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Introduction

Motivation

@ The gauge/gravity duality has been quite successfully used to study
properties of systems at finite temperature.

@ Noise and dissipation have been studied by different techniques in this
framework.
J. de Boer et al. ; Son-Teaney (2009)

@ Lower dimensions are always interesting!
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Introduction

Idea & Set-up

Figure: The gravity set up for the boundary stochastic motion of the heavy
particle .
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Introduction

AdS/CFT : A theorist’s tool

@ Strongly coupled field theory <  Weakly coupled gravity.

<exp ( /L ¢eo,-)>CFT — Zao (6) (1)

@ Real time correlators for the field theory can be obtained by choosing
appropriate boundary conditions.

Gr(k) = —2F(k,r) (2)

m

where .F(k, r) =Ky —gg”f_k(r)é?,fk(r) Son-Starinets (2002)
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Langevin Dynamics : A Review

t=—00 field " 1" t=+o00

+ field " 2" t—+o0 —

t=—o0 — i

@ The partition function reads
Z — </[DX1][DX2] eifdthg,)'(f e—ifdtzMg)?zz eifdt1¢1(t1)X1(t1) e—ifdt2¢2(t2)xz(t2)>

/ [Dxt|[Dxo] & [ Mot =i [ deMysd o= 3 Jf didt xs(DLB(0)o( D] (+)
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Langevin Dynamics : A Review

t=—00 field " 1" t=+o00

+ field 2" t=+00 —

t=—o0 — i

@ The partition function reads
Z — </[DX1][DX2] eifdthg,)'(f e—ifdtzMg,)?zz eifdt1¢1(t1)xl(t1) e—ifdt2¢2(t2)xz(t2)>

/[Dxl][sz] of [ anMxi o—i [ dtaMyxy o—3 [ dtdt'xs()[(p(£)d(t' )]s xer (t)
@ The Schwinger-Keldysh propagators
, G11(t t ) —Glz(t, t’)
[<¢(t)¢(t ))]ss =i ( G21(t l’) G22(t, t,) (3)
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Langevin Dynamics : A Review

“ra” formalism

X, = A2 X, =Xx1— %
+
¢r = w ¢a = ¢)1 - ¢72

7 Z/[DX,—] [DXa] e—ifdtngaie, e~ J dtdt’ [x;(£)iGr(t,t")x (t") = 3xa(t) Goym (£, )xa(t)]

Goym(t,t') = (&r(t)er(t')) = <{¢(f t')}) (4)
iGr(t,t') = (¢r(t)es(t)) = 9 t—t) <[¢ o(t)]) (5)
iGsym(w) = —(1 4 2ng) Im Gr(w) (6)
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Langevin Dynamics : A Review

@ The path integral in fourier space

27

ya / ['DX,] [DXa] exp (—i dWXa(—w)[—Mng + GR(w)]X,(w)) e—% S %Xa(—w)[l’Gsym(w)]Xa(
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Langevin Dynamics : A Review

@ The path integral in fourier space

/[Dx,] [Dx,] exp( Xa(—w)[ Mng + GR(UJ)]XV(UJ)) e 3 J 2 xa(=w)[iGoym(w)]xa

@ Introducing “noise”

dw E(w)E(—w)

=1 [ 42 x,(—w)[iGeym (w)]xa(w) — /[Df] i [ xa(—w)&( w)e 382 iGaym (@) (7)
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Langevin Dynamics : A Review

@ The path integral in fourier space

/ [Dx] [Dx] exp (~i f 92 xs(~)[- M + Ga(e)lxe(w)) e~ | (- lGmelbal

@ Introducing “noise”

dw &(w)E(=w)

=1 [ 22 xo(—w)[iGeym (w)]xa(w) _ /[DS] i [ xa(—w)é(w) g~ 5[ 82 TGoym () (7)

and integrating out x,(—w)

L[ dw §w)(=w)
Z= [ [Dxl, [Pg e 2 3 TomET 5, [ MEwx(w) + Gr(w)xr(w) — £(w)]
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Langevin Dynamics : A Review

@ The partition function is an average over the classical trajectories of the heavy
particle under noise £

[~M® + Ga()] x(w) = ) ()W) = iGom(w)  (8)
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Langevin Dynamics : A Review

@ The partition function is an average over the classical trajectories of the heavy
particle under noise £

[~M® + Ga()] x(w) = ) ()W) = iGom(w)  (8)

** Generalized Langevin equation

@ Expanding Ggr(w) for small frequencies

Gr(w) = ~AMW? — iw+ ...

@ Then the Langevin equation reads

Mkin% +7% — ¢ 9)
with  (£(0)&(t)) = T(t—1t') (10)
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Generalized Langevin Equation from Holography

@ The background metric AdS3-BTZ is defined as

=2 2 122
I [—f(b?)dtz—l—dxz] + féb‘i;ﬁ (11)
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Generalized Langevin Equation from Holography

@ The background metric AdS3-BTZ is defined as

-2 2322
2 L - — 2 2 Ldr
o5’ = 1 [ F(bF)de® + dx } + 1P (11)
@ The same metric in dimensionless coordinate, r = br
ds’ = (TP L2 [P (nae + Paxt] + Lar (12)
r2f(r)

where, b= —, f(r)=1— riz and T is Hawking temperature.
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Generalized Langevin Equation from Holography

@ The background metric AdS3-BTZ is defined as

-2 2322
2 L - — 2 2 Ldr
o5’ = 1 [ F(bF)de® + dx } + 1P (11)
@ The same metric in dimensionless coordinate, r = br
ds’ = (TP L2 [P (nae + Paxt] + Lar (12)
r2f(r)

where, b= —, f(r)=1— riz and T is Hawking temperature.

@ The Nambu-Goto action is

s— _?1/2 /deU V/—det hp (13)
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Generalized Langevin Equation from Holography

@ For small fluctuations

V—h= (FT)LZ\/]. + (nT)2r4f(r)x'? — R

~ (nT)L? [1 + %(WT)2r4f(r)xl2 —
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Generalized Langevin Equation from Holography

@ For small fluctuations

V—h= (FT)LZ\/]. + (nT)2r4f(r)x'? — R

(r)
~ (rT)L2 [1 + %(WT)2r4f(r)x'2 - %’(%]
@ The string world sheet action becomes
S=— / dedr {m + 2 To(0x) - %(atxf] (14)

where, m = (’;BZLZ = IVAT and To(r) = ﬁ%zﬁrz(ﬁ -1)
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Generalized Langevin Equation from Holography

@ For small fluctuations

vV—h= (7FT)L2\/]. + (nT)2r4f(r)x'? — X2

(r)
~ 2 1 2 4 2 1 ).<2
~(rT)L [1 + 2(7TT) rrf(r)x 27(r)
@ The string world sheet action becomes
S = —/dtdr {m + %To(arxf _ %(atx)Q] (14)
where, m = (’;BZLZ — VAT and To(r) = ﬁgzﬁ (P - 1)
@ So the EOM is
m o
0= —73tX + 0r(To(r)d:x) (15)
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Generalized Langevin Equation from Holography

@ In Fourier space

x(r,t) = / e (rolw)
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Generalized Langevin Equation from Holography

@ In Fourier space

x(r,t) = / e (rolw)

(r=rmt /—e xo(w) since, fu(rm)=1

@ The EOM reduces to

82

LA -1 -
(2 o O+ eyt =0 (16)

where we have defined v = w/(7T) .
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Generalized Langevin Equation from Holography

@ In Fourier space

x(r, t) :/g—we“"tf (r)xo(w)
(r=rmt /—e xo(w) since,

@ The EOM reduces to

2c 2( -1) o _
o:f, (2 )8f+( _1)2)‘;,—0

where we have defined v = w/(7T) .

@ The solution to this EOM is given by

I\U
tn=a A

fu(rm) =1

(16)

(17)
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Generalized Langevin Equation from Holography

ito
@ Ingoing wave boundary condition at the horizon — wa(r) ~ Plf

@ At the boundary i.e, r — rm , £X(r) = 1.

'm 2
(L4 rm)™/2 (1= rm)=™/2 1 2F(—1,2;1 - i; 15m)

2
_ (1—|—r)"m/2 (1—r)7"“’/2 Im YO+ ir (18)
T (L rm)™2 (1= 1) ™2 w0+ ify

( )2 ( )i/

fR(r): (1—|—r)im/2 (1—r)—im/2 rm 2F1(=1,2;1 — it; 157)
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Generalized Langevin Equation from Holography

ito
@ Ingoing wave boundary condition at the horizon — wa(r) ~ P%

@ At the boundary i.e, r — rm , £X(r) = 1.

(14 r)™2 (1 —r) w2 m 2F1(—1,2;1 — iw; 157)
(L4 rm)™/2 (1= rm)=™/2 1 2F(—1,2;1 - i; 15m)
1+ r)"m/2 1- r)f"“’/2 Im YO+ ir

T (L rm)™2 (1= 1) ™2 w0+ ify

wa(r) =

@ The retarded correlator Gg(w) is defined as

G = lim To(r)FR,(na.f2(r) = —M3w® + Gr(w)
r—rm

_ VATT? rppo(rmto + )
a 2 (rm — i)
(iIVATT? + pw)

- 21 (i — ivAw) (19)
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Generalized Langevin Equation from Holography

@ Zero temperature mass of the particle

My =L = rm (20)
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Generalized Langevin Equation from Holography

@ Zero temperature mass of the particle

My =1 = Im (20)

@ Retarded propagator

_pw (W? + 72T

2 (w0t i%) (21)

Gr(w) =

@ Now expanding Gg in small frequencies

Agfwz_,(ﬁ“ﬁw(ﬁ (m3ﬂ2>w3> (22)

Gr(w) ~ 2 25 24
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Generalized Langevin Equation from Holography

@ Zero temperature mass of the particle

My =1 = Im (20)

@ Retarded propagator

_pw (W? + 72T

Gr(w) = 27 (w+ I%)

(21)

@ Now expanding Gg in small frequencies

Agfwz_,(ﬁ“ﬁw(ﬁ (m3ﬂ2>w3> (22)

Gr(w) ~ 2 2r 212

@ Generically when Ggr(w) is expanded in small w it takes the form

Gr(w) = —iv w— AMW® —ipw® +... (23)

Pinaki Banerjee (IMSc) September 3, 2013



Generalized Langevin Equation from Holography

@ Viscous drag

v = %\f/\ﬂ"’ (24)
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Generalized Langevin Equation from Holography

@ Viscous drag

v= %\f/\ﬂ"’ (24)
@ Thermal mass shift
AM — — A T2
2p
S VaTL (25)
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Generalized Langevin Equation from Holography

@ Viscous drag

v= %\f/\ﬂ"’ (24)
@ Thermal mass shift
AM — — A T2
2p
S VaTL (25)

VA (YNrT (26)
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Exact Schwinger-Keldysh Propagators

Kruskal /Keldysh Correspondence : Review

t=—00 field “1” t=+00
+ field 2" t=+00 — o

t=—oc0 —if ﬁ

. PIRY
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Exact Schwinger-Keldysh Propagators

Kruskal /Keldysh Correspondence : Review

@ The EOM for the fluctuating string is solved subjected to the boundary conditions

rinr]m x(w, n) = xP(w) (27)
im x(eo, ) = (@) (28)
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Kruskal /Keldysh Correspondence : Review

@ The EOM for the fluctuating string is solved subjected to the boundary conditions

rinr]m x(w, n) = xP(w) (27)
im x(eo, ) = (@) (28)

@ The general solutions in L and R are

x(w, n) = a(w)fu(n) + b(w)fs (n) (29)
x(w, ) = c(w)fu(r) + d(w)fi(r2)
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Exact Schwinger-Keldysh Propagators

Kruskal /Keldysh Correspondence : Review

@ The EOM for the fluctuating string is solved subjected to the boundary conditions

rinr]m x(w, n) = xP(w) (27)
im x(eo, ) = (@) (28)

@ The general solutions in L and R are

x(w, n) = a(w)fu(n) + b(w)fs (n) (29)
x(w, ) = c(w)fu(r) + d(w)fi(r2)

@ Analytically continue modes from R to L region to get
x(w, n) = a(w)fu(r) + bw)e™/ £ () (30)

@ Solve for a(w) & b(w) in terms of x{(w) & x§(w) .
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Exact Schwinger-Keldysh Propagators

Kruskal /Keldysh Correspondence : Review

@ The next step is to plug this solution into the boundary action
To(rm) / —x1(—w,n)oxi(w,n) + To(rm) / —x(

(31)
to get

Spdy = —

w, 1)Orx2(w, )

iSpday = —3 /d—wx{)( w) [/ReGR -1+ 2nB)ImGR] xP(w)
+ 3 (—w) [—iReGR -1+ 2nB)ImGR] X3 (w)
— xp(—w) [ 2nBImG,g] X3 (w)

3~ )[ 2(1+n3)|mc,2] X (w)
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Exact Schwinger-Keldysh Propagators

Kruskal /Keldysh Correspondence : Review

@ The next step is to plug this solution into the boundary action

Shdy = —To(r'")/ —x1(—w, n)dx1(w, n) + To(rm)/ 5-x(—w, r)0xe(w, r2)
(31)
to get
Sver = —7 /‘L‘”X{)( w) [iReGE — (1 + 2n5)ImGE] ()
+x3(~w) [—;ReGR 1+ 2nB)|mGR] x(w)
—x(—w) [ 2n3|mc,2] X (w)
3~ )[ 2(1+n3)|mc,2] x0(w) (32)
@ Here retarded Green function is defined as
Gh(w) = To(r) St (33)

r=rm
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Exact Schwinger-Keldysh Propagators

Kruskal /Keldysh Correspondence : Review

@ Take functional derivative to get the Schwinger-Keldysh propagators

iRe G2 — (14 2ng) Im GJ —2ng Im GP

Gab = 1" 514 ng) Im G2 —iRe G% — (1+2ng) Im G}

(34)
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Exact Schwinger-Keldysh Propagators

Kruskal /Keldysh Correspondence : Review

@ Take functional derivative to get the Schwinger-Keldysh propagators

G — {iRe G% — (1+2ng) Im G? —2ng Im G2 } (34)

—2(1+ ng) Im G} —iRe G} — (1 +2ng) Im G}
In “ra” basis :

@ And the boundary action in this set up becomes

Spay = _T0(2r,,,)/ Z—:xa( —w, r) Orxr(w,r) — rm)/ —x, —w, r) Orxa(w, r)
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Exact Schwinger-Keldysh Propagators

Kruskal /Keldysh Correspondence : Review

@ Take functional derivative to get the Schwinger-Keldysh propagators

G — {iRe G% — (1+2ng) Im G? —2ng Im G2 } (34)

—2(1+ ng) Im G} —iRe G} — (1 +2ng) Im G}
In “ra” basis :

@ And the boundary action in this set up becomes

Spay = _T0(2r,,,)/ Z—:xa( —w, r) Orxr(w,r) — rm)/ —x, —w, r) Orxa(w, r)

@ Therefore the boundary action reduces to

oy = =i [ SER(-) [GH@] K@) — 5 [ 52x8() [1Gom(w)] KE(w)
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Exact Schwinger-Keldysh Propagators

Boundary stochastic motion

r=rp
Dxlo)z /,

>

g

77— / [DXONDx] (D51 ][]~
_\’_J
= [

0 _ . [dw g 0 0 1 [fdw q . 0
iSefp = _'/Exa(_w)[GR(w)]Xr(w)_ E/Zxa(—w)[:Gsym(w)]xa(w)
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Effective Action at General r

— r=rm
1
1
1
>
DX,
1
1
!
v
——————————— c--—--: =0
/ A
o <
Dx%, Dx3,
1
————————————————— r=1+¢
hd
=1

5> s> i5< _is<
Z= /[DX?@X?DX{O] [DXS’DfoXZ’O] &1 ~i% [Dx7] [Dx5°] eS1 %

5> _is> s
= /['Dx?@xf'Dxer] [Dxf@x;szro] 51 75 ofSeft

iSur = =i [ SEARIGR@IO(@) 5 [ SR ()i () ()
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Effective Action at General r

@ Retarded Green function at arbitrary r = ry

; fow(r)O,fi,
GR = To(r) ————
R (W) = To(r) FoE.
-~ VATET? rywo(roto + i)
N 2 (ro — i)

(i\&'f\'2 T2 4+ How)

2m(po — ivVAw) (35)

= T How
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Effective Action at General r

@ Retarded Green function at arbitrary r = ry

f_w(r)Orf,
OF |y
_ VATET? rywo(roto + i)
2 (ro — ito)
(I'\/XWQTQ + pow)
2m(po — ivVAw)

GR(w) = To(r)

= —pow (35)

@ Softening of delta function

t t oo . 7
. ’ ’ _ B ’ —iwt
tlgrgo /to dt’ ~(t') = tllrno /to dt Lw dw e Y(w)

t oo . 2 2-,—2
~ lim / dt’ / doy e=t’ B0 (AT T)
t=tg Sy o 27 (erlﬁ)

t _ny p(—idE) 2
=~ Iim /dt’ omie VA J((—/i> +7r2T2>—>0
=i Sy

2
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Effective Action at General r

@ The action

d
Sy —iSy + 5% =— i/ %Xg(—w, [ To(rm)0rx;” (w, r)]

m

_ i/ro Z—:X;:O(—w, )= To(r0)0rx (w, r) + Gf’?0 (W)X (w) — £0(w)]

2,>
— i/ Z—w dr Xa>(7w,r) —O0r (To(r)arxf(w, r)) — w
T
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Effective Action at General r

@ The action

i51> - i52> + isg,’f =— i/ Z—:Xg(—w, [ To(rm)0rx;” (w, r)]

m

_ i/ Z—:X;:O(—w, )= To(r0)0rx (w, r) + G[?O (W)X (w) — £0(w)]

o

2,>
— i/ Z—w dr x7 (—w, r) |0, (To(r)arxf(w, r)) — w
T

@ The path integral reduces to

1 £0(w)EN(~w)

—5J) 0 o> o>, icho

zZ= / [Dx%Dx> DxP][Dg]e *°  Com)  [DxIDx>Dx0]eST ~S7 +i%;
,% €0 (w)£0 (~w)

— /[’DX?@X?DX;O]['DEW]G —(1+2nB)ImG;\9(w) 6w [_ TO(rm)arX,? (W7 r)] —rm

S | =0 (To(r)Orxy (w, r)) — w
Bl To(10)00 (, 1) + GR(@)xP () — €9()=r
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Effective Action at General r

Brownian Motion on Stretched Horizon

@ Retarded correlator at stretched horizon

Gh(w) ~ —iyw
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Effective Action at General r

Brownian Motion on Stretched Horizon

@ Retarded correlator at stretched horizon

Gh(w) ~ —iyw

@ Overdamped Langevin equation on the stretched horizon

To(rn)drx” (w, ) + £"(w) = —iwyx(w)
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Effective Action at General r

Brownian Motion on Stretched Horizon

@ Retarded correlator at stretched horizon

Gh(w) ~ —iyw
@ Overdamped Langevin equation on the stretched horizon
To(rn)Orxy (w, r) + fh(w) = —iw'yxrh(w)
@ The solution near the AdS boundary

x(@, 1) = x0(@)fu(r) + () [ Im (r) ]

—ImGR(w)
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Effective Action at General r

Brownian Motion on Stretched Horizon

@ Retarded correlator at stretched horizon

Gh(w) ~ —iyw
@ Overdamped Langevin equation on the stretched horizon
To(rn)Orxy (w, r) + fh(w) = —iw'yxrh(w)
@ The solution near the AdS boundary

x(@, 1) = x0(@)fu(r) + () [ Im (r) ]

—ImGR(w)

@ Dynamics of boundary end point

[~Mgw? + Gr(w)lxo(w) = € (w)

Pinaki Banerjee (IMSc) September 3, 2013



Effective Action at General r

Brownian Motion on Stretched Horizon

@ Relation between boundary and stretched horizon fluctuation

(w) = fu(rm)e" (@) (36)
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Effective Action at General r

Brownian Motion on Stretched Horizon

@ Relation between boundary and stretched horizon fluctuation

W) = fu(rm)¢" (@) (36)
@ For the AdS3-BH system reduces to

€w) = (1-i==) €w) (37)
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Effective Action at General r

Brownian Motion on Stretched Horizon

@ Relation between boundary and stretched horizon fluctuation
(w) = fu(rm)e" (@) (36)
@ For the AdS3-BH system reduces to
0 (1Y g
€w) = (1-i==) €w) (37)

@ Use the horizon fluctuation-dissipation theorem to get

(€ (~w)&%(w)) = —(1 4 2np)ImGr(w) (38)

** Boundary FDT
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Have been done

Natural softening of delta function in Langevin equation.
Temperature dependent mass correction is zero (in the extreme UV limit).
A temperature independent dissipation at all frequencies.

The “stretched horizon” can be placed at an arbitrary radius and an effective
action obtained.
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Conclusions an ntiers

Have been done
@ Natural softening of delta function in Langevin equation.
@ Temperature dependent mass correction is zero (in the extreme UV limit).
@ A temperature independent dissipation at all frequencies.

@ The “stretched horizon” can be placed at an arbitrary radius and an effective
action obtained.

Can be done
@ Study the holographic RG interpretation in this case.

@ Same problem using a charged BTZ , thereby introducing a chemical potential.
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QUEST IONS
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