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Introduction
Motivation

The gauge/gravity duality has been quite successfully used to study
properties of systems at finite temperature.

Noise and dissipation have been studied by different techniques in this
holographic framework.

J. de Boer et al. ; Son-Teaney (2009)

Lower dimensions are always interesting!

Pinaki Banerjee (IMSc)



Introduction
Idea & Set-up

Dx0
1,2

Dx1,2

r = rm

r = 1

Figure : The gravity set up for the boundary stochastic motion of the heavy
particle .
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Introduction
AdS/CFT : A theorist’s tool

Strongly coupled field theory ⇔ Weakly coupled gravity.

〈
exp

(∫
Sd

φi0Oi

)〉
CFT

= ZQG (φi0) (1)

Real time correlators for (scalar) field theory can be obtained by
choosing appropriate boundary conditions.

GR(k) = − 2F(k, r)

∣∣∣∣
rm

(2)

where F(k, r) = K
√
−gg rr f−k(r)∂r fk(r) Son-Starinets (2002)
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Langevin Dynamics

The generalized Langevin equation for a heavy particle under noise ξ[
−M0

Qω
2 + GR(ω)

]
x(ω) = ξ(ω) 〈ξ(−ω)ξ(ω)〉 = Gsym(ω) (3)

Expanding GR(ω) for small frequencies

GR(ω) = −∆Mω2 − iγω + . . .

Then the Langevin equation reads

Mkin
d2x

dt2
+ γ

dx

dt
= ξ (4)

with 〈ξ(t)ξ(t′)〉 = Γ(t − t′) (5)

Fluctuation-Dissipation relation

iGsym(ω) = −(1 + 2nB) Im GR(ω) (6)

Pinaki Banerjee (IMSc)



Generalized Langevin Equation from Holography

The background metric AdS3-BTZ is defined as

ds2 =
r̄ 2

L2

[
−f (br̄)dt2 + dx2

]
+

L2dr̄ 2

f (br̄)r̄ 2
(7)

The same metric in dimensionless coordinate, r ≡ br̄

ds2 = (2πT )2L2
[
−r 2f (r)dt2 + r 2dx2

]
+

L2dr 2

r 2f (r)
(8)

where, b = 1
2πTL2 , f (r) = 1− 1

r2 and T is Hawking temperature.

The Nambu-Goto action is

S = − 1

2πls 2

∫
dτdσ

√
− det hab (9)
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Generalized Langevin Equation from Holography

For small fluctuations

√
−h = (2πT )L2

√
1 + (2πT )2r 4f (r)x ′2 − ẋ2

f (r)

≈ (2πT )L2

[
1 +

1

2
(2πT )2r 4f (r)x ′

2 − 1

2

ẋ2

f (r)

]

The string world sheet action becomes

S = −
∫

dtdr

[
m +

1

2
T0(∂rx)2 − m

2f
(∂tx)2

]
(10)

where, m ≡ (2πT )L2

2πl2s
=
√
λT and T0(r) ≡ (2πT )3L2

2πl2s
fr 4 = 4

√
λπ2T 3r 2(r 2 − 1)

The EOM of the string

−m

f
∂2
t x + ∂r (T0(r)∂rx) = 0 (11)
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ẋ2

f (r)

]

The string world sheet action becomes

S = −
∫

dtdr

[
m +

1

2
T0(∂rx)2 − m

2f
(∂tx)2

]
(10)

where, m ≡ (2πT )L2

2πl2s
=
√
λT and T0(r) ≡ (2πT )3L2

2πl2s
fr 4 = 4

√
λπ2T 3r 2(r 2 − 1)

The EOM of the string

−m

f
∂2
t x + ∂r (T0(r)∂rx) = 0 (11)

Pinaki Banerjee (IMSc)



Generalized Langevin Equation from Holography

The EOM of the string

∂2
r fω +

2(2r 2 − 1)

r(r 2 − 1)
∂r fω +

w2

(r 2 − 1)2
fω = 0 ; w ≡ ω/(2πT ) (12)

The solution to this EOM is given by

fω(r) = C1
P iw

1

r
+
�
�
�

C2
Q iw

1

r
(13)

Modes satisfying boundary conditions

f Rω (r) = lim
rm→∞

{
(1 + r)iw/2

(1 + rm)iw/2
.

(1− r)−iw/2

(1− rm)−iw/2
.
rm
r
.

2F1(−1, 2; 1− iw; 1−r
2

)

2F1(−1, 2; 1− iw; 1−rm
2

)

}
(14)

The retarded correlator GR(ω) is defined as

G 0
R ≡ lim

rm→∞
T0(r)f R−ω(r)∂r f

R
ω (r) = −M0

Qω
2 + GR(ω)

= −µω (i
√
λ 4π2T 2 + µω)

2π(µ− i
√
λω)

; where, µ ≡ r̄m
l2
s
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Generalized Langevin Equation from Holography

Zero temperature mass of the particle

M0
Q =

µ

2π
=
√
λT rm (15)

Retarded propagator

GR(ω) = −µω
2π

(ω2 + 4π2T 2)

(ω + i µ√
λ

)
(16)

Expanding GR in small frequencies

GR(ω) ≈ 2λπT 2

µ
ω2 − i

(
2
√
λπT 2ω +

(√
λ

2π
− 2(

√
λ)3πT 2

µ2

)
ω3

)
(17)

Generically when GR(ω) is expanded in small ω it takes the form

GR(ω) = −iγ ω −∆Mω2 − iρ ω3 + . . . (18)
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Generalized Langevin Equation from Holography

Viscous drag

γ = 2
√
λπT 2 (19)

Thermal mass shift

∆M = −2λπT 2

µ
= −
√
λT

1

rm
(20)

Higher order “dissipation coefficient”

ρ =

√
λ

2π
− 2(

√
λ)3πT 2

µ2
(21)

In the “large frequency” limit

GR(ω)

∣∣∣∣
T=0

=
µω3(ω − i µ√

λ
)

2π(ω2 + ( µ√
λ

)2)
≈ µω2

2π
− i

µ2ω

2
√
λπ

+ . . . (22)

Pinaki Banerjee (IMSc)



Generalized Langevin Equation from Holography

Viscous drag

γ = 2
√
λπT 2 (19)

Thermal mass shift

∆M = −2λπT 2

µ
= −
√
λT

1

rm
(20)

Higher order “dissipation coefficient”

ρ =

√
λ

2π
− 2(

√
λ)3πT 2

µ2
(21)

In the “large frequency” limit

GR(ω)

∣∣∣∣
T=0

=
µω3(ω − i µ√

λ
)

2π(ω2 + ( µ√
λ

)2)
≈ µω2

2π
− i

µ2ω

2
√
λπ

+ . . . (22)

Pinaki Banerjee (IMSc)



Generalized Langevin Equation from Holography

Viscous drag

γ = 2
√
λπT 2 (19)

Thermal mass shift

∆M = −2λπT 2

µ
= −
√
λT

1

rm
(20)

Higher order “dissipation coefficient”

ρ =

√
λ

2π
− 2(

√
λ)3πT 2

µ2
(21)

In the “large frequency” limit

GR(ω)

∣∣∣∣
T=0

=
µω3(ω − i µ√

λ
)

2π(ω2 + ( µ√
λ

)2)
≈ µω2

2π
− i

µ2ω

2
√
λπ

+ . . . (22)

Pinaki Banerjee (IMSc)



Generalized Langevin Equation from Holography

Viscous drag

γ = 2
√
λπT 2 (19)

Thermal mass shift

∆M = −2λπT 2

µ
= −
√
λT

1

rm
(20)

Higher order “dissipation coefficient”

ρ =

√
λ

2π
− 2(

√
λ)3πT 2

µ2
(21)

In the “large frequency” limit

GR(ω)

∣∣∣∣
T=0

=
µω3(ω − i µ√

λ
)

2π(ω2 + ( µ√
λ

)2)
≈ µω2

2π
− i

µ2ω

2
√
λπ

+ . . . (22)

Pinaki Banerjee (IMSc)



Generalized Langevin Equation from Holography
Few remarks on the dissipation term at T= 0

It is finite and therefore no need to renormalize by adding
counterterms.

It cannot be renormalized away in the boundary theory by Hermitian
counter terms.

Quark moving at constant velocity doesn’t feel any drag at T= 0.

Some 1+1 condensed matter systems exhibit such dissipation (or
decoherence) at absolute zero due to zero-point fluctuations.

A possible explanation : Energy can cascade from high frequencies to
low frequencies in a nonlinear system. One can expect a large
Poincare recurrence time and the energy is effectively lost for good.
This would then show up as a dissipation!
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Brownian Motion at Stretched Horizon
Kruskal/Keldysh Correspondence

t=−∞ t=+∞

t=+∞− iσ

t=−∞− iβ

field “1”

field “2”

m

fi
eld

“2”
fi

el
d

“1
”

U
=

0

U
=

0

V
=

0

V
=

0

RL

tK

xK
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Brownian Motion at Stretched Horizon
Boundary stochastic motion

Dx0
1,2

Dx1,2

r = rm

r = 1

Z =

∫
[Dx0

1 ][Dx0
2 ] [Dx1][Dx2]e iS1−iS2︸ ︷︷ ︸

≡
∫

[Dx0
1 ][Dx0

2 ]e iS
0
eff

iS0
eff = −i

∫
dω

2π
x0
a (−ω)[G 0

R (ω)]x0
r (ω)−

1

2

∫
dω

2π
x0
a (−ω)[Gsym(ω)]x0

a (ω)
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Brownian Motion at Stretched Horizon
Effective Action at General r

Dx0
1,2

Dxh1,2

Dx>1,2

Dx<1,2

r = rm

r = 1

r = 1 + ε
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Brownian Motion at Stretched Horizon
Effective Action at General r

Dx0
1,2

Dx r0
1,2

Dx>1,2

Dx<1,2

r = rm

r = 1

r = 1 + ε

r = r0
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Brownian Motion at Stretched Horizon

Retarded Green function at arbitrary r = r0

G r0
R (ω) ≡ T0(r)

f−ω(r)∂r fω
|fω(r)|2

∣∣∣∣
r=r0

= −
√
λπ2T 3

2
.
r0w(r0w + i)

(r0 − iw)

= −µ0ω
(i
√
λπ2T 2 + µ0ω)

2π(µ0 − i
√
λω)

Softening of delta function

lim
t→t0

∫ t

t0

dt′ γ(t′) = − lim
t→t0

∫ t

t0

dt′
∫ ∞
−∞

dω e−iωt′ µω

2π

(ω2 + π2T 2)

(ω + i µ√
λ

)
→ 0
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Conclusion and frontiers

Results

Natural softening of delta function in Langevin equation.

Temperature dependent mass correction is zero (in the extreme UV limit).

A temperature independent dissipation at all frequencies.

The “stretched horizon” can be placed at an arbitrary radius and an effective
action obtained.

Can be done

Study the holographic RG interpretation in this case.

Same problem using a charged BTZ , thereby introducing a chemical potential.

. . .

Thank You!
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Back up slides I
Introducing “Noise”

There is a standard way of introducing ‘non-dynamical’ or ‘fake’ variable as
following

e−
1
2

∫
dω
2π xa(−ω)[iGsym(ω)]xa(ω) =

∫
[Dξ] e i

∫
xa(−ω)ξ(ω)e

− 1
2

∫ ξ(ω)ξ(−ω)
iGsym(ω)

dω
2π (23)

ξ here is the ‘fake’ variable that can take any random value.

ξ : the “noise” term.
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Back up slides II
No “drag” on particle with constant velocity

The drag force F (t) is given by (in frequency space)

F (ω) = GR(ω)x(ω)

For a particle moving at constant velocity x(t) = v .t, this translates to

x(ω) = −ivδ′(ω)

Since GR(ω = 0) = G ′R(ω = 0) = 0, the force is zero. In more detail, since we
have a distribution δ′(ω), we should consider a smooth function f (ω) and

evaluate the integral:∫
dω GR(ω)x(ω)f (ω) =

∫
dω GR(ω)(−ivδ′(ω))f (ω) = 0

on integrating by parts.
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Back up slides III
Softening of delta function

The Green function obtained from holography is free from delta fuction
‘singularity’ which usualy leads to contradiction. A simple check of our claim.

lim
t→t0

∫ t

t0

dt ′ γ(t ′) = lim
t→t0

∫ t

t0

dt ′
∫ ∞
−∞

dω e−iωt
′
γ(ω)

= − lim
t→t0

∫ t

t0

dt ′
∫ ∞
−∞

dω e−iωt
′ µω

2π

(ω2 + π2T 2)

(ω + i µ√
λ

)

= lim
t→t0

∫ t

t0

dt ′ 2πi e
− µ√

λ
t′
µ(−i µ√

λ
)

2π

{(
−i µ√

λ

)2

+ π2T 2

}
= 0

So, γ(ω) is a smooth function.
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