 (

rB
2πTL2 )

rB

(13)
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Langevin Dynamics From Holography
An Example : Brownian Motion in 1+1 Dimensions

String in BTZ (cont.)

I Retarded propagator can be read off from the on-shell action

GR(ω) ≡ G 0
R(ω) +

µ ω2

2π

=
µ ω

2π

(ω2 + 4π2T 2)

(ω + i µ√
λ

)
PB & B. Sathiapalan (2014)

I Viscous drag

γ = 2
√
λπT 2

I Higher order “dissipation coefficient”

ρ =

√
λ

2π
− 2(

√
λ)3πT 2

µ2

T→0
===⇒

√
λ

2π
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Dissipation
Zero temperature dissipation is physical

X It is finite and therefore no need to renormalize by adding counterterms.

X It cannot be renormalized away in the boundary theory by any hermitian
counter term.

X Quark moving at constant velocity doesn’t feel any drag at T= 0.

I Explanation : This zero temperature dissipation is due to radiation of
accelerated charged particle. Remarkably the dissipation in this highly
non-linear boundary theory is given by simple “Abraham-Lorentz”-like
formula for radiation reaction in classical electrodynamics!

~Frad =

√
λ

2π
~̇a
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Dissipation
Dissipation at T = 0

String in pure AdSd+1

I String EOM

f ′′ω (r) +
4

r
f ′ω(r) +

L4ω2

r 4
fω(r) = 0 (14)

I Ingoing & normalized solution

FR
ω (r) =

rB
r

e+i L
2ω
r (r − iL2ω)

e
+i L

2ω
rB (rB − iL2ω)

(15)

I Retarded Green’s function

GR(ω) := G 0
R(ω) +

µω2

2π
=
µω3

2π

1

(ω + i µ√
λ

)
(16)

I Higher order “dissipation coefficient”

ρ =

√
λ

2π
(Identical!) (17)
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Dissipation
Is the zero temperature dissipation universal?

String in AdS5-BH

I String EOM can not be solved exactly!

f ′′ω (r) +
4r 3

(r 4 − π4T 4L8)
f ′ω(r) +

ω2L4r 4

(r 4 − π4T 4L8)2
fω(r) = 0 (18)

I Ingoing & normalized ansatz

FR
ω (r) =

(
1− π4T 4L8

r 4

)−i Ω
4

(1− iΩf1(r)− Ω2f2(r) + iΩ3f3(r) + . . .) (19)

I The limit we are interested in

ω,T → 0 and Ω :=
ω

πT
= fixed (20)

I Solving f1(r), f2(r) and f3(r) perturbatively and following the same procedure

GR(ω) ≡ G 0
R +

µω2

2π
= −i

√
λ

2π

(
π − Log4

4

)
ω3 (21)
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Dissipation
A phase transition at T= 0?

Dissipation as T → 0

I Calculating GR(ω) in AdS5-Schwarzschild black hole bulk geometry

ρ =
(π − log 4)

4

√
λ

2π

Dissipation at T= 0

I Calculating GR(ω) in pure AdS5 bulk geometry

ρ =

√
λ

2π

I Conclusion : Possibly due to “deconfinement” transition at T= 0.
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Dissipation
Dissipation at finite density

I Reissner-Nordström (RN) black hole in asymptotically AdS space time

ds2 =
L2
d+1

z2
(−f (z)dt2 + d~x2) +

L2
d+1

z2

dz2

f (z)
(22)

where,
f (z) = 1 + Q2z2d−2 −Mzd

At(z) = µ(1− zd−2

zd−2
0

)

I We’ll define a new length scale z∗ where Q :=
√

d
d−2

1
zd−1
∗

I There are two possibilities :

I Extremal BH (T = 0)
I Non-extremal BH (T 6= 0)
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Dissipation
Dissipation at finite density

Finite density and zero temperature

I The string EOM

x ′′ω(z) +
d
dz ( f (z)

z2 )
f (z)
z2

x ′ω(z) +
ω2

[f (z)]2
xω(z) = 0 (23)

I Subtlety : At zero temperature the f (z) has a double zero at the horizon.
Thus this singular term dominates at the horizon irrespective of however
small ω we choose.

I Matching technique : Isolate the ’singular’ near horizon region and treat ω
perturbatively “outside”.

I Inner/IR region : AdS2 × Rd−1

I Outer/UV region : Full RN-AdS background

Hong Liu et al. (2009)
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Dissipation
Dissipation at finite density

I Matching the solutions in two regions near z = z∗ we obtain

GR(ω) :=
b+ + GR(ω)z∗b−
a+ + GR(ω)z∗a−

=
(b

(0)
+ + ω2b

(2)
+ + . . .)−iω(b

(0)
− + ω2b

(2)
− + . . .)z∗

(a
(0)
+ + ω2a

(2)
+ + . . .)−iω(a

(0)
− + ω2a

(2)
− + . . .)z∗

(24)

I The leading-order Green’s function

G
(0)
R (ω) = − i ωz∗

(1 + i ωz∗a
(0)
− )

(25)

I For small frequency

G
(0)
R (ω) ≈ −i ωz∗(1− i ωz∗a

(0)
− ) (26)
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Dissipation
Dissipation at finite density

Choosing a
(0)
− = 1

Numerical
analytic is nice a straight line in each case. Therefore the Green’s functions

match well up to some overall normalization.
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Dissipation
Dissipation at finite density

Choosing a
(0)
− = 5
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Numerical
analytic is not a straight line!
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Dissipation
Dissipation at finite density

Finite density and small temperature

I Inner Region changes to BH in AdS2 × Rd−1

I The story is same with two possible modifications

I The GR(ω) may change and can be T -dependent.
I a±, b± will be T -dependent.

I Actually the retarded Green’s function at small T becomes

GT
R (ω) =

b+(ω,T ) + GR(ω,T )z∗ b−(ω,T )

a+(ω,T ) + GR(ω,T )z∗ a−(ω,T )

=
b+(ω,T )− iωz∗ b−(ω,T )

a+(ω,T )− iωz∗ a−(ω,T )
(27)

I Leading order dissipation is same as zero temperature.
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Conclusions

I The temperature independent dissipation is identical for all dimensions as long as
the systems are in zero temperature (bulk is pure AdS).

I For higher dimensions T → 0 and T = 0 (e.g, AdS5-BH and pure AdS5 bulk, say)
the coefficients don’t match!

I Retarded Green’s function at T = 0 is computed at finite density. Zero
temperature dissipation shows up as leading term.

I The form of the Retarded Green’s function at finite density and small (but finite)
temperature is also obtained. The leading dissipative part remains the same.

I The leading order Green’s function is “matched”(or rather compared) with
numerical results up to some overall normalization.
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Back up slides I
Perturbative solutions

Functional forms of f1(z), f2(z), f3(z)

f1(z) =
1

2
tan−1(πTz)− 1

2
Log(1 + πTz) +

1

4
Log(1 + π2T 2z2) (28)

f2(z) =
1

32
[4{−4 + tan−1(πTz)− Log(1 + πTz)}{tan−1(πTz)− Log(1 + πTz)}

− 4{2 + tan−1(πTz)− Log(1 + πTz)}Log(1 + π2T 2z2) + Log(1 + π2T 2z2)2]
(29)

f3(z) = . . . (30)
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Back up slides II
Black hole in AdS2 × Rd−1

I The near horizon geometry for Near-extremal (T � µ) RN Black hole

ds2 =
L2

2

ζ2

(
−g(ζ)dt2 +

dζ2

g(ζ)

)
+ µ2

∗L
2
d+1d~x

2 (31)

At(ζ) =
1√

2d(d − 1)

1

ζ
(1− ζ

ζ0
) (32)

where g(ζ) := (1− ζ2

ζ2
0

), ζ0 :=
z2
∗

d(d−1)(z∗−z0)

I The corresponding temperature, T = 1
2πζ0

I This nice structure breaks down for large temperature (T ≈ µ).
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