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like elasticity/hydrodynamics.

There is sufficient “internal evidence” in the structure of

classical gravitational theories for this.

Background: Sakharov (1968), Jacobson(1995), Volovik

(2003), Bei-Lok Hu(1996), Damour(1979), Kip Thorne

(1986), Verlinde (2010), Rong-Gen Cai (2009).

I will describe on the work by me and my collaborators.



CAN A ‘TOP-DOWN’ VIEW HELP ?



CAN A ‘TOP-DOWN’ VIEW HELP ?

Yes! but only if you ask the right questions!



CAN A ‘TOP-DOWN’ VIEW HELP ?

Yes! but only if you ask the right questions!

• Gas Dynamics: Why does a gas exhibit thermal phenomena,

store/exchange energy ... ?



CAN A ‘TOP-DOWN’ VIEW HELP ?

Yes! but only if you ask the right questions!

• Gas Dynamics: Why does a gas exhibit thermal phenomena,

store/exchange energy ... ?

Explanation from atomic nature of matter; equipartition connects

thermodynamics to microscopic dof.

N =
E

(1/2)kBT



CAN A ‘TOP-DOWN’ VIEW HELP ?

Yes! but only if you ask the right questions!

• Gas Dynamics: Why does a gas exhibit thermal phenomena,

store/exchange energy ... ?

Explanation from atomic nature of matter; equipartition connects

thermodynamics to microscopic dof.

N =
E

(1/2)kBT

• Gravity: Why is the inertial mass equal to gravitational mass?



CAN A ‘TOP-DOWN’ VIEW HELP ?

Yes! but only if you ask the right questions!

• Gas Dynamics: Why does a gas exhibit thermal phenomena,

store/exchange energy ... ?

Explanation from atomic nature of matter; equipartition connects

thermodynamics to microscopic dof.

N =
E

(1/2)kBT

• Gravity: Why is the inertial mass equal to gravitational mass?

Explanation from linking gravity to spacetime geometry.



CAN A ‘TOP-DOWN’ VIEW HELP ?

Yes! but only if you ask the right questions!

• Gas Dynamics: Why does a gas exhibit thermal phenomena,

store/exchange energy ... ?

Explanation from atomic nature of matter; equipartition connects

thermodynamics to microscopic dof.

N =
E

(1/2)kBT

• Gravity: Why is the inertial mass equal to gravitational mass?

Explanation from linking gravity to spacetime geometry.

So for the ‘top-down’ view to work we need a strong

guiding principle like the principle of equivalence.
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MUST BE AT THE FOUNDATION.

ADDITIONAL INGREDIENTS

• COMBINING GR AND QUANTUM THEORY IS NOT

A TECHNICAL PROBLEM BUT CONCEPTUAL ONE.

• AIM FOR ‘QUANTUM STRUCTURE OF

SPACETIME’ — NOT ‘QUANTUM GRAVITY’.

• THINK BEYOND BLACK HOLE HORIZONS.

• THINK BEYOND EINSTEIN FIELD EQUATIONS.

• LOOK FOR “INTERNAL EVIDENCE” IN CLASSICAL

GRAVITY.



PLAN OF THE TALK

• THE CONVENTIONAL APPROACH TO GRAVITY

AND HORIZON THERMODYNAMICS

• ‘INTERNAL EVIDENCE’ FOR AN ALTERNATIVE

PERSPECTIVE

• THE AVOGADRO NUMBER OF SPACETIME

• GRAVITATIONAL DYNAMICS FROM A

THERMODYNAMICAL EXTREMUM PRINCIPLE

• CONCLUSIONS, OPEN QUESTIONS ....



SPACETIMES, LIKE MATTER, CAN BE HOT

• The connection between horizons and temperature is quite generic.

OBSERVERS WHO PERCEIVE A HORIZON

ATTRIBUTE TO IT A TEMPERATURE

kBT =
~

c

( κ

2π

)



���������
���������
���������

���������
���������
���������

Black hole
at

X

T

HORIZ
ON

r = constant

BLACK HOLE SPACETIME

r = constant
OBSERVER

Temperature

of the black hole
acceleration



OBSERVER

X

T

HORIZ
ON

FLAT SPACETIME

accelerated

Temperature
acceleration
of the observer



PP

=⇒Vacuum state Thermal state



VACUUM STATE =⇒ THERMAL STATE



VACUUM STATE =⇒ THERMAL STATE

X
iκt = κtE

iT = TE

x

φL(X) φR(X)



VACUUM STATE =⇒ THERMAL STATE

X
iκt = κtE

iT = TE

x

φL(X) φR(X)

〈vac|φL, φR〉 ∝
∫ TE=∞;φ=(0,0)

TE=0;φ=(φL,φR)

Dφe−A



VACUUM STATE =⇒ THERMAL STATE

X
iκt = κtE

iT = TE

x

φL(X) φR(X)

〈vac|φL, φR〉 ∝
∫ TE=∞;φ=(0,0)

TE=0;φ=(φL,φR)

Dφe−A ∝
∫ κtE=π;φ=φL

κtE=0;φ=φR

Dφe−A



VACUUM STATE =⇒ THERMAL STATE

X
iκt = κtE

iT = TE

x

φL(X) φR(X)

〈vac|φL, φR〉 ∝
∫ TE=∞;φ=(0,0)

TE=0;φ=(φL,φR)

Dφe−A ∝
∫ κtE=π;φ=φL

κtE=0;φ=φR

Dφe−A∝〈φL|e−(π/κ)HR|φR〉



VACUUM STATE =⇒ THERMAL STATE

X
iκt = κtE

iT = TE

x

φL(X) φR(X)

〈vac|φL, φR〉 ∝
∫ TE=∞;φ=(0,0)

TE=0;φ=(φL,φR)

Dφe−A ∝
∫ κtE=π;φ=φL

κtE=0;φ=φR

Dφe−A∝〈φL|e−(π/κ)HR|φR〉

• Tracing out φL gives a density matrix: (Lee, 1986)

ρ(φ′
R, φR) =

∫

DφL〈vac|φL, φ′
R〉〈vac|φL, φR〉 ∝ 〈φ′

R|e−(2π/κ)HR|φR〉
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• The connection between horizons and temperature is quite generic.

OBSERVERS WHO PERCEIVE A HORIZON

ATTRIBUTE TO IT A TEMPERATURE

kBT =
~

c

( κ

2π

)

• The temperature associated with a null surface which

acts as a horizon is independent of the field equations.

• Shows spacetimes — like matter — can be hot in an

observer dependent way.

• The entropy S = −Tr ρ ln ρ is divergent and meaningless.

QFT in CST can give temperature but not entropy!
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• Principle of Equivalence

• General Covariance

• Action functional: Think beyond Einstein Gravity!

A =

∫

dDx
√
−g

[
L(Rab

cd, g
ab) + Lmatt(g

ab, qA)
]

leads to [with P abcd ≡ (∂L/∂Rabcd)] the field equation:

Gab = P cde
a Rbcde −

1

2
Lgab − 2∇c∇dPacdb

≡ Rab −
1

2
Lgab − 2∇c∇dPacdb = (1/2)Tab

• A“nice” class of theories: ∇aP abcd = 0 for which

Rab −
1

2
Lgab = (1/2)Tab

• Horizons arise inevitably in the solutions to these field equations.
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time

space

HORIZ
ON

Wheeler (∼ 1971): Can one violate second law of thermodynamics by

hiding entropy behind a horizon ?

Bekenstein (1972): No! Horizons have entropy S ∝ (Area) which goes
up when you try this.
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• The invariance under xa → xa + qa(x) leads to a

conserved current Ja in all these theories.

• The entropy of the horizon in any theory is given by

S ≡ β

∫

dD−1Σa Ja = β

∫

dD−2Σab Jab =
1

4

∫

H
(32π P ab

cd )ǫabǫ
dcdσ

The (Wald) entropy depends crucially on the theory and

vice-versa through P ab
cd .

• Entropy knows about spacetime dynamics; temperature

does not.

• The connection between xa → xa + qa(x) and entropy is a

mystery in the conventional approach.
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Why fix it when it works ?

THE CONVENTIONAL APPROACH HAS NO

EXPLANATION FOR SEVERAL PECULIAR FEATURES

...JUST ‘ALGEBRAIC ACCIDENTS’

THESE PECULIAR FEATURES PROVIDE THE

‘INTERNAL EVIDENCE’ THAT WE ARE LOOKING

AT GRAVITY THE WRONG WAY AROUND !!

Example: minertial = mgrav is ‘internal evidence’

for geometrical nature of gravity.
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• Field equations become TdS = dE + PdV ; with : (TP,02)

S =
1

4L2
P

(4πa2) =
1

4

AH

L2
P

; E =
c4

2G
a =

c4

G

(
AH

16π

)1/2
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[arXiv:0807.1232]; [hep-th/0609128]; [hep-th/0612144]; [hep-th/0701198];
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[arXiv:0801.2688]; [arXiv:0805.1162]; [arXiv:0808.0169]; [arXiv:0809.1554];
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• Horava-Lifshitz gravity [arXiv:0910.2307] .

IN ALL THESE CASES FIELD EQUATIONS REDUCE

TO TdS = dE + PdV WITH CORRECT S!
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• The natural action principle in all Lanczos-Lovelock models have a

surface and bulk term:

Agrav =

∫

V
dDx

√
−g [Lbulk + Lsur] ≡

∫

V
dDx

[√
−gLbulk + ∂i(

√
−gV i)

]

so that

Agrav =

∫

V
dDx

√
−g Lbulk +

∫

∂V
dD−1x

√
h niV

i

• Throw away (or cancel) surface term, vary bulk term and you get

the field equations. Solve the field equations to get a solution with

horizon. Then .....

• You find that the part you threw away, the Asur, evaluated on any

horizon gives its entropy !

• How does the surface term know the physics determined by the

bulk term?!
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• Example of ‘holography in action’: The classical mechanics action

is:

Aq =

∫

dt Lq(q, q̇); δq = 0 at t = (t1, t2)

• The same equations of motion arise from an action with second

derivatives:

Ap =

∫

dt Lp(q, q̇, q̈); δp = 0 at t = (t1, t2)

Lp = Lq −
d

dt

(

q
∂Lq

∂q̇

)

• Gravitational actions have exactly this structure! [TP, 02, 05]

√
−gLsur = −∂a

(

gij
δ
√−gLbulk

δ(∂agij)

)

• Information is duplicated in Lbulk and Lsur!
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ACTION AS THE FREE ENERGY OF SPACETIME
T.P, 2004; A. Mukhopadhyay, T.P, 2006; S.Kolekar, T.P, 2010

• In static spacetimes with horizon, Euclidean action can

be interpreted as free energy of spacetime:

AE = βE
︸︷︷︸

bulk term

− S︸︷︷︸
surface term

= βF

• If Jab is the Noether potential for qa = (1, 0) in a static

spacetime, then

√
−gL = − 2

√
−gG0

0︸        ︷︷        ︸
bulk term

+ ∂α

(√
−g J0α

)

︸                ︷︷                ︸
surface term
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A THERMODYNAMIC INTERPRETATION ?

GRAVITY IS AN EMERGENT PHENOMENON

INVOLVING THERMODYNAMIC DESCRIPTION OF

MICROSCOPIC SPACETIME DEGREES OF FREEDOM
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YOU CAN HEAT UP GAS

Boltzmann Postulate: If you can heat it, it has microstructure!

• In the description of gas dynamics, heat engines etc. we use two

categories of variables: mechanical and thermodynamical.

• Boltzmann postulated microscopic degrees of freedom and

connected the thermodynamical variables to mechanical variables of

these d.o.f.

• Key new ingredient: Boltzmann postulate related thermodynamics

to mechanics of microstructure.

The equipartition law

E =
1

2
nkBT → 1

2

∫

dV
dn

dV
kBT =

1

2
kB

∫

dnT

demands the ‘granularity’ with finite n; de-

grees of freedom scales as volume.
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YOU CAN HEAT UP SPACETIME

Boltzmann Postulate: If you can heat it, it has microstructure!

• Study spacetime just like we studied gas dynamics before we

understood the atomic structure of matter.

• Thermodynamic description should be useful and independent of

exact nature of microscopic degrees of freedom In this limit, the

exact nature of QG description should be irrelevant.

• Elastic constants, gas density, pressure etc are useful variables in

the thermodynamic limit. Metric, curvature etc. have a similar

status in the description of spacetime.

• Entropy of a gas is related to the degrees of freedom which are

ignored. Entropy of spacetime is related to unobservable degrees of

freedom for a given observer.
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A TEST OF THE IDEA:

THE AVOGADRO NUMBER OF SPACETIME

IF SPACETIME HAS MICROSTRUCTURE AND IT

CAN BE HEATED UP, IS THERE AN EQUIPARTITION

LAW “E = (1/2)nkBT” FOR THE MICROSCOPIC

SPACETIME DEGREES OF FREEDOM ?

IF SO, CAN WE DETERMINE n?
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TP, Class.Quan.Grav., 21, 4485 (2004); TP, 0912.3165; Phys.Rev., D 81, 124040 (2010)

• In hot spacetimes, Einstein’s equations imply the

Equipartition Law for microscopic d.o.f!

E =
1

2
kB

∫

∂V

√
σ d2x

L2
P︸       ︷︷       ︸

Area ‘bits′

{
Naµnµ

2π

}

︸           ︷︷           ︸
acceleration

temperature

≡ 1

2
kB

∫

∂V
dn Tloc

• ‘Gravity is holographic’ !:

E ≡ 1

2
kB

∫

∂V
dn Tloc ≡

1

2
kB

∫

∂V
dA

dn

dA
Tloc

• Result generalizes to any Lanczos-Lovelock model:

E =
1

2
kB

∫

∂V
dnTloc;

dn

dA
=

dn√
σdD−2x

= 32πP ab
cd ǫabǫ

cd
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Observer at

r = constant

not just the horizon

kBT =
~

c

(
g

2π

)

Black hole

R = 2M

The whole spacetime is hot;
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Black hole

R = 2M

kBT =
~

c

(
g

2π

)

=
~

c

GM

2πr2

N =
Area

L2
P

=
4πr2c3

G~

E =
1

2
N(kBT ) =

1

2

(
4πr2c3

G~

) (
~

c

GM

2πr2

)

= Mc2
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System Macroscopic body Spacetime

Can the system be hot? Yes Yes

Can it transfer heat? Yes; for e.g., hot gas can be Yes; water at rest in Rindler

used to heat up water spacetime will get heated up

How could the heat energy be The body must have microscopic Spacetime must have microscopic

stored in the system? degrees of freedom degrees of freedom

Number of degrees of freedom Equipartition law Equipartition law

required to store energy dE dn = dE/(1/2)kBT dn = dE/(1/2)kBT

at temperature T

Can we read off dn? Yes; when thermal equilibrium Yes; when static field eqns hold;

holds; depends on the body depends on the theory of gravity

Expression for entropy ∆S ∝ ∆n ∆S ∝ ∆n

Does this entropy match Yes Yes

with the expressions

obtained by other methods?

How does one close the Use an extremum principle Use an extremum principle

loop on dynamics? for a thermodynamical for a thermodynamical

potential (S, F, ...) potential (S, F, ...)
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THERMODYNAMICS OF SPACETIME

• Thermodynamic potentials like ℑ = (S[qA], F [qA], ...)

connect the fundamental and emergent descriptions in

terms of some suitable variables.

• The nature of independent variables qA and the form of

ℑ[qA] depend on the class of observers and the model for

gravity. New level of observer dependence.

• We need a thermodynamical potential ℑ[qA] for

spacetime extremising which for all class of observers

should give the field equations.
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GRAVITY – THE ‘RIGHT WAY UP’

• Principle of Equivalence ⇒ Gravity can be described by gab.

• Around any event there exists local inertial frames AND local

Rindler frames with a local horizon and temperature.

• Can flow of matter across the local, hot, horizon hide entropy ?

• Equivalently, can virtual displacements of a local patch of null

surface, leading to flow of energy across a hot horizon allow you to

hide entropy ?

• No. The virtual displacement of a null surface should cost entropy,

Sgrav.

• Dynamics should now emerge from maximizing Smatter + Sgrav for all

Rindler observers!.

• Structure:

Local Inertial frames ⇒ Kinematics of Gravity

Local Rindler frames ⇒ Dynamics of Gravity
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X
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limit of validity of
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Validity of laws of SR ⇒ kinematics of gravity



LOCAL RINDLER OBSERVERS

Local Rinder
observer

T

X

Rxx ∼ 1
limit of validity of
local inertial frame

P

κ−1 ≪ R−1/2

Validity of entropy extremisation ⇒ dynamics of gravity
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• Associate with the virtual displacements of null vectors ξa a

potential ℑ(ξa) which is quadratic in deformation field:

ℑ[ξ] = ℑgrav + ℑmatt = −
[
4P abcd∇cξa∇dξb − T abξaξb

]

• Demand that δℑ/δξa = 0 for all null vectors ξa should lead to second

order field equations. [T.P, 08; T.P., A.Paranjape, 07]

• Uniquely fixes the form of P abcd as

P abcd =

(
∂F [Rab

cd, gij]

∂Rabcd

)

; ∇aP
abcd = 0

which requires F = L, the Lanczos-Lovelock Lagrangian.

• The key point is:

∇c

[
∂ℑ

∂(∇cξa)

]

∝ ∇c(P
abcd∇dξb) ∝ P abcdRj

bcdξj
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THE DYNAMICAL EQUATIONS

• Demand that δℑ = 0 for variations of all null vectors: This leads to

Lanczos-Lovelock theory with an arbitrary cosmological constant:

Ga
b ≡

[

P ijk
b Ra

ijk −
1

2
δa

b L

]

=
1

2
[T a

b + Λδa
b ],

• To the lowest order we get Einstein’s theory with cosmological

constant as integration constant. Equivalent to

(Gab − 8πTab)ξ
aξb = 0 ; (for all null ξa)

This is unique in D = 4.

• The field equations now have a new symmetry. The action and

field equations are invariant under Tab → Tab + ρ0gab. Gravity does not

couple to bulk vacuum energy (cosmological constant).
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• If we allow for higher order field equations, a more general class of

models are possible with (T.P., 09; S.F.Wu, 09)

ℑgrav = −4
[
P abcd∇cξa ∇dξb + (∇dP

abcd)ξb∇cξa + (∇c∇dP
abcd)ξaξb

]

• In this case one obtains

Rab −
1

2
Lgab − 2∇c∇dPacdb = (1/2)[Tab + Λgab]

• That is, given an L(Rab
cd, gab) that leads to a field equation on varying

gab, one can write down explicitly an ℑ[ξa] which gives the same field

equations on varying ξa.
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• The extremum value can be computed on-shell on a solution.

• The total entropy of a region V resides in its boundary ∂V!

(‘Gravity is holographic’)

• Non-trivial consistency check: On any solution with horizon, it gives

the correct (Wald) entropy computed by other methods.

• In the semi-classical limit, gravitational (Wald) entropy is quantized

S
∣
∣
H[on − shell] = 2πn. To the lowest order this leads to area

quantization. [Kothawala, Sarkar,TP, 2008]

• Connects with the equipartition idea.
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SUMMARY

• There is ‘internal evidence’ to suggest that dynamics of gravity is

like thermodynamic description of macroscopic body.

• Local Rindler observers around any event attribute entropy to local

patch of null surface. Observer dependent entropy density of

spacetime.

• Principle of Equivalence and Local inertial frame ⇒ Kinematics of

gravity; Entropy balance and local Rindler frame ⇒ Dynamics of

gravity.

• Extremizing ℑ[ξa] associated with all null vectors gives field

equations of the theory. Different forms of ℑ[ξa] lead to different

theories.

• The deep connection between gravity and thermodynamics goes

well beyond Einstein’s theory. Closely related to the holographic

structure action functional.
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OPEN QUESTIONS, FUTURE DIRECTIONS ....

OK, but so what .... ?

• What are the atoms of spacetime ? [Asking Boltzmann to get

Schrodinger equation from thermodynamics of hydrogen gas ?!]

How come horizons act as a ‘magnifying glass’ for microscopic

degrees of freedom that ‘come alive’ only near null surfaces ?

• New level of observer dependence in thermodynamics variables like

temperature, entropy etc. What are the broader implications ?

• Fluctuations around equilibrium, Minimal area, L2
P as

zero-point-area of spacetime ....

• Can one do better than a host of other ‘QG candidate models’ ?

e.g., cosmological constant problem, singularity problem ...
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Questions you need to answer!

• Why does the current related to xa → xa + qa(x) have anything to do

with a thermodynamical variable like entropy ?

• Why do Einstein’s equations reduce to a thermodynamic identity on

the horizons ?

• Why does Einstein-Hilbert action have several peculiar features ?

(holographic surface/bulk terms, thermodynamic interpretation ....)

• Why does the surface term in the action give the horizon entropy ?

And on-shell action reduces to the free energy ?

• Why does the microscopic degrees of freedom obey thermodynamic

equipartition ?

• Why does a thermodynamic variational principle lead to the

gravitational field equations?

• Why do all these work for a wide class of theories?
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S[na] = −
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• The variation (ignoring the surface term) is same as varying

(2Eab − Tab)nanb with respect to na and demanding that it holds for

all na. This is why we get (2Eab = Tab) except for a cosmological

constant.


