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Introduction

Motivation

» AdS/CFT has been serving as a theoretician's best tool in studying
strongly coupled systems analytically.

> Its predictions are mostly qualitative in nature, but they can be

quantitative too (e.g, 2 = ;b).

» The duality has glued many phenomena appearing in apparently
different branches of physics together.

» Studying Brownian motion of a heavy particle using classical gravity
technique is one such example.
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Introduction

Langevin Dynamics

» The Langevin equation

MEESTE T &)
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Introduction

Langevin Dynamics

» The Langevin equation

d?x dx
MF tr 5= =£(1) (1)
with  (§(t)&(t')) =T o(t —t') (2)

The generalized Langevin equation for a heavy particle under noise &

mp X / o Ge(t. Ox(t) = €(1)  (EE(E) = iGun(t.t)  (3)
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Introduction

Langevin Dynamics

> The Langevin equation
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The generalized Langevin equation for a heavy particle under noise £
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Introduction

Langevin Dynamics

> The Langevin equation
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The generalized Langevin equation for a heavy particle under noise £
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> Expanding Gg(w) for small frequencies
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Introduction

Langevin Dynamics

> The Langevin equation

MIXy &= gr) M
with  (€()E(t)) =T 8t~ ¥) 2)

The generalized Langevin equation for a heavy particle under noise £
[~ Moes? + Ga(w)] x(w) = €(w) (E(-@)E@)) = iGom(@)  (3)

> Expanding Gg(w) for small frequencies

Gr(w) = ~AMW? — ifw+ ...

» Fluctuation-Dissipation relation

iGsym(w) = —(1 + 2ng) Im Ggr(w) (4)
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Introduction

Retarded Green's Function

» For small frequency

Gr(w) = —iyw—AM W’ —ipw®+...

» Dimensional analysis

3 Y~ T
Gr(w) ~ [M]" = AM~T
p~T
> At zero temperature : Ggr(w) = —ip w®  «~ Dissipative!
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Langevin Dynamics From Holography

Idea & Set-up

Boundary

/7

Brownian Particle

Horizon

J. de Boer et al; Son & Teaney (2009)
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Langevin Dynamics From Holography

Retarded Green's function : Holographic prescription

» Strongly coupled field theory < Weakly coupled gravity.

<exp (/Sd ¢60i) >CFT = Zqc (p) (5)
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Langevin Dynamics From Holography

Retarded Green's function : Holographic prescription

» Strongly coupled field theory < Weakly coupled gravity.

<exp (/Sd ¢60i) >CFT = Zqc (p) (5)

» Real time retarded Green's function for scalar field theory can be
obtained by choosing ingoing boundary condition at the horizon.

Gr(k) = K\/—gg" f1(r)0,fi(r)

(6)

Boundary

Son & Starinets (2002)
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Langevin Dynamics From Holography

Retarded Green's function : Holographic prescription

» Strongly coupled field theory < Weakly coupled gravity.

(o ([ 0)),, = 26

» Real time retarded Green's function for our case can be obtained by
choosing ingoing boundary condition at the horizon.

Gr(w) = To(r)f-w(r)0rf.(r) (7)

Boundary
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Langevin Dynamics From Holography

Computing Ggr(w) : 4 Steps

@ Solve the EOM for the string in that non-trivial background

f.(r) = GEI(r) + GEA(r) (8)

@ Impose ingoing wave boundary condition at the horizon
£3(r) = GE(r) + CEPE) (9)

© Properly normalize it at the boundary

FR(r) = fgﬁ ((r; )) (10)

@ Compute the boundary action and take functional derivative w.r.t “source” to
obtain the retarded Green's function Gp(w).
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Langevin Dynamics From Holography

An Example : Brownian Motion in 141 Dimensions
String in BTZ
» String EOM

L*w?
(2 —4r2T2L*)?

2(2r% — 47 T2LY)
r(r? —4n2T2L*)

' (r) + fo(r) + f.(r)=0 (11)

» Two independent solutions

P% r % r
fi(r)= G- (f”“) +G— (f”“) (12)
> Ingoing & normalized solution
PlZ’;JT (27r;'L2 )
Fi(r)= —— 13
( ) PZI;\:JT( B ) ( )
1 27 T2
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Langevin Dynamics From Holography

An Example : Brownian Motion in 141 Dimensions

String in BTZ (cont.)

> Retarded propagator can be read off from the on-shell action

2
Gr(w) = GR(w) + 52
_Hw (w2 + 472 T2)

2 (w+i\"ﬁ

PB & B. Sathiapalan (2014)

> Viscous drag

v =2VArT?

> Higher order “dissipation coefficient”

P ? _ 2(\&)237TT2 T-0 Q
s w 27
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Dissipation

Zero temperature dissipation is physical

v' It is finite and therefore no need to renormalize by adding counterterms.

v' It cannot be renormalized away in the boundary theory by any hermitian
counter term.

v Quark moving at constant velocity doesn’t feel any drag at T= 0.

» Explanation : This zero temperature dissipation is due to radiation of
accelerated charged particle. Remarkably the dissipation in this highly
non-linear boundary theory is given by simple “Abraham-Lorentz"-like
formula for radiation reaction in classical electrodynamics!

VA

Frad:Ea

Pinaki Banerjee (IMSc)



Dissipation

Dissipation at T =0
String in pure AdS41

» String EOM
, 4 , L40?
> Ingoing & normalized solution
T (= i)
FRr="2 ¢ MY (15)
@ ro gille -
e 8 (rg — il%w)
> Retarded Green's function
2 3
1
Gr(w) := G i e AN E— 1
r(w) r(w) + 2r 2r (w+ /%) (16)
» Higher order “dissipation coefficient”
p— ? (Identical!) (17)
i
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Dissipation

Is the zero temperature dissipation universal?
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Dissipation

Is the zero temperature dissipation universal?
String in AdSs-BH

\4

String EOM can not be solved exactly!

WAL
(r* — T T*L8)2

4r3

1"
LY )

f(r)+ fu(r) =0 (18)

> Ingoing & normalized ansatz

FR(r) = <1 - 7’42“ )_ "1 IQA(r) - B + IR +..)  (19)

» The limit we are interested in
w, T =0 and Q:= :—T = fixed (20)
> Solving fi(r), f2(r) and f3(r) perturbatively and following the same procedure
2
_go o’ VA (m—Logh) s
Gr(w) = G + o = Tio ( 7 ) w (21)
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Dissipation

A phase transition at T= 07

Dissipation as T — 0

» Calculating Gg(w) in AdSs-Schwarzschild black hole bulk geometry

_ (m—log4) VA
T4 2n

Dissipation at T=10

» Calculating Gg(w) in pure AdSs bulk geometry

VA
P:2—
is
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Dissipation

A phase transition at T= 07

Dissipation as T — 0

» Calculating Gg(w) in AdSs-Schwarzschild black hole bulk geometry

_ (m—log4) VA
T4 2n

Dissipation at T=10

» Calculating Gg(w) in pure AdSs bulk geometry

VA

P~ 2

» Conclusion : Possibly due to “deconfinement” transition at T= 0.
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Dissipation

Dissipation at finite density

> Reissner-Nordstrom (RN) black hole in asymptotically AdS space time

L3, dz?

L2
2 _ Td+l, 2 -2
ds® = (—f(z)dt” + dX°) + 2 )

Z2

(22)

where,
f(z) =1+ @*2%72 — Mz?

d—2

Adz) = (1 = ~55)
0

> We'll define a new length scale z, where Q := %%
> There are two possibilities :

» Extremal BH (T = 0)
» Non-extremal BH (T # 0)
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Dissipation

Dissipation at finite density

Finite density and zero temperature

» The string EOM

x(z) + %(%) x,(z) + e x,(z)=0 (23)
o)+ gy B e )=

> Subtlety : At zero temperature the f(z) has a double zero at the horizon.

Thus this singular term dominates at the horizon irrespective of however
small w we choose.

» Matching technique : Isolate the 'singular’ near horizon region and treat w
perturbatively “outside”.

> Inner/IR region : AdS, x R9~1
» Outer/UV region : Full RN-AdS background

Hong Liu et al. (2009)
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Dissipation

Dissipation at finite density

» Matching the solutions in two regions near z = z, we obtain
b+ + gR((U)Z* b_
G =
r() ay + 9r(w)zea—
(B0 4w )i 4 w2b® 1)z,

= (24)
(an) + w2af) c)—iw(al © 4 2@ 4 )z
» The leading-order Green's function
GP(w) = — = (25)
R 147 wz (O))
» For small frequency
G,(?O)(w) ~—iwz(l—1i wz*a(_o)) (26)
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Dissipation

Dissipation at finite density

Choosing a(_o) =1

0 100
3 -20 — 50
T _40 S,
S 3 Numerical
& -60 = — — Analytic
_80 ¢ | - O [ Mumerical / Analytic
-100

-1.0

%&Cj’ is nice a straight line in each case. Therefore the Green's functions
match well up to some overall normalization.

Pinaki Banerjee (IMSc)



Dissipation

Dissipation at finite density

Choosing a9 =5

2500~ - M. e
2000f T _qooof T
3 3
;“ 1500 (‘D’: Numerical
& 1000 E 500 — — Analytic
500 B -—-—-— Numerical / Analytic
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w
Numerical

analytic 1S not a straight line!
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Dissipation

Dissipation at finite density

Finite density and small temperature

v

Inner Region changes to BH in AdS, x RI~!
The story is same with two possible modifications

v

» The @g(w) may change and can be T-dependent.
> ay, by will be T-dependent.

> Actually the retarded Green's function at small T becomes
GT(UJ) _ b+(w7 T) +gR(w7 T) ( )
R 0 1) + r(, Nz a (@, T)
_ by(w, T) — iwz, b_(w, T) (27)
a(w, T) —iwze a_(w, T)

v

Leading order dissipation is same as zero temperature.
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Conclusions

» The temperature independent dissipation is identical for all dimensions as long as
the systems are in zero temperature (bulk is pure AdS).

> For higher dimensions T — 0 and T =0 (e.g, AdSs-BH and pure AdSs bulk, say)
the coefficients don't match!

> Retarded Green's function at T = 0 is computed at finite density. Zero
temperature dissipation shows up as leading term.

> The form of the Retarded Green's function at finite density and small (but finite)
temperature is also obtained. The leading dissipative part remains the same.

> The leading order Green's function is “matched” (or rather compared) with
numerical results up to some overall normalization.

Pinaki Banerjee (IMSc)



Thank
you




Back up slides |

Perturbative solutions

Functional forms of f(z), f(z), f3(z)

1 1
f(z) = %tan_l(ﬂ Tz) — ELog(l +7Tz)+ ZLog(l +°T?2%) (28)

h(z) = 3—12[4{—4 + tan (7 Tz) — Log(1 + nTz)}{tan *(nTz) — Log(1 + 7 Tz)}
—4{2 4 tan N(nTz) — Log(1 4 nTz)}Log(1 + n° T°2°) + Log(1 + =° 7:22))2]
29

Az)=... (30)
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Back up slides Il

Black hole in AdS, x RY~!

> The near horizon geometry for Near-extremal (T < 1) RN Black hole

, 13 , d¢? 272 g2
ds® = e <—g(C)df + @) + pilg 1 dX (31)
__ 1 1,¢
A= =53 (32)

where g(() = (1 - E_g)' CO = d(d—lifz*—Zo)

1

» The corresponding temperature, T = T

> This nice structure breaks down for large temperature (T = ).
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