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Plan 
● Radiative transfer and how it stood ca. 1944       

                                                  
● A numerical scheme and some analytical fallout 

 
● The principles  of invariance                                

                              
● Blue sky research - polarisation

● The negative ion of hydrogen 

●   Matters of taste, style, substance 



Simple absorption
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Absorption plus emission 
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● Note mean free path interpretation – we see down to 
the 'photosphere' “Optical depth” is the “tau of 
astrophysics:”distance in units of the  mean free 
path”



Limb darkening 

Looking at the edge of the Sun,
the surface of optical depth unity
is reached  at a greater height
because of viewing at an angle.
This layer is darker



Stellar Atmospheres
● Given temperature as a function of height,  

the fraction of different ions (Saha) and the 
detailed behaviour of each for all 
wavelengths ((Los Alamos tables)       

● The reward for modeling and studying stellar 
spectra is information on chemistry, rotation, 
magnetic field, turbulence, and even planets!  
 

● In hot stars, radiation is a major player, for  
self consistency  we need “non- LTE “             

● Extreme  – electron scattering atmosphere



Radiative transfer with 
scattering

● Earth's atmosphere at visible wavelengths, 
and those of hot stars (free electrons cant 
absorb or emit single photons)      

● Neutrons in reactors while they are slowing 
down 

● Mathematically more complex and physically 
more subtle than the pure absorption-
emission case



Scattering RT begins at home



Two kinds of attenuation
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One­dimensional  model 
with scattering

dR /dx=−s R sLR /2
−dL /dx=−sL sLR/2

R−L=F , RL=E ,
dF /dx=0,dE /d=−F

R

L



Forward and backward 
fluxes

R,L

5

4

1
τ

F=
Fincident
1



Coupling of intensity along 
different rays by scattering

=∫d ' , '  I  ' 



Coping with scattering
● Equations  for moments of the radiation field  

in the axissymmetric case,  e.g 

● But the equations do not close because of 
the extra μ  on  left   side 

● Eddington cut the Gordian knot by setting 
K=J/3 which is exact for a sphere and 
hemisphere! Good enough for many people 
but not for Chandrasekhar 
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Wiener­Hopf integral equation for 
the energy density, isotropic

scattering  case

Becomes messier for anisotropic scattering! 



The book ...
● Radiative transfer starts with 'discrete 

ordinates' i.e Gaussian quadrature (Wick) – 
seems a pedestrian exercise in coupled 
ODE's with constant coefficients until ....  

●    Exact and mysterious analytic results 
emerge from identities between zeros of 
Legendre polynomials  and of the 
characteristic polynomial e.g                      ; 
factorisation of the 'reflection probability '     
                        

● They fall into place with the help of a physical 
principle of invariance (Ambartsumian) 
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Ambartsumian's principle of 
invariance, in pictures .........

a
b

c

d

e

All corrections   due to adding a thin layer
dτ must cancel !



....and in  (not quite) full analytical 
glory    
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Enter the H­function 
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More complex problems like finite slabs, anisotropic 
scattering, polarisation all have their own H functions
Guiding principles enable C to navigate through these



The polarisation of skylight
● Rayleigh's 1871 paper is single scattering, so 

maximum (100 per cent)  polarisation at 90 
degrees to the solar direction, zero at 0 
degrees    

● In reality, zero polarisation is displaced from 
the solar and antisolar directions, and 
maximum is about 90 per cent.    
Qualitatively understood in early 20 century 

● Chandrasekhar formulated a matrix transfer 
equation for the Stokes parameters, and 
found the 'eleven per cent solution'  for stars 
and a quantitative fit to the sky 



Chandrasekhar as quantum 
chemist

● Bethe, Hylleraas used a very complicated 
wave function to prove that the Hydride ion is 
bound 

●  Wildt realised the role of H-  in fitting the 
solar spectrum in near IR                                

● Chandrasekhar produced a much better 
energy from a much simpler wave function      

●   And followed it up with hero(in)ic numerical 
work on energies and oscillator strengths        
                                 



The snowflake in hell: 
hydride ion in the Sun

Chandrasekhar's wave function for H­
reduces Coulomb repulsion by putting 
the two electrons in orbitals of different
radii

Used different
methods for
computing
transition proba-
bilities from 
bound to 
continuum, and
more elaborate
wave functions



Some questions arising while 
reading RT

● Why replace one approximation by another?
●  Why replace a linear integral equation by 

nonlinear ones? 
● Why so much numerical work and tables?
● Why spend so much time and effort on a 

problem which was essentially solved? 
● Why was it one of the 'happiest periods' of 

his scientific life? 



(My)  answers  
● The loose ends left behind by Rayleigh 

scattering drew him to the field. Earlier 
methods and even formulations were 
inadequate ( e.g Stokes parameters)              

● The numerical work started out as such.  His 
happy  choice of Gaussian division and 
weights plus his rapport with equations drew 
him further and further into the problem

● The invariance principle deeply attracted him 
and he generalised it   as far as he could 

● His aim: not just answers, but  a  coherent 
structure,:  RT sytlistically closest to his ideal 


