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[opological density terms (total derivatives) in the Lag. T
density of (i) a guantum mechanical model as well as (ii) in
the QCD.
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[—Topological density terms (total derivatives) in the Lag. T
density of (i) a quantum mechanical model as well as (i) In
the QCD.
Three such terms, the Nieh-Yan, Pontryagin and Euler
densities, in the quantum theory of gravity in (1 + 3) D.
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density of (i) a quantum mechanical model as well as (i) In
the QCD.

Three such terms, the Nieh-Yan, Pontryagin and Euler
densities, in the quantum theory of gravity in (1 + 3) D.
Associated: two CP-odd and one CP-even parameters.

One CP odd parameter is identified with the inverse of the
Bl parameter.
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density of (i) a quantum mechanical model as well as (i) In
the QCD.
Three such terms, the Nieh-Yan, Pontryagin and Euler
densities, in the quantum theory of gravity in (1 + 3) D.
Associated: two CP-odd and one CP-even parameters.
One CP odd parameter is identified with the inverse of the
Bl parameter.
Classical canonical Hamiltonian formulation for a theory of
gravity including these three topological terms.
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[—Topological density terms (total derivatives) in the Lag. T
density of (i) a quantum mechanical model as well as (i) In
the QCD.

Three such terms, the Nieh-Yan, Pontryagin and Euler
densities, in the quantum theory of gravity in (1 + 3) D.
Associated: two CP-odd and one CP-even parameters.
One CP odd parameter is identified with the inverse of the
Bl parameter.

Classical canonical Hamiltonian formulation for a theory of
gravity including these three topological terms.

In the time-gauge, we obtain a real SU(2) gauge theoretic
formulation with a set of seven first class constraints, three
corresponding to SU(2) generators, three diffeomorphism
constraints and one Hamiltonian constraint.
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[—Topological density terms (total derivatives) in the Lag. T
density of (i) a quantum mechanical model as well as (i) In

the QCD.

Three such terms, the Nieh-Yan, Pontryagin and Euler

densities, in the quantum theory of gravity in (1 + 3) D.

Associated: two CP-odd and one CP-even parameters.

One CP odd parameter is identified with the inverse of the

Bl parameter.

Classical canonical Hamiltonian formulation for a theory of

gravity including these three topological terms.

In the time-gauge, we obtain a real SU(2) gauge theoretic

formulation with a set of seven first class constraints, three

corresponding to SU(2) generators, three diffeomorphism

constraints and one Hamiltonian constraint.

This analysis provides a topological interpretation for the Bl

arameter. -
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Introduction

~ The Euler-Lagrangian equations of motion are not changed
by adding total divergences to the Lagrangian density:
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Introduction

~ The Euler-Lagrangian equations of motion are not changed
by adding total divergences to the Lagrangian density:

L= Ly+ 00,X"

Adding total divergence terms to the Lagrangian density
iImplies, in the Hamiltonian formulation, a canonical
transformation; ¢ — ¢’ = ¢'(q, p), p — p' = p'(q, p) on the
coordinates ¢ and the momenta p with the corresponding
transformation of the Hamiltonian H(q,p) — H' = H'(¢, p’).
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iImplies, in the Hamiltonian formulation, a canonical
transformation; ¢ — ¢’ = ¢'(q, p), p — p' = p'(q, p) on the
coordinates ¢ and the momenta p with the corresponding
transformation of the Hamiltonian H(q,p) — H' = H'(¢, p’).

Thus, phase space is changed and so is the symplectic
structure, yet the Hamiltons equations of motion are not
changed .
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Introduction

~ The Euler-Lagrangian equations of motion are not changed
by adding total divergences to the Lagrangian density:

L= Ly+ 00,X"

Adding total divergence terms to the Lagrangian density
iImplies, in the Hamiltonian formulation, a canonical
transformation; ¢ — ¢’ = ¢'(q, p), p — p' = p'(q, p) on the
coordinates ¢ and the momenta p with the corresponding
transformation of the Hamiltonian H(q,p) — H' = H'(¢, p’).

Thus, phase space is changed and so is the symplectic
structure, yet the Hamiltons equations of motion are not
changed .

To repeat, classical dynamics (the classical equations of
motion) do not see tot. div. terms of £; that is, classical
Ldynamics does not depend on the parameter 6.
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While quantum theory also does not generally depend on T
these total divergence terms, topological densities, which
are also total divergences, are special.
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fWhiIe guantum theory also does not generally depend on T
these total divergence terms, topological densities, which
are also total divergences, are special.

Topological density terms may effect the quantum theory,
even though classical dynamics is not altered:
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guantities develop dependence on the coefficient ¢ of the
total divergence term.
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these total divergence terms, topological densities, which
are also total divergences, are special.
Topological density terms may effect the quantum theory,
even though classical dynamics is not altered: the physical
guantities develop dependence on the coefficient ¢ of the
total divergence term.
Thus, for a quantum theory to have dependence on the
parameter 6, it should be the coefficient of a topological
density. This IS a necessary requirement, but not sufficient.
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these total divergence terms, topological densities, which
are also total divergences, are special.
Topological density terms may effect the quantum theory,
even though classical dynamics is not altered: the physical
guantities develop dependence on the coefficient ¢ of the
total divergence term.
Thus, for a quantum theory to have dependence on the
parameter 6, it should be the coefficient of a topological
density. This IS a necessary requirement, but not sufficient.

Quantum theory that depends on the topological parameter,
some times, exists for every value of 4. 4 is an additional
coupling constant, besides the usual coupling constants,
em coupling, Newtons constant, etc.
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fWhiIe guantum theory also does not generally depend on T
these total divergence terms, topological densities, which
are also total divergences, are special.
Topological density terms may effect the quantum theory,
even though classical dynamics is not altered: the physical
guantities develop dependence on the coefficient ¢ of the
total divergence term.
Thus, for a quantum theory to have dependence on the
parameter 6, it should be the coefficient of a topological
density. This IS a necessary requirement, but not sufficient.

Quantum theory that depends on the topological parameter,
some times, exists for every value of 4. 4 is an additional
coupling constant, besides the usual coupling constants,
em coupling, Newtons constant, etc.

LSuch topological density terms are universal. J
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A Quantum Mechanical System
f (daz(t)

2
dx
L= dt ) ~V(x) + 5 dgst)
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A Quantum Mechanical System

- et x o
L=3 (ddgst)) — V(2) + £
The EOM: de 1 8@ _ g,
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A Quantum Mechanical System

-

N L=} (0) - Via) + S50

The EOM: de 1 8@ _ g,

Presence of the total derivative term does not affect this
equation of motion;
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The EOM: de 1 8@ _ g,
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equation of motion; there is no ¢ dependence.

o -

Chandravana. The Institute of Mathematical Sciences. Chennai. Jan 3-7. 2011 — p. 5/7



A Quantum Mechanical System

dt dt

The EOM: de 1 8@ _ g,

f r— % (daz(t))2 B V(a:) 4 %dw(t) T

Presence of the total derivative term does not affect this
equation of motion; there is no ¢ dependence.

Total derivative term is indeed a topological charge density; ItS
Integral is the topological charge or the winding number for
periodic configurations x(¢):
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A Quantum Mechanical System

dt dt

The EOM: de 1 8@ _ g,

f r— % (daz(t))2 B V(a:) 4 %dw(t) T

Presence of the total derivative term does not affect this
equation of motion; there is no ¢ dependence.

Total derivative term is indeed a topological charge density; ItS
Integral is the topological charge or the winding number for
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A Quantum Mechanical System

dt dt

The EOM: de 1 8@ _ g,

f r— % (dw(t))2 B V(Qﬁ) 4 %dw(t) T

Presence of the total derivative term does not affect this
equation of motion; there is no ¢ dependence.

Total derivative term is indeed a topological charge density; ItS
Integral is the topological charge or the winding number for
periodic configurations x(¢):

1 o dz(t)
9= 37 —oodt dt -

This just measures how many times do we wrap or wind
x(t) over the interval 0 to 27 as we go around ¢ once over Its

full range.
| .
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For example, for configurations given by

z(t) = *dtan~ ! [exp(t — t,)]:
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For example, for configurations given by
z(t) = *dtan~ ! [exp(t — t,)]:

1 [0 dr(t)
q — o f_oo dt—dt — +1.
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For example, for configurations given by
z(t) = *dtan~ ! [exp(t — t,)]:

1 [0 dr(t)
q — o f_oo dt—dt — :|:1

The winding number IS always an integer.
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For example, for configurations given by
z(t) = *dtan~ ! [exp(t — t,)]:

1 [ dr(t)
q — o f_oo dt—dt — :|:1

The winding number IS always an integer.

The total derivative term, %d‘ﬁl—gﬂ, IS a topological density

associated with the homotopy maps S' — S*.
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-

For example, for configurations given by
z(t) = *dtan~ ! [exp(t — t,)]:

1 [ dr(t)
q — o f_oo dt—dt — :|:1

The winding number IS always an integer.

The total derivative term, %dfl—gt), IS a topological density

associated with the homotopy maps S' — S*.

Its integral is characterized by the homotopy group II, (S1),
which is the set of integers, Z.
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A special Case

fNow let us consider a particular form for the potential T
function, periodic sine-Gordon potential:
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fNow let us consider a particular form for the potential T
function, periodic sine-Gordon potential:

V)= A\ {1 —  COoS (%)}

Here the quantum theory does depend on the topological
parameter 6.
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A special Case

fNow let us consider a particular form for the potential T
function, periodic sine-Gordon potential:

V)= A\ {1 —  COoS (%)}

Here the quantum theory does depend on the topological
parameter 6.

There are infinitely many classical ground states, given by

the locations ma,, = 2n7v/A , n € Z of the minima of the

potential VV(x). Corresponding to each one of these
classical ground states is a perturbative vacuum state
represented by an integer label, |n).
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A special Case

fNow let us consider a particular form for the potential T
function, periodic sine-Gordon potential:

V)= A\ {1 —  COoS (%)}

Here the quantum theory does depend on the topological
parameter 6.

There are infinitely many classical ground states, given by
the locations ma,, = 2n7v/A , n € Z of the minima of the

potential VV(x). Corresponding to each one of these
classical ground states is a perturbative vacuum state
represented by an integer label, |n).

If we were to disregard tunnellings, the quantum energy
eigenstates would be an infinitely many degenerate states,
Leach concentrated at the bottom of one of the wells. J
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ﬁBut gquantum barrier penetration will lead to every energy T
eigenvalue to change into a continuous band of
eigen-values, the so called Bloch wave.
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fBut guantum barrier penetration will lead to every energy T
eigenvalue to change into a continuous band of
eigen-values, the so called Bloch wave.

This is so because the real quantum vacuum state here Is a
non-pertubative one given by a linear combination of the
perturbative quantum states |n):

lvac) = ). .7 exp(ind) |n).
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fBut guantum barrier penetration will lead to every energy T
eigenvalue to change into a continuous band of
eigen-values, the so called Bloch wave.

This is so because the real quantum vacuum state here Is a
non-pertubative one given by a linear combination of the
perturbative quantum states |n):

lvac) = ). .7 exp(ind) |n).
Thus, associated with this quantum vacuum state are
Infinitely many classical ground states corresponding to the

Infinitely many degenerate minima of the classical potential
above.
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fBut guantum barrier penetration will lead to every energy T
eigenvalue to change into a continuous band of
eigen-values, the so called Bloch wave.

This is so because the real quantum vacuum state here Is a
non-pertubative one given by a linear combination of the
perturbative quantum states |n):

lvac) = ). .7 exp(ind) |n).
Thus, associated with this quantum vacuum state are
Infinitely many classical ground states corresponding to the

Infinitely many degenerate minima of the classical potential
above.

We repeat, the vacuum state is essentially non-pertubative
In character.
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fBut guantum barrier penetration will lead to every energy T
eigenvalue to change into a continuous band of
eigen-values, the so called Bloch wave.

This is so because the real quantum vacuum state here Is a
non-pertubative one given by a linear combination of the
perturbative quantum states |n):

lvac) = ) ..z exp(ind) |n).
Thus, associated with this quantum vacuum state are
Infinitely many classical ground states corresponding to the

Infinitely many degenerate minima of the classical potential
above.

We repeat, the vacuum state is essentially non-pertubative
In character.

LThe physical quantities depend on this parameter 6. J
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ﬁFor example the vacuum energy, besides the perturbative T
zero-point energy E, = %hw, has an additional
non-perturbative contribution which depends on 6:
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fFor example the vacuum energy, besides the perturbative T
zero-point energy £, = %hw, has an additional
non-perturbative contribution which depends on 6:

Eype = By + Ey + ...O(h?) with E, ~ Ah cos 0 exp(—#),

where A and B are numerical constants.
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zero-point energy £, = %hw, has an additional
non-perturbative contribution which depends on 6:

Eype = By + Ey + ...O(h?) with E, ~ Ah cos 0 exp(—#),

where A and B are numerical constants.
A quantum theory is defined for every value of 6.
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zero-point energy £, = %hw, has an additional
non-perturbative contribution which depends on 6:

Eype = By + Ey + ...O(h?) with E, ~ Ah cos 0 exp(—#),

where A and B are numerical constants.

A quantum theory is defined for every value of . This
feature is sometimes referred to as quantization ambiguity.
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fFor example the vacuum energy, besides the perturbative T
zero-point energy £, = %hw, has an additional
non-perturbative contribution which depends on 6:

Eype = By + Ey + ...O(h?) with E, ~ Ah cos 0 exp(—#),
where A and B are numerical constants.

A quantum theory is defined for every value of . This
feature is sometimes referred to as quantization ambiguity.

All this means that 4 is a coupling constant as much as the
Interaction strength A or more generally as the Newton’s
constant of gravity or the electromagnetic coupling.
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fFor example the vacuum energy, besides the perturbative T
zero-point energy £, = %hw, has an additional
non-perturbative contribution which depends on 6:

Eype = By + Ey + ...O(h?) with E, ~ Ah cos 0 exp(—#),
where A and B are numerical constants.

A quantum theory is defined for every value of . This
feature is sometimes referred to as quantization ambiguity.

All this means that 4 is a coupling constant as much as the
Interaction strength A or more generally as the Newton’s
constant of gravity or the electromagnetic coupling.

This suggests that ¢ like the electromagnetic coupling is not
determined by the theory but is prescribed as a given
Lparameter and is to be fixed by the experiment.
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A (1 + 3)D field theory example

fAnother example Is the 6 parameter of the QCD: T
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A (1 + 3)D field theory example

fAnother example Is the 6 parameter of the QCD: T

L ripv i 0 % N nl
L=Loop+0Ly=—32F*F,, — grmePF,,Fl .
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A (1 + 3)D field theory example

fAnother example Is the 6 parameter of the QCD: T

L ripv i 0 % N nl
L=Loop+0Ly=—32F*F,, — grmePF,,Fl .

where F}, is the SU(3) gauge field strength.
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A (1 + 3)D field theory example

fAnother example Is the 6 parameter of the QCD:

_ _ L pipy i 0 v N nl
L=Loop+0Ly=—32F*F,, — grmePF,,Fl .

where F}, is the SU(3) gauge field strength.

L, 1s a top. density, Pontryagin density; and it is a total div:

1 _upuvalB m T %
Lepval pi pi o — 40 K
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A (1 + 3)D field theory example

fAnother example Is the 6 parameter of the QCD:

L ripv i 0 % N nl
L=Loop+0Ly=—32F*F,, — grmePF,,Fl .

where F}, is the SU(3) gauge field strength.

L, 1s a top. density, Pontryagin density; and it is a total div:

1 _upuvalB m T %
Lepval pi pi o — 40 K

Kl = B [ALg, AL + L fiik AT AT AR,
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A (1 + 3)D field theory example

fAnother example Is the 6 parameter of the QCD: T
1 pipw i 0 v Y
L=Loop+0Ly=—32F*F,, — grmePF,,Fl .

where F}, is the SU(3) gauge field strength.

L, 1s a top. density, Pontryagin density; and it is a total div:

1 _puvaBrm i %
Lepval pi pi o — 40 K

_ P 7 1 1 rijk At A Ak
Kb = etvoP [AyaaAﬁ + 5 fY A,/AgAﬁ}.
In the Euclidean space-time, its integral is always an integer:

L fd%e“”o‘ﬁFiFi =n, néeE”.

6472 urs a3
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A (1 + 3)D field theory example

fAnother example Is the 6 parameter of the QCD: T

L ripv i 0 % N nl
L=Loop+0Ly=—32F*F,, — grmePF,,Fl .

where F}, is the SU(3) gauge field strength.

L, 1s a top. density, Pontryagin density; and it is a total div:

1 _upuvalB m T %
Lepval pi pi o — 40 K

_ P 7 1 1 rijk At A Ak
Kb = etvoP [AyaaAﬁ + 5 fY AVAgAﬁ}.
In the Euclidean space-time, its integral is always an integer:

L fd%e“”o‘ﬁFiFi =n, neE”mL.

6472 prt af

This is the winding number of the homotopy maps S° — S3
Lcharacterised by the homotopy group I1,(SU(N)) = Z. J
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Like the mechanical system with periodic sine-Gordon T
potential, there are infinitely many classical ground states in
this theory, each characterised by an integer n.
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Ike the mechanical system with periodic sine-Gordon
potential, there are infinitely many classical ground states in
this theory, each characterised by an integer n.

These are given by the solutions of Ffw = 0 which are just
the pure gauge A!, 7" = g~'9,9 where, T" are the SU(3)
algebra representation matrices and g(x) iIs an element of
the gauge group.
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fLike the mechanical system with periodic sine-Gordon T
potential, there are infinitely many classical ground states in
this theory, each characterised by an integer n.

These are given by the solutions of FZ'W = 0 which are just
the pure gauge A!, 7" = g~'9,9 where, T" are the SU(3)
algebra representation matrices and g(x) iIs an element of
the gauge group.

These g(x) = exp [i¢'(x)T"| fall in homotopy equivalence
classes, each characterized by an integer.
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Like the mechanical system with periodic sine-Gordon T
potential, there are infinitely many classical ground states in
this theory, each characterised by an integer n.

These are given by the solutions of FZ'W — 0 which are just
the pure gauge A!, 7" = g~'9,9 where, T" are the SU(3)
algebra representation matrices and g(z) is an element of
the gauge group.

These g(x) = exp [i¢'(x)T"| fall in homotopy equivalence
classes, each characterized by an integer.

True (nonperturbative) quantum vac state is the linear
superposition of perturbative vac states associated with
Lthese classical ground states: |vac) = ), ., exp(inf) |n). J
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fﬁg —= 64 Sehval ZV éﬁ' CP violating; so QCD is a theory T

with two coupling constants: g and the CP-violating 6.
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fﬁg —= 64 S eMra F;VF;ﬁ' CP violating; so QCD is a theory T

with two coupling constants: g and the CP-violating 6.

Physical quantities have dependence on this parameter.
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fﬁg —= 64 S eMra F;;VF;ﬁ' CP violating; so QCD is a theory T

with two coupling constants: g and the CP-violating 6.

Physical quantities have dependence on this parameter.

For example, in the quantum theory, there is non-zero
electric dipole moment for the neutron which depends on 6.
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fﬁg —= 4 S eMra F;VFéﬁ' CP violating; so QCD is a theory T

with two coupling constants: g and the CP-violating 6.
Physical quantities have dependence on this parameter.

For example, in the quantum theory, there is non-zero
electric dipole moment for the neutron which depends on 6.

Thus 6 is a physical parameter which is fixed by the
experimental constraints on possible induced CP violating
effects.
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fﬁg —= 4 S eMra F;VF;ﬁ' CP violating; so QCD is a theory T
with two coupling constants: g and the CP-violating 6.

Physical quantities have dependence on this parameter.

For example, in the quantum theory, there is non-zero
electric dipole moment for the neutron which depends on 6.

Thus 6 is a physical parameter which is fixed by the
experimental constraints on possible induced CP violating

effects.

These constraints force this parameter to be extremely
small.

o -
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fﬁg —= 4 S eMra F;;VF;ﬁ' CP violating; so QCD is a theory T
with two coupling constants: g and the CP-violating 6.

Physical quantities have dependence on this parameter.

For example, in the quantum theory, there is non-zero
electric dipole moment for the neutron which depends on 6.

Thus 6 is a physical parameter which is fixed by the
experimental constraints on possible induced CP violating

effects.

These constraints force this parameter to be extremely
small.

The constraints from the electric dipole moment of the
Lneutron suggest 0 < 107 rad. J
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Topological couplings in gravity

fLet us now explore the possibilities of such topological T
couplings constants in a theory of gravity in (1 + 3) dims.



Topological couplings in gravity

fLet us now explore the possibilities of such topological T
couplings constants in a theory of gravity in (1 + 3) dims.

We set up a theory of pure (i.e.,, no matter couplings) gravity
in terms of the 24 SO(1, 3) gauge connections w// and 16

tetrad fields ¢/, as the independent fields,

o -
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We set up a theory of pure (i.e.,, no matter couplings) gravity
in terms of the 24 SO(1, 3) gauge connections w// and 16

tetrad fields eﬁ as the independent fields, described by
Hilbert-Palatini Lagrangian density:

Lyp = % e X7 RW”(w)
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Topological couplings in gravity

fLet us now explore the possibilities of such topological T
couplings constants in a theory of gravity in (1 + 3) dims.

We set up a theory of pure (i.e.,, no matter couplings) gravity
in terms of the 24 SO(1, 3) gauge connections w// and 16

tetrad fields e/{ as the independent fields, described by
Hilbert-Palatini Lagrangian density:

Lyp = % e X7 RW”(w)
where e = det(efb) , X = %eﬁe’h = 3 (el —ehel)

R,LLI/IJ (w) = a[,uwy]lj + w[/wau]KJ

o -
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Topological couplings in gravity

fLet us now explore the possibilities of such topological T
couplings constants in a theory of gravity in (1 + 3) dims.

We set up a theory of pure (i.e.,, no matter couplings) gravity
in terms of the 24 SO(1, 3) gauge connections w// and 16

tetrad fields eﬁ as the independent fields, described by
Hilbert-Palatini Lagrangian density:

Lyp = % e X7 RW”(w)

_ I o 1oy — 1 (B
where e = dei(e,) , ZU:§6[16J]:§(€[€J—€J€I),

R,U,I/IJ (w) = a[,uwy]lj + w[inu]KJ

¢f/ is the inverse of the tetrad field, e} e =", , ¢/ ¢/} = 4§/, .

o -
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Topological couplings in gravity

fLet us now explore the possibilities of such topological T
couplings constants in a theory of gravity in (1 + 3) dims.

We set up a theory of pure (i.e.,, no matter couplings) gravity
in terms of the 24 SO(1, 3) gauge connections w// and 16

tetrad fields eﬁ as the independent fields, described by
Hilbert-Palatini Lagrangian density:

Lyp = % e X7 RW”(w)

_ I o 1oy — 1 (B
where e = dei(e,) , ZU:§6[16J]:§(€[€J—€J€I),

R,U,I/IJ (w) = a[,uwy]lj + w[inu]KJ

¢f/ is the inverse of the tetrad field, e} e =", , ¢/ ¢/} = 4§/, .

LThere are three possible top. densities that can be added: J
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(i) Nieh-Yan class: .
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(i) Nieh-Yan class: .

Iy = eZ%EWU(w) + e“yo‘ﬁDu(w)e]VDa(w)eé

o -
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(i) Nieh-Yan class: .

Iy = eZ%EWU(w) + e“mﬁDu(w)ehDa(w)eé
= 0, [e"P el Do (w)erg]

Raﬁlj(w) — %GIJKLRaﬁKL(W)

o -
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(i) Nieh-Yan class: .

Iy = eZ%EWU(w) + e“yo‘ﬁDu(w)e]VDa(w)eé
= 0y [e”mﬁ e, Do(w)erg]
Raﬁlj(w) — %GIJKLRaﬁKL(W)

. . . . . I . I I J
Covariant derivative is: D, (w)e, = e, +w,," se;,.

v

o -
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(i) Nieh-Yan class: .

Iy = eZ%EWU(w) + euuo‘ﬁDu(w)ehDa(w)eé
= 0y [e“mﬁ el Da(w)em}
R, (w) = LKL R e (w)
Covariant derivative is: D, (w)e, = d,e, +w,” se;.

This Is a topological density; it is a total divergence.

o -
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(i) Nieh-Yan class: .
Iy = eZ%EWU(w) + euuo‘ﬁDu(w)ehDa(w)eé
= 0y [e“mﬁ el Da(w)em}
Ry (W) = 3l KL Ry gy (w)
Covariant derivative is: D, (w)e, = d,e, +w,” se;.
This Is a topological density; it is a total divergence.

In the Euclidean theory, this topological density, properly
normalized, characterizes the winding numbers given by three
Integers associated with the homotopy groups:
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(i) Nieh-Yan class: .

Iy = eZ%EWU(w) + e“mﬁDu(w)ehDa(w)eé

= 0, [e"P el Do (w)erg]
Raﬁlj(w) — %GIJKLRaﬁKL(W)
Covariant derivative is: D, (w)e, = d,e, +w,” se;.

This Is a topological density; it is a total divergence.

In the Euclidean theory, this topological density, properly
normalized, characterizes the winding numbers given by three
Integers associated with the homotopy groups:

5(SO(5) =Z and II3(SO(4)) = (Z, Z).
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(i) Nieh-Yan class: .

Iy = eZ%EWU(w) + euuo‘ﬁDu(w)ehDa(w)eé
= 0y [e“mﬁ el Da(w)em}
R, (w) = LKL R e (w)
Covariant derivative is: D, (w)e, = d,e, +w,” se;.

This Is a topological density; it is a total divergence.

In the Euclidean theory, this topological density, properly
normalized, characterizes the winding numbers given by three
Integers associated with the homotopy groups:

[13(SO(5)) =7 and TII3(SO(4)) = (Z, 7).
LThe NY density is CP odd. J
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f (i) Pontryagin class: T

o -
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(i) Pontryagin class:
- g o

[P — EMVaﬁRMVIJ(w)Raﬁ (w)
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(i) Pontryagin class:
- g o

[P — EuyaﬁRMV]J(w)Raﬁ (w)

= 40, [e"*Pw, 7 (Bawsrs + 2wo M wsr)]
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(i) Pontryagin class:
- g o

IP = E’uyaﬁR,uVIJ(w)Raﬁ (Cd)
= 48# [Euyaﬁw,/['] (aangj =+ %w&leﬁKJ)}

Same topological density as in the case of QCD except that
the gauge group here SO(1, 3) instead of SU(3).

o -
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f (i) Pontryagin class: T
[P — eﬂyaﬁRMV[J(w)Raﬁl‘](w)

= 40, [e"*Pw, 7 (Bawsrs + 2wo M wsr)]

Same topological density as in the case of QCD except that
the gauge group here SO(1, 3) instead of SU(3).

For the Euclidean theory, this topological density, properly
normalized, characterizes the winding numbers given by two
Integers corresponding to the homotopy group:
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f (i) Pontryagin class: T

[P — eﬂyaﬁRMV[J(w)Raﬁl‘](w)

= 40, [e"*Pw, 7 (Bawsrs + 2wo M wsr)]

Same topological density as in the case of QCD except that
the gauge group here SO(1, 3) instead of SU(3).

For the Euclidean theory, this topological density, properly
normalized, characterizes the winding numbers given by two
Integers corresponding to the homotopy group:

[I3(SO(4)) = (Z, Z).

o -
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f (i) Pontryagin class: T

[P — eﬂyaﬁRMV]J(w)Raﬁl‘](w)

= 40, [e"*Pw, 7 (Bawsrs + 2wo M wsr)]

Same topological density as in the case of QCD except that
the gauge group here SO(1, 3) instead of SU(3).

For the Euclidean theory, this topological density, properly
normalized, characterizes the winding numbers given by two
Integers corresponding to the homotopy group:

[13(SO(4)) = (Z, Z). This top. density is CP odd.
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f (i) Pontryagin class: T
[P — eﬂyaﬁRMV[J(w)Raﬁl‘](w)

= 40, [e"*Pw, 7 (Bawsrs + 2wo M wsr)]

Same topological density as in the case of QCD except that
the gauge group here SO(1, 3) instead of SU(3).

For the Euclidean theory, this topological density, properly
normalized, characterizes the winding numbers given by two
Integers corresponding to the homotopy group:

[13(SO(4)) = (Z, Z). This top. density is CP odd.

(ii) Euler class:

o -
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f (i) Pontryagin class: T

[P — eﬂyaﬁRMV]J(w)Raﬁl‘](w)

= 40y, [ Pw,! (Oawprs + Swar WK ]
Same topological density as in the case of QCD except that
the gauge group here SO(1, 3) instead of SU(3).

For the Euclidean theory, this topological density, properly
normalized, characterizes the winding numbers given by two
Integers corresponding to the homotopy group:

[13(SO(4)) = (Z, Z). This top. density is CP odd.

(ii) Euler class:
[E — euyaﬁRMV[J(w)RaﬁI‘](w)
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f (i) Pontryagin class: T
[P — EﬂuaﬁRMﬂJ(w)Raﬁlj(w)
= 40y, [P w,! (Oawpry + Fwor WK )]
Same topological density as in the case of QCD except that
the gauge group here SO(1, 3) instead of SU(3).

For the Euclidean theory, this topological density, properly
normalized, characterizes the winding numbers given by two
Integers corresponding to the homotopy group:

[13(SO(4)) = (Z, Z). This top. density is CP odd.

(ii) Euler class:
[E — eﬂyaﬁRMV[J(w)RaﬁI‘](w)

=40, [6“”0‘6@,,[‘] (Oawpry + %WOJK“%KJH
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f (i) Pontryagin class: T
[P — EﬂuaﬁRMﬂJ(w)Raﬁlj(w)
= 40y, [P w,! (Oawpry + Fwor WK )]
Same topological density as in the case of QCD except that
the gauge group here SO(1, 3) instead of SU(3).

For the Euclidean theory, this topological density, properly
normalized, characterizes the winding numbers given by two
Integers corresponding to the homotopy group:

[13(SO(4)) = (Z, Z). This top. density is CP odd.

(ii) Euler class:
[E — euyaﬁRMV[J(w)RaﬁI‘](w)

=40, [6“”0‘6@,,[‘] (Oawpry + %WOJK“%KJH

LThis top. density is CP even. J
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fNow the most general Lagrangian density: T

o -
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fNow the most general Lagrangian density: T
1 v 0
L=35eSi R, W) + 3 Iyy + TIp + §1p

o -
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fNow the most general Lagrangian density: T
1 v 0
L=35eSi R, W) + 3 Iyy + TIp + §1p

Since all the topological terms are total divergences, the
classical equations of motion are not changed by including
them:;

o -
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fNow the most general Lagrangian density: T
1 v 0
L=35eSi R, W) + 3 Iyy + TIp + §1p

Since all the topological terms are total divergences, the
classical equations of motion are not changed by including
them; the EOM are independent of n, 6 and ¢.

o -
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fNow the most general Lagrangian density: T
% 0
L=35eSi R, W) + 3 Iyy + TIp + §1p

Since all the topological terms are total divergences, the
classical equations of motion are not changed by including
them; the EOM are independent of n, 6 and ¢.

However, the Hamiltonian formulation and the symplectic
structure, do see these parameters.

o -
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fNow the most general Lagrangian density: T
1 v 0
L=35eSi R, W) + 3 Iyy + TIp + §1p

Since all the topological terms are total divergences, the
classical equations of motion are not changed by including
them; the EOM are independent of n, 6 and ¢.

However, the Hamiltonian formulation and the symplectic
structure, do see these parameters.

Quantum theory may depend on them.
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fNow the most general Lagrangian density: T
% 0
L=35eSi R, W) + 3 Iyy + TIp + §1p

Since all the topological terms are total divergences, the
classical equations of motion are not changed by including
them; the EOM are independent of n, 6 and ¢.

However, the Hamiltonian formulation and the symplectic
structure, do see these parameters.

Quantum theory may depend on them.
Iy and I, are CP-violating and I Is not.

o -
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fNow the most general Lagrangian density: T
1 v 0
L=35eSi R, W) + 3 Iyy + TIp + §1p

Since all the topological terms are total divergences, the
classical equations of motion are not changed by including
them; the EOM are independent of n, 6 and ¢.

However, the Hamiltonian formulation and the symplectic
structure, do see these parameters.

Quantum theory may depend on them.
Iy and I, are CP-violating and I Is not.

So Iin such a quantum theory, besides the Newton’s
coupling constant, we can have additional two CP violating

L(n’ ¢#) and one CP preserving (¢) couplings. J
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Hamiltonian formulation

fHamiItonian analysis for the theory containing the HP term T
and the Nieh-Yan density only

o -
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Hamiltonian formulation

fHamiItonian analysis for the theory containing the HP term T
and the Nieh-Yan densityonly (n A0, 8 =0, ¢ = 0):
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Hamiltonian formulation

fHamiItonian analysis for the theory containing the HP term T
and the Nieh-Yan densityonly (n 40, 6 =0, ¢ = 0):

L=5eX; R (W) + § gy

has been done. (G. Date, RKK and Sandipan Sengupta, Phys. Rev.
D79: 044008, 2009; Mercuri)

o -
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Hamiltonian formulation
fHamiItonian analysis for the theory containing the HP term T
and the Nieh-Yan densityonly (n 40, 6 =0, ¢ = 0):
L=5eX; R (W) + § gy
has been done. (G. Date, RKK and Sandipan Sengupta, Phys. Rev.
D79: 044008, 2009; Mercuri)

This analysis, in the time gauge, leads to the well known
Ashtekar-Barbero-Immirzi real SU(2) gauge theory of gravity
with n~! identified as the Barbero-Immirzi parameter ~.

o -
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Hamiltonian formulation

fHamiItonian analysis for the theory containing the HP term T
and the Nieh-Yan densityonly (n A0, 8 =0, ¢ = 0):

1 224 1J n
L=geXyy By W) + 3 Iyy
has been done. (G. Date, RKK and Sandipan Sengupta, Phys. Rev.

D79: 044008, 2009; Mercuri)

This analysis, In the time gauge, leads to the well known
Ashtekar-Barbero-Immirzi real SU(2) gauge theory of gravity
with n~! identified as the Barbero-Immirzi parameter ~.

Here we present a brief outline of the Hamiltonian analysis for
the Lag. density containing all the three top. terms (RKK and
Sandipan Sengupta):
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Hamiltonian formulation

fHamiItonian analysis for the theory containing the HP term T
and the Nieh-Yan densityonly (n A0, 8 =0, ¢ = 0):

L=5eX; R (W) + § gy

has been done. (G. Date, RKK and Sandipan Sengupta, Phys. Rev.
D79: 044008, 2009; Mercuri)

This analysis, In the time gauge, leads to the well known
Ashtekar-Barbero-Immirzi real SU(2) gauge theory of gravity
with n~! identified as the Barbero-Immirzi parameter ~.

Here we present a brief outline of the Hamiltonian analysis for
the Lag. density containing all the three top. terms (RKK and
Sandipan Sengupta):

L EZ%QZ%RWU(W)JFg[NY+%[P+%IE J
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ﬁStandard parametrization for the tetrad fields: T
el = NM!'+NevI el =vI. ampvi=0, MM =-1

| -
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fStandard parametrization for the tetrad fields: T
e, = NM'+NV!, el =V, MV]i=0 MM =-1
with N and N as the lapse and shift fields.

o -
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fStandard parametrization for the tetrad fields:

-

e; = NM'+ NVl el=V!, MVi=0 MM =-1

with N and N¢ as the lapse and shift fields.

The inverse tetrads are:
63:—%7 Q%ZVIG—FNNMI; MIVICL:O’
vivp=2¢y,  Vive=¢l+ M M,

-
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fStandard parametrization for the tetrad fields:

-

e; = NM'+ NV, —el=V!, MvlI=0 MM =-1

with N and N¢ as the lapse and shift fields.

The inverse tetrads are:
63:—%7 Q%ZVICL—FNNMI; M[VIG’:O,
vivi=¢,,  VIve=4sl4+ MM,
In this parametrization, we have, instead of the 16 tetrad
component fields efu the following 16 fields:

-
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fStandard parametrization for the tetrad fields: T
el = NMI+-Nevio el =vI. ppvi=0, MM =-1
with N and N as the lapse and shift fields.
The inverse tetrads are:
egz—%, e%:VI“—I—NC;VMI; M[VIG’:O,
vivi=¢,,  VIve=4sl4+ MM,
In this parametrization, we have, instead of the 16 tetrad
component fields e/{, the following 16 fields:
9: Vf# (M'VE=0); 3: MY (MM, =-1);
and 4 lapse and shift vector fields: N, N¢

o -
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fStandard parametrization for the tetrad fields: T
e, = NM'+NV!, el =V, MV]i=0 MM =-1

with N and N¢ as the lapse and shift fields.
The inverse tetrads are:

63:—%7 Q%ZVIG—FNNMI; MIVICL:O’

vivi=¢,,  VIve=4sl4+ MM,
In this parametrization, we have, instead of the 16 tetrad
component fields e/{, the following 16 fields:

9: V& (MIVe=0); 3: M (MM, =-1);

and 4 lapse and shift vector fields: N, N¢
From these, we define a convenient set of tetrad variable:

o -
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fStandard parametrization for the tetrad fields: T
el = NMI+-Nevio el =vI. ppvi=0, MM =-1
with N and N as the lapse and shift fields.
The inverse tetrads are:
egz—%, e%:VI“—I—NC;VMI; M[VIG’:O,
vivi=¢,,  VIve=4sl4+ MM,
In this parametrization, we have, instead of the 16 tetrad
component fields e/{, the following 16 fields:
9: Vf# (M'VE=0); 3: MY (MM, =-1);
and 4 lapse and shift vector fields: N, N¢

From these, we define a convenient set of tetrad variable:
[Eza = 2eXlt =e¢ (666,? — 63268) ,Xi = —M;/MY ., N, N“}

o -
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fStandard parametrization for the tetrad fields: T
el = NMI+-Nevio el =vI. ppvi=0, MM =-1
with N and N as the lapse and shift fields.
The inverse tetrads are:
egz—%, e%:VI“—I—NC;VMI; M[VIG’:O,
vivi=¢,,  VIve=4sl4+ MM,
In this parametrization, we have, instead of the 16 tetrad
component fields e/{, the following 16 fields:
9: Vf# (M'VE=0); 3: MY (MM, =-1);
and 4 lapse and shift vector fields: N, N¢

From these, we define a convenient set of tetrad variable:
[Eza = 2eXlt =e¢ (666,? — 63268) ,Xi = —M;/MY ., N, N“}

o (9 +3+1+3=16] .
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fConvenient set of variables from the 24 w[ﬂ : T

o -
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Convenient set of variables from the 24 w[ﬂ : T
{Az = wg??)()i =W % KL =% Wl 94946 = 24]

o -
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Convenient set of variables from the 24 w[ﬂ : T
[Az = wg?)Oi =W % KL =% Wl 94946 = 24]

a )

The time (boost) gauge y; = 0 where V) = ¢ = 0.

o -
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Convenient set of variables from the 24 wl J T
[Az_wé)oz— Lg%, KE =% Wl s (94946 = 24]

The time (boost) gauge y; = 0 where V) = ¢ = 0.

In this gauge Lagrangian density:
L = EAZ@@tAZ + ﬁiaﬁtl(é + t90, V! — H + (tot space der)

o -
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Convenient set of variables from the 24 w[ﬂ : T
[Az = wgn)Oi =W % KL =% Wl 94946 = 24]

a )

The time (boost) gauge y; = 0 where V) = ¢ = 0.

In this gauge Lagrangian density:
L = EAZ@@LLAZ + Fiaé?tKé + t90, V! — H + (tot space der)
Canonically conjugate pairs (A%, E®) , (K., E2), (VI t9);

o -
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Convenient set of variables from the 24 w[ﬂ : T
[Az = wgn)Oi =W % KL =% Wl 94946 = 24]

a )

The time (boost) gauge y; = 0 where V) = ¢ = 0.
In this gauge Lagrangian density:

L = EAZ@@tAZ + ﬁiaé?tl(é + t90, V! — H + (tot space der)
Canonically conjugate pairs (A%, E®) , (K., E2), (VI t9);

Eé = Eia_ 14—1772Fia + 2687;(14,[() ) Fia =2 (77_|— %) égi(AvK)

o -

Chandravana. The Institute of Mathematical Sciences. Chennai. Jan 3-7. 2011 — p. 19/¢



Convenient set of variables from the 24 wl J - T
[AZ_WC(L)OZ—CUOZ—I—UNOZ [('7,_(A)()”L7 thJ : [9—|—9—|—6:24]

The time (boost) gauge y; = 0 where V) = ¢ = 0.
In this gauge Lagrangian density:

L = EAZ@@tAZ + ﬁiaé?tl(é + t90, V! — H + (tot space der)
Canonically conjugate pairs (AL, E®) , (K, F9), (VI t9);

Ll = E? — T L E® + 28 (A K), F*=2 (77—|— %) eg; (A, K)

(1+n%) e, = e (0 +n9) Ry (W) + (¢ —nb) RbcIJ(w)}

o -
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Convenient set of variables from the 24 w[ﬂ : T
[Az = wgn)Oi =W % KL =% Wl 94946 = 24]

a )

The time (boost) gauge y; = 0 where V) = ¢ = 0.
In this gauge Lagrangian density:

L = EAZ@@LLAZ + Fiaé?tKé + t90, V! — H + (tot space der)
Canonically conjugate pairs (A%, E®) , (K., E2), (VI t9);

Eé = Eia_ 14—1772Fia + 2687;(14,]() ) Fia =2 (77_|— %) égi(AvK)

(L412) ey = € |(04+00) Ryupy (@) + (&= 00) Rypr s ()]

Fields V/, t and F* are not independent: V! =vi, t¢ = 7

al 7y

o -
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Convenient set of variables from the 24 wl J - T
[Az_wg)oz_w02+n~()z [(7,_(/‘)027 thJ : [9—|—9—|—6:24]

The time (boost) gauge y; = 0 where V) = ¢ = 0.

In this gauge Lagrangian density:
L = EAZ@@tAZ + ﬁiaﬁtl(é + t90, V! — H + (tot space der)
Canonically conjugate pairs (AL, E®) , (K, F9), (VI t9);

Ll = E? — T L E® + 28 (A K), F*=2 (77—|— %) eg; (A, K)
(L+n°) ety = € [0 +10) By y(w) + (¢ —n) RbcIJ(w)}

Fields V, t¢ and F¢ are not independent: V! = !, t¢ = 7%

e

\/L_Ez , Ti B UEabCDb( )Vz — abc (UDb(A) T zykKJ k)
be = ¢ab¢ and E! is the inverse of E¢ and E = det(E!) J

z
G
ta
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I—In the time-gauge, the Hamiltonian density T

o -
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n the time-gauge, the Hamiltonian density : T
H=NH + N H, + 3¢k Giot 4 ¢ (V7 — o}

+ 0 (8 = 7i') + A (F“’ —2 (77 + %) é&;)

-

Chandravana. The Institute of Mathematical Sciences. Chennai. Jan 3-7. 2011 — p. 20/2



n the time-gauge, the Hamiltonian density : T
H=NH + N H, + 3¢k Giot 4 ¢ (V7 — o}

+ ¢ (1 — 7)) + XA, (F“’ — 2 (77 + %) é&;)
Last three terms express that V/, ¢ and £* are dependent
fields; the corresponding Lagrange multiplier £%, ¢%, and ).

o -
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n the time-gauge, the Hamiltonian density : T
H=NH + N H, + 3¢k Giot 4 ¢ (V7 — o}

+ ¢ (1 — 7)) + XA, (F“’ — 2 (77 + %) é&;)
Last three terms express that V/, ¢ and £* are dependent
fields; the corresponding Lagrange multiplier £%, ¢%, and ).

GOt = Dy (A)ES + €5y (KLER — 10V E)

o -
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n the time-gauge, the Hamiltonian density : T
H=NH + N H, + 3¢k Giot 4 ¢ (V7 — o}

+ 6. (8 —7) + X (F“’ —2 (77 + %) é&;)
Last three terms express that V/, ¢ and £* are dependent
fields; the corresponding Lagrange multiplier £, ¢!, and \.,.
GOt = Dy (A)ES + €5y (KLER — 10V E)
H, = E}F}\(A) + FY Dy (A) K}, — KDy (A)EY + /D (A)Vy

— VaDy(A)t! — LGP K,

o -
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n the time-gauge, the Ham’iltonian density : T
H=NH + N H, + 3¢k Giot 4 ¢ (V7 — o}
+ o (10— 70+ (B —2 (n+ 1) ég,)
Last three terms express that V/, ¢ and £* are dependent
fields; the corresponding Lagrange multiplier £, ¢!, and \.,.
GOt = Dy (A)ES + €5y (KLER — 10V E)
H, = EYF},(A) + YD, (A)K}y — KLD,(A)E? + D, (A)V}
= Va Dy (At — 3G K
YL EIEY | Fh(A) = (14 9?) (D (A)Kh = Sebmm k)
+ Kite — o, (VEGEL)

H

o
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n the time-gauge, the Hamiltonian density : T
H=NH + N H, + 3¢k Giot 4 ¢ (V7 — o}
+ g (17 — 71) + X, (F“’ — 2 (77 + %) é&;)
Last three terms express that V/, ¢ and £* are dependent
fields; the corresponding Lagrange multiplier £%, ¢%, and ).
GOt = Dy (A)ES + €5y (KLER — 10V E)
H, = E}F},(A) + FY D (A K}, — K{Dy(A)F} + 17D, (A)Vy
= VaDy(A)t] = 3G K,
YEAREIEY | Fh(A) = (14 12) (D (A)KE - Lbmn iy )
+ Kite — 00, (VEGLEY)
. where in the last expression E¢ = E7 + e B — 266, (A, K)

H
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fThere are no terms in the Lagrangian density with the T

velocities of fields N, N?, w;?, hence these are Lagrange
multiplier fields. So there are as many constraints
associated with them; and these are first class:

o -
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fThere are no terms in the Lagrangian density with the T

velocities of fields N, N?, w;?, hence these are Lagrange
multiplier fields. So there are as many constraints
associated with them; and these are first class:

GI%~0, Hy,~0, H=0

o -
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fThere are no terms in the Lagrangian density with the T

velocities of fields N, N?, w;?, hence these are Lagrange
multiplier fields. So there are as many constraints
associated with them; and these are first class:

GI%~0, Hy,~0, H=0

In addition, we have the constraints due the fact that V, ¢¢
and £'¢ are not independent fields:

o -
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fThere are no terms in the Lagrangian density with the T

velocities of fields N, N¢, w,”, hence these are Lagrange
multiplier fields. So there are as many constraints
associated with them; and these are first class:

Gi%~0, H,~0, H=O0

In addition, we have the constraints due the fact that V', ¢

and Fa are not mdependent fields:
Vi — vl (E) ~ td — 1M(AK,E) = 0

A

¢ = Fo 2(n+5>eOZ(AK)%O

o -
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fThere are no terms in the Lagrangian density with the T

velocities of fields N, N¢, w,”, hence these are Lagrange
multiplier fields. So there are as many constraints
associated with them; and these are first class:

Gi%~0, H,~0, H=O0

In addition, we have the constraints due the fact that V', ¢

and Fa are not mdependent fields:
Vi — vl (E) ~ td — 1A K E) = 0

A

¢ = Fo 2(n+5)eOZ(AK)zO

The fields ¢2. and ¢, are functions of the gauge fields A
and K' and the topological parameters 0, ¢ besides 1.

o -
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fThere are no terms in the Lagrangian density with the T

velocities of fields N, N¢, w,”, hence these are Lagrange
multiplier fields. So there are as many constraints
associated with them; and these are first class:

Gi%~0, H,~0, H=O0

In addition, we have the constraints due the fact that V', ¢

and Fa are not mdependent fields:
Vi — vl (E) ~ td — 1M(AK,E) = 0

A

¢ = Fo 2(n+5)eOZ(AK)z0

The fields g, and ¢g, are functions of the gauge fields A
and K' and the topological parameters 0, ¢ besides 1.

\_Constramts x¢ =~ 0 are of particular interest. J
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. Since (Al EY) and (K¢, F?) are canonically conjugate o
pairs, these accordingly obey the standard Poisson
brackets relations.

o -
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. Since (Al EY) and (K¢, F?) are canonically conjugate o
pairs, these accordingly obey the standard Poisson
brackets relations.

Using these we obtain a secondary constraint from the
Poisson bracket of the Hamiltonian constraint Z and x?¢,

[X%(x), H(y)] ~ 0 as:

o -
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. Since (Al EY) and (K¢, F?) are canonically conjugate o
pairs, these accordingly obey the standard Poisson
brackets relations.

Using these we obtain a secondary constraint from the
Poisson bracket of the Hamiltonian constraint Z and x?¢,

[x{(x), H(y)] = 0 as:
e — (L0 [nei*Dy(A) (VEESEL) + VEESE}K]| ~ 0

n*

o -
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. Since (Al EY) and (K¢, F?) are canonically conjugate o
pairs, these accordingly obey the standard Poisson
brackets relations.

Using these we obtain a secondary constraint from the
Poisson bracket of the Hamiltonian constraint Z and x?¢,

i (x), H(y)] = 0 as:
o (1277 ) [nemkD (A) (@E;Eg) n \/FE}“E;’]KZ{} -0

which can be rewritten as:

o -
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. Since (Al EY) and (K¢, F?) are canonically conjugate o
pairs, these accordingly obey the standard Poisson
brackets relations.

Using these we obtain a secondary constraint from the
Poisson bracket of the Hamiltonian constraint Z and x?¢,

x{(x), H(y)] = 0 as:
by — (H" ) {776”’“17 (A )(\/FE?E;’E) +\/EE}“E5?]K5} ~ 0

77
which can be rewritten as:

te — (1:" ) [nD (Al — eiijgvlg} ~ 0: v

o -
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. Since (Al EY) and (K¢, F?) are canonically conjugate o
pairs, these accordingly obey the standard Poisson
brackets relations.

Using these we obtain a secondary constraint from the
Poisson bracket of the Hamiltonian constraint Z and x?¢,

x{(x), H(y)] = 0 as:
by — (H" ) {776”’“17 (A )(\/FE?E;’E) +\/EE}“E5?]K,§} ~ 0

n*

which can be rewritten as:

e — (H" ) [nD (Al — eiijgvf} ~ 0: V!

[
[ 77 a

b Ye
Lthis implies: t? = 0. J
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fThus we have the secondary constraint: T

o -
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fThus we have the secondary constraint: T

By

5

b {nDb(A)vf: — eiijgvéf ~ 0: v

o -
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fThus we have the secondary constraint:

By

5

1
a

b {nDb(A)vf; — eiijgvlg ~ 0: v

which can be solved for the extrinsic curvature K* and
recast as the following secondary constraint:

-
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fThus we have the secondary constraint: T

By

5

b {nDb(A)vf; — eiijgvéf ~ 0: v

1
a

which can be solved for the extrinsic curvature K* and
recast as the following secondary constraint:

ELEK?L_’%EL(A7E> ~ Oa

KL (A, E) = 10 E]D, (A)EY — LBkl [EED (A)ES
+E!D (A)EY — §*E™D, (A)ET]

o -
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fThus we have the secondary constraint: T

By

5

b {nDb(A)vf; — eiijgvéf ~ 0: v

1
a

which can be solved for the extrinsic curvature K* and
recast as the following secondary constraint:

ZLEK?L_KEL(A7E> ~ Oa

KL (A, E) = 10 E]D, (A)EY — LBkl [EED (A)ES
+E!D (A)EY — §*E™D, (A)ET]

This Is an additional constraint

o -
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fThus we have the secondary constraint: T

By

5

b {nDb(A)vf: — eiijgvéf ~ 0: v

1
a

which can be solved for the extrinsic curvature K* and
recast as the following secondary constraint:

ELEK?L_KJ%L(A7E> ~ Oa

KL (A, E) = 10 E]D, (A)EY — LBkl [EED (A)ES
+E!D (A)EY — §*E™D, (A)ET]

This I1s an additional constraint and forms a second class
pair with the constraint x¢ ~ 0:

o -
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fThus we have the secondary constraint: T

By

b {nDb(A)vf; — eiijgvéf ~ 0: v

5

1
a

which can be solved for the extrinsic curvature K* and
recast as the following secondary constraint:

ELEK?L_’%EL(A7E> ~ Oa

KL (A, E) = 10 E]D, (A)EY — LBkl [EED (A)ES
+E!D (A)EY — §*E™D, (A)ET]

This I1s an additional constraint and forms a second class
pair with the constraint x¢ ~ 0:

o X3(2),¥](y)] = — 686760 (z,y) N
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. .

0 implement these second class constraints, x¢ ~ 0 and

! =~ 0, we need to go over from Poisson brackets to the
corresponding Dirac brackets.

o -
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. .

0 implement these second class constraints, x¢ ~ 0 and

! =~ 0, we need to go over from Poisson brackets to the
corresponding Dirac brackets.

Then impose the constraints strongly, y¢ = 0and ¢’ = 0.

o -
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.

0 implement these second class constraints, x¢ ~ 0 and

! =~ 0, we need to go over from Poisson brackets to the
corresponding Dirac brackets.

-

Then impose the constraints strongly, y¢ = 0and ¢’ = 0.

It can be checked that, these Dirac brackets for the set of
fields (A%, E¢; K!, F?) are different from their Poisson
brackets.

o -

Chandravana. The Institute of Mathematical Sciences. Chennai. Jan 3-7. 2011 — p. 24/2



. .

0 implement these second class constraints, x¢ ~ 0 and

! =~ 0, we need to go over from Poisson brackets to the
corresponding Dirac brackets.

Then impose the constraints strongly, y¢ = 0and ¢’ = 0.

It can be checked that, these Dirac brackets for the set of
fields (A%, E¢; K!, F?) are different from their Poisson
brackets.

On the other hand, for the fields A% and £, Dirac brackets are
same as their Poisson brackets.

o -
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~ Finally, after implementing all the second class constraints,
the set of first class constraints:

o -

Chandravana. The Institute of Mathematical Sciences. Chennai. Jan 3-7. 2011 — p. 25/¢



~ Finally, after implementing all the second class constraints,
the set of first class constraints:
Gt =D (A)E* + €7FKIFS ~ 0

o -
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~ Finally, after implementing all the second class constraints,
the set of first class constraints:
Gt =D (A)E* + €7FKIFS ~ 0

H, = BYF}(A)+ FID,(A) Ky — KiD,(A)EY —1Gr K = 0

o -
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~ Finally, after implementing all the second class constraints,
the set of first class constraints:
Gt =D (A)E* + €7FKIFS ~ 0
H, = E'Fi(A)+F!Dy,(A)K) — KiD,(A)F} = 1G Kl =~ 0
H = \/E zjkEaEka (A)

7% ab

. (1—H7 )\/—EaEbe KJ _775) (\/EGZOtEZ) ~ 0

o -
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~ Finally, after implementing all the second class constraints,
the set of first class constraints:
Gt =D (A)E* + €7FKIFS ~ 0
H, = E'Fi(A)+F!Dy,(A)K) — KiD,(A)F} = 1G Kl =~ 0
H = \/E zykEaEka (A)

7% ab

_ (1+77 )\/_EaEbe K] (\/_GTOtE'a) ~ 0

where now the following hold strongly.

o -
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~ Finally, after implementing all the second class constraints,
the set of first class constraints:
Gt =D (A)E* + €7FKIFS ~ 0
H, = E'Fi(A)+F!Dy,(A)K) — KiD,(A)F} = 1G Kl =~ 0
H = \/E zykEaEka (A)

77 ab
— (58) VEB BV KL K — 00, (VEGI'E) =~ 0
where now the following hold strongly.
K! =k! = 2e""EID,(A)E} — JLE¥e"™ [EfDC(A)E(’fl
+EyD (A)Eg — 0" E)' D (A)Ey'|
It =2 (77+ %) €i(A, K)

o -
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fFinaIIy, after implementing all the second class constraints, T
the set of first class constraints:
Gt =D (A)ES 4+ 7P KIFS ~ 0
H, = ElFiy(A) + F! D, (A) K} — KiDy(A) F} = 1G Kl ~ 0
H = YEREEFR (A)
— (58) VEEEK, K — 0, (VEGP'ER) ~ 0
where now the following hold strongly.
K! =kl = 2V*"EID,(A)E) — JLEYe™ |EFD (A)E),
+E,D (A) By — 6" Ep* D (A)E
Fo=2(n+ 1) e (A, K)

and B¢ = B+ 266,(A K) — 2¢6,(A, K)

o -
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fFinaIIy, after implementing all the second class constraints,
the set of first class constraints:
Gt =D (A)ES 4+ 7P KIFS ~ 0
H, = E'F(A)+ F'D,(A)K;
H = YEREEFR (A)

177" ab

]

— (58) VEB BV KL K — 00, (VEGI'E) =~ 0
where now the following hold strongly:
K! =k! = 2e""EID,(A)E} — JLE¥e"™ [EfDC(A)Eg
+EyD (A)Eg — 0" E)' D (A)Ey'|
Fr =2 (n+ 1) (4, )
and B¢ = B+ 266,(A K) — 2¢6,(A, K)

L(l + %) efy = e [(9 +0¢) Ryery + (¢ — 1) ébclj} (A, K)

-

—KID,(A)F'—1G KT ~ (
n

-
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fEffect of the generators of gauge transfs. on various fields T
IS obtained through the Dirac brackets.

o -
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fEffect of the generators of gauge transfs. on various fields T
IS obtained through the Dirac brackets. For example:

Gr (@), E;-l@)} = eI EO (,y)

Gro4 (), Ai(y)] = —n (890, + Lehial) 60 (z,y)

o -
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fEffect of the generators of gauge transfs. on various fields T
IS obtained through the Dirac brackets. For example:

i), E3(y)| | = B (a,y)

1ol (z), Al (y)] , = —1 ((wga n 7176“69'14’;) 53 (z, )
G (@) Fey)| | = e Es® ()

G (), Ki(y)| | = €T KES) (,y)

G1(x), B{(y)] p = €TV ERP) (2, )

o -
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fEffect of the generators of gauge transfs. on various fields T
IS obtained through the Dirac brackets. For example:

_ ik fag(3)
v), E <}D ) (2, )
(5”8 + = Zk]Ak) 08 (z, 1)

o -
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fEffect of the generators of gauge transfs. on various fields T

IS obtained through the Dirac brackets. For example:

Gt (a) Eﬂy)} = (a,y),
Gro4 (), Ai(y)] = —n (890, + Lehial) 60 (z,y)
Gt (), Fely)| | = ew’ngcﬂ (2,9) |
Grot(a), Ki(y)| | = R K5 (2, y)

G(x), Bf (y)] j, = TP B (2, y)

(]

reflecting the fact G7°" are generators of SU(2) transfs.

Similar discussion is valid for the diffeomorphism
generators H_;

o
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fEffect of the generators of gauge transfs. on various fields T
IS obtained through the Dirac brackets. For example:

G @), By )|, = F B )

i D
G (@), Y (y)] p = € ERP) (2, )

(]

reflecfing the fact G7°" are generators of SU(2) transfs.

Similar discussion is valid for the diffeomorphism

generators H,; Dirac brackets of H, with various fields

yield the Lie derivatives of these fields respectively, modulo
SU(2) gauge transformations. J
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o .

This thus provides the Hamiltonian formulation of the theory
of gravity with the three topological terms in terms of an
SU(2) gauge theory.

o -
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o .

This thus provides the Hamiltonian formulation of the theory
of gravity with the three topological terms in terms of an
SU(2) gauge theory.

The coupling constant of this gauge theory is .
This Is to be identified with the Barbero-Immirzi parameter.

o -
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o .

This thus provides the Hamiltonian formulation of the theory
of gravity with the three topological terms in terms of an
SU(2) gauge theory.

The coupling constant of this gauge theory is .

This Is to be identified with the Barbero-Immirzi parameter.

Now if we couple matter, such as fermions, spin 1/2 or spin
3/2 (supergravity), or antisymmetric gauge fields to this
theory, we do that in the usual manner through the minimal
couplings.

o -
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o .

This thus provides the Hamiltonian formulation of the theory
of gravity with the three topological terms in terms of an
SU(2) gauge theory.

The coupling constant of this gauge theory is .
This Is to be identified with the Barbero-Immirzi parameter.

Now if we couple matter, such as fermions, spin 1/2 or spin
3/2 (supergravity), or antisymmetric gauge fields to this
theory, we do that in the usual manner through the minimal
couplings.

Hamiltonian analysis, in the time-gauge, can again be set
up in terms of a real SU(2) gauge theory with ! as its

Lcoupling constant. J
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