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Topological density terms (total derivatives) in the Lag.
density of (i) a quantum mechanical model as well as (ii) in
the QCD.
Three such terms, the Nieh-Yan, Pontryagin and Euler
densities, in the quantum theory of gravity in (1 + 3) D.
Associated: two CP-odd and one CP-even parameters.
One CP odd parameter is identified with the inverse of the
BI parameter.
Classical canonical Hamiltonian formulation for a theory of
gravity including these three topological terms.
In the time-gauge, we obtain a real SU(2) gauge theoretic
formulation with a set of seven first class constraints, three
corresponding to SU(2) generators, three diffeomorphism
constraints and one Hamiltonian constraint.
This analysis provides a topological interpretation for the BI
parameter.
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implies, in the Hamiltonian formulation, a canonical
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Introduction
The Euler-Lagrangian equations of motion are not changed
by adding total divergences to the Lagrangian density:

L = L0 + θ ∂µX
µ.

Adding total divergence terms to the Lagrangian density
implies, in the Hamiltonian formulation, a canonical
transformation; q → q′ = q′(q, p), p→ p′ = p′(q, p) on the
coordinates q and the momenta p with the corresponding
transformation of the Hamiltonian H(q, p) → H′ = H′(q′, p′).

Thus, phase space is changed and so is the symplectic
structure, yet the Hamiltons equations of motion are not
changed .

To repeat, classical dynamics (the classical equations of
motion) do not see tot. div. terms of L; that is, classical
dynamics does not depend on the parameter θ.
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While quantum theory also does not generally depend on
these total divergence terms, topological densities, which
are also total divergences, are special.
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even though classical dynamics is not altered: the physical
quantities develop dependence on the coefficient θ of the
total divergence term.
Thus, for a quantum theory to have dependence on the
parameter θ, it should be the coefficient of a topological
density. This is a necessary requirement, but not sufficient.

Quantum theory that depends on the topological parameter,
some times, exists for every value of θ: θ is an additional
coupling constant, besides the usual coupling constants,
em coupling, Newtons constant, etc.
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While quantum theory also does not generally depend on
these total divergence terms, topological densities, which
are also total divergences, are special.
Topological density terms may effect the quantum theory,
even though classical dynamics is not altered: the physical
quantities develop dependence on the coefficient θ of the
total divergence term.
Thus, for a quantum theory to have dependence on the
parameter θ, it should be the coefficient of a topological
density. This is a necessary requirement, but not sufficient.

Quantum theory that depends on the topological parameter,
some times, exists for every value of θ: θ is an additional
coupling constant, besides the usual coupling constants,
em coupling, Newtons constant, etc.

Such topological density terms are universal.
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A Quantum Mechanical System

L = 1
2

(

dx(t)
dt

)2
− V (x) + θ

2π
dx(t)

dt

Chandrayana, The Institute of Mathematical Sciences, Chennai, Jan 3-7, 2011 – p. 5/27



A Quantum Mechanical System

L = 1
2

(

dx(t)
dt

)2
− V (x) + θ

2π
dx(t)

dt
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dt2 + δV (x)
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Presence of the total derivative term does not affect this
equation of motion; there is no θ dependence.

Total derivative term is indeed a topological charge density; its
integral is the topological charge or the winding number for
periodic configurations x(t):
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A Quantum Mechanical System

L = 1
2

(

dx(t)
dt

)2
− V (x) + θ

2π
dx(t)

dt

The EOM: d2x
dt2 + δV (x)

δx = 0.

Presence of the total derivative term does not affect this
equation of motion; there is no θ dependence.

Total derivative term is indeed a topological charge density; its
integral is the topological charge or the winding number for
periodic configurations x(t):

q = 1
2π

∫ ∞
−∞ dtdx(t)

dt .

This just measures how many times do we wrap or wind
x(t) over the interval 0 to 2π as we go around t once over its
full range.
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For example, for configurations given by

x(t) = ±4 tan−1 [exp(t− t0)]:
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q = 1
2π

∫ ∞
−∞ dtdx(t)
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∫ ∞
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The winding number is always an integer.
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The winding number is always an integer.

The total derivative term, 1
2π

dx(t)
dt , is a topological density

associated with the homotopy maps S1 → S1.
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For example, for configurations given by

x(t) = ±4 tan−1 [exp(t− t0)]:

q = 1
2π

∫ ∞
−∞ dtdx(t)

dt = ±1.

The winding number is always an integer.

The total derivative term, 1
2π

dx(t)
dt , is a topological density

associated with the homotopy maps S1 → S1.

Its integral is characterized by the homotopy group Π1(S
1),

which is the set of integers, Z.
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A special Case
Now let us consider a particular form for the potential
function, periodic sine-Gordon potential:
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Now let us consider a particular form for the potential
function, periodic sine-Gordon potential:
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mx√
λ
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Here the quantum theory does depend on the topological
parameter θ.
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function, periodic sine-Gordon potential:

V (x) = λ
[

1 − cos
(

mx√
λ

)]

Here the quantum theory does depend on the topological
parameter θ.

There are infinitely many classical ground states, given by
the locations mxgr = 2nπ

√
λ , n ∈ Z of the minima of the

potential V (x). Corresponding to each one of these
classical ground states is a perturbative vacuum state
represented by an integer label, |n〉.
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A special Case
Now let us consider a particular form for the potential
function, periodic sine-Gordon potential:

V (x) = λ
[

1 − cos
(

mx√
λ

)]

Here the quantum theory does depend on the topological
parameter θ.

There are infinitely many classical ground states, given by
the locations mxgr = 2nπ

√
λ , n ∈ Z of the minima of the

potential V (x). Corresponding to each one of these
classical ground states is a perturbative vacuum state
represented by an integer label, |n〉.
If we were to disregard tunnellings, the quantum energy
eigenstates would be an infinitely many degenerate states,
each concentrated at the bottom of one of the wells.

Chandrayana, The Institute of Mathematical Sciences, Chennai, Jan 3-7, 2011 – p. 7/27



But quantum barrier penetration will lead to every energy
eigenvalue to change into a continuous band of
eigen-values, the so called Bloch wave.
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But quantum barrier penetration will lead to every energy
eigenvalue to change into a continuous band of
eigen-values, the so called Bloch wave.

This is so because the real quantum vacuum state here is a
non-pertubative one given by a linear combination of the
perturbative quantum states |n〉:

|vac〉 =
∑

n∈Z
exp (inθ) |n〉.
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perturbative quantum states |n〉:
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Thus, associated with this quantum vacuum state are
infinitely many classical ground states corresponding to the
infinitely many degenerate minima of the classical potential
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But quantum barrier penetration will lead to every energy
eigenvalue to change into a continuous band of
eigen-values, the so called Bloch wave.

This is so because the real quantum vacuum state here is a
non-pertubative one given by a linear combination of the
perturbative quantum states |n〉:

|vac〉 =
∑

n∈Z
exp (inθ) |n〉.

Thus, associated with this quantum vacuum state are
infinitely many classical ground states corresponding to the
infinitely many degenerate minima of the classical potential
above.

We repeat, the vacuum state is essentially non-pertubative
in character.
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But quantum barrier penetration will lead to every energy
eigenvalue to change into a continuous band of
eigen-values, the so called Bloch wave.

This is so because the real quantum vacuum state here is a
non-pertubative one given by a linear combination of the
perturbative quantum states |n〉:

|vac〉 =
∑

n∈Z
exp (inθ) |n〉.

Thus, associated with this quantum vacuum state are
infinitely many classical ground states corresponding to the
infinitely many degenerate minima of the classical potential
above.

We repeat, the vacuum state is essentially non-pertubative
in character.

The physical quantities depend on this parameter θ.
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For example the vacuum energy, besides the perturbative
zero-point energy E0 = 1

2~ω, has an additional
non-perturbative contribution which depends on θ:
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non-perturbative contribution which depends on θ:
Evac = E0 + Eθ + ...O(~2) with Eθ ∼ A~ cos θ exp(− B

~λ),
where A and B are numerical constants.
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A quantum theory is defined for every value of θ.
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2~ω, has an additional
non-perturbative contribution which depends on θ:
Evac = E0 + Eθ + ...O(~2) with Eθ ∼ A~ cos θ exp(− B

~λ),
where A and B are numerical constants.

A quantum theory is defined for every value of θ. This
feature is sometimes referred to as quantization ambiguity.

All this means that θ is a coupling constant as much as the
interaction strength λ or more generally as the Newton’s
constant of gravity or the electromagnetic coupling.

Chandrayana, The Institute of Mathematical Sciences, Chennai, Jan 3-7, 2011 – p. 9/27



For example the vacuum energy, besides the perturbative
zero-point energy E0 = 1

2~ω, has an additional
non-perturbative contribution which depends on θ:
Evac = E0 + Eθ + ...O(~2) with Eθ ∼ A~ cos θ exp(− B

~λ),
where A and B are numerical constants.

A quantum theory is defined for every value of θ. This
feature is sometimes referred to as quantization ambiguity.

All this means that θ is a coupling constant as much as the
interaction strength λ or more generally as the Newton’s
constant of gravity or the electromagnetic coupling.

This suggests that θ like the electromagnetic coupling is not
determined by the theory but is prescribed as a given
parameter and is to be fixed by the experiment.
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A (1 + 3)D field theory example

Another example is the θ parameter of the QCD:
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A (1 + 3)D field theory example

Another example is the θ parameter of the QCD:

L = LQCD + θLθ = − 1
4g2F iµνF i

µν − θ
64 π2 ǫµναβF i

µνF
i
αβ.
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4g2F iµνF i

µν − θ
64 π2 ǫµναβF i

µνF
i
αβ.

where F i
µν is the SU(3) gauge field strength.

Chandrayana, The Institute of Mathematical Sciences, Chennai, Jan 3-7, 2011 – p. 10/27



A (1 + 3)D field theory example

Another example is the θ parameter of the QCD:

L = LQCD + θLθ = − 1
4g2F iµνF i

µν − θ
64 π2 ǫµναβF i

µνF
i
αβ.

where F i
µν is the SU(3) gauge field strength.

Lθ is a top. density, Pontryagin density; and it is a total div:
1
2
ǫµναβF i

µνF
i
αβ = 4∂µK

µ
P ,
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A (1 + 3)D field theory example

Another example is the θ parameter of the QCD:

L = LQCD + θLθ = − 1
4g2F iµνF i

µν − θ
64 π2 ǫµναβF i

µνF
i
αβ.

where F i
µν is the SU(3) gauge field strength.

Lθ is a top. density, Pontryagin density; and it is a total div:
1
2
ǫµναβF i

µνF
i
αβ = 4∂µK

µ
P ,

Kµ
P = ǫµναβ

[

Ai
ν∂αA

i
β + 1

3
f ijkAi

νA
j
αA

k
β

]

.
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Another example is the θ parameter of the QCD:

L = LQCD + θLθ = − 1
4g2F iµνF i

µν − θ
64 π2 ǫµναβF i

µνF
i
αβ.

where F i
µν is the SU(3) gauge field strength.

Lθ is a top. density, Pontryagin density; and it is a total div:
1
2
ǫµναβF i

µνF
i
αβ = 4∂µK

µ
P ,

Kµ
P = ǫµναβ

[

Ai
ν∂αA

i
β + 1

3
f ijkAi

νA
j
αA

k
β

]

.

In the Euclidean space-time, its integral is always an integer:
1

64π2

∫

d4x ǫµναβ F i
µνF

i
αβ = n , n ∈ Z.
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A (1 + 3)D field theory example

Another example is the θ parameter of the QCD:

L = LQCD + θLθ = − 1
4g2F iµνF i

µν − θ
64 π2 ǫµναβF i

µνF
i
αβ.

where F i
µν is the SU(3) gauge field strength.

Lθ is a top. density, Pontryagin density; and it is a total div:
1
2
ǫµναβF i

µνF
i
αβ = 4∂µK

µ
P ,

Kµ
P = ǫµναβ

[

Ai
ν∂αA

i
β + 1

3
f ijkAi

νA
j
αA

k
β

]

.

In the Euclidean space-time, its integral is always an integer:
1

64π2

∫

d4x ǫµναβ F i
µνF

i
αβ = n , n ∈ Z.

This is the winding number of the homotopy maps S3 → S3

characterised by the homotopy group Π3(SU(N)) = Z.
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Like the mechanical system with periodic sine-Gordon
potential, there are infinitely many classical ground states in
this theory, each characterised by an integer n.
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Like the mechanical system with periodic sine-Gordon
potential, there are infinitely many classical ground states in
this theory, each characterised by an integer n.

These are given by the solutions of F i
µν = 0 which are just

the pure gauge Ai
µT

i = g−1∂µg where, T i are the SU(3)

algebra representation matrices and g(x) is an element of
the gauge group.
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potential, there are infinitely many classical ground states in
this theory, each characterised by an integer n.

These are given by the solutions of F i
µν = 0 which are just

the pure gauge Ai
µT

i = g−1∂µg where, T i are the SU(3)

algebra representation matrices and g(x) is an element of
the gauge group.

These g(x) = exp
[

iξi(x)T i
]

fall in homotopy equivalence
classes, each characterized by an integer.
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Like the mechanical system with periodic sine-Gordon
potential, there are infinitely many classical ground states in
this theory, each characterised by an integer n.

These are given by the solutions of F i
µν = 0 which are just

the pure gauge Ai
µT

i = g−1∂µg where, T i are the SU(3)

algebra representation matrices and g(x) is an element of
the gauge group.

These g(x) = exp
[

iξi(x)T i
]

fall in homotopy equivalence
classes, each characterized by an integer.

True (nonperturbative) quantum vac state is the linear
superposition of perturbative vac states associated with
these classical ground states: |vac〉 =

∑

n∈Z
exp(inθ) |n〉.
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Lθ = θ
64 π2 ǫµναβF i

µνF
i
αβ:
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Lθ = θ
64 π2 ǫµναβF i

µνF
i
αβ: CP violating; so QCD is a theory

with two coupling constants: g and the CP-violating θ.
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Lθ = θ
64 π2 ǫµναβF i

µνF
i
αβ: CP violating; so QCD is a theory

with two coupling constants: g and the CP-violating θ.

Physical quantities have dependence on this parameter.
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Lθ = θ
64 π2 ǫµναβF i

µνF
i
αβ: CP violating; so QCD is a theory

with two coupling constants: g and the CP-violating θ.

Physical quantities have dependence on this parameter.

For example, in the quantum theory, there is non-zero
electric dipole moment for the neutron which depends on θ.
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64 π2 ǫµναβF i
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αβ: CP violating; so QCD is a theory

with two coupling constants: g and the CP-violating θ.

Physical quantities have dependence on this parameter.

For example, in the quantum theory, there is non-zero
electric dipole moment for the neutron which depends on θ.

Thus θ is a physical parameter which is fixed by the
experimental constraints on possible induced CP violating
effects.
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64 π2 ǫµναβF i

µνF
i
αβ: CP violating; so QCD is a theory

with two coupling constants: g and the CP-violating θ.

Physical quantities have dependence on this parameter.

For example, in the quantum theory, there is non-zero
electric dipole moment for the neutron which depends on θ.

Thus θ is a physical parameter which is fixed by the
experimental constraints on possible induced CP violating
effects.

These constraints force this parameter to be extremely
small.
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Lθ = θ
64 π2 ǫµναβF i

µνF
i
αβ: CP violating; so QCD is a theory

with two coupling constants: g and the CP-violating θ.

Physical quantities have dependence on this parameter.

For example, in the quantum theory, there is non-zero
electric dipole moment for the neutron which depends on θ.

Thus θ is a physical parameter which is fixed by the
experimental constraints on possible induced CP violating
effects.

These constraints force this parameter to be extremely
small.

The constraints from the electric dipole moment of the
neutron suggest θ < 10−10 rad.
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Topological couplings in gravity
Let us now explore the possibilities of such topological
couplings constants in a theory of gravity in (1 + 3) dims.
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couplings constants in a theory of gravity in (1 + 3) dims.

We set up a theory of pure (i.e., no matter couplings) gravity
in terms of the 24 SO(1, 3) gauge connections ωIJ

µ and 16

tetrad fields eIµ as the independent fields,
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Topological couplings in gravity
Let us now explore the possibilities of such topological
couplings constants in a theory of gravity in (1 + 3) dims.

We set up a theory of pure (i.e., no matter couplings) gravity
in terms of the 24 SO(1, 3) gauge connections ωIJ

µ and 16

tetrad fields eIµ as the independent fields, described by
Hilbert-Palatini Lagrangian density:

LHP = 1
2 e Σµν

IJ R
IJ

µν (ω)
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Topological couplings in gravity
Let us now explore the possibilities of such topological
couplings constants in a theory of gravity in (1 + 3) dims.

We set up a theory of pure (i.e., no matter couplings) gravity
in terms of the 24 SO(1, 3) gauge connections ωIJ

µ and 16

tetrad fields eIµ as the independent fields, described by
Hilbert-Palatini Lagrangian density:

LHP = 1
2 e Σµν

IJ R
IJ

µν (ω)

where e ≡ det(eIµ) , Σµν
IJ ≡ 1

2e
µ
[I
eν
J ] ≡

1
2

(

eµI e
ν
J − eµJe

ν
I

)

,

R IJ
µν (ω) ≡ ∂[µω

IJ
ν] + ω IK

[µ ω J
ν]K
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couplings constants in a theory of gravity in (1 + 3) dims.

We set up a theory of pure (i.e., no matter couplings) gravity
in terms of the 24 SO(1, 3) gauge connections ωIJ

µ and 16

tetrad fields eIµ as the independent fields, described by
Hilbert-Palatini Lagrangian density:

LHP = 1
2 e Σµν

IJ R
IJ

µν (ω)

where e ≡ det(eIµ) , Σµν
IJ ≡ 1

2e
µ
[I
eν
J ] ≡

1
2

(

eµI e
ν
J − eµJe

ν
I

)

,

R IJ
µν (ω) ≡ ∂[µω

IJ
ν] + ω IK

[µ ω J
ν]K

eµI is the inverse of the tetrad field, eµI e
I
ν = δµ

ν , eIµ e
µ
J = δI

J .
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Topological couplings in gravity
Let us now explore the possibilities of such topological
couplings constants in a theory of gravity in (1 + 3) dims.

We set up a theory of pure (i.e., no matter couplings) gravity
in terms of the 24 SO(1, 3) gauge connections ωIJ

µ and 16

tetrad fields eIµ as the independent fields, described by
Hilbert-Palatini Lagrangian density:

LHP = 1
2 e Σµν

IJ R
IJ

µν (ω)

where e ≡ det(eIµ) , Σµν
IJ ≡ 1

2e
µ
[I
eν
J ] ≡

1
2

(

eµI e
ν
J − eµJe

ν
I

)

,

R IJ
µν (ω) ≡ ∂[µω

IJ
ν] + ω IK

[µ ω J
ν]K

eµI is the inverse of the tetrad field, eµI e
I
ν = δµ

ν , eIµ e
µ
J = δI

J .

There are three possible top. densities that can be added:
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(i) Nieh-Yan class:
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(i) Nieh-Yan class:

INY = eΣµν
IJ R̃

IJ
µν (ω) + ǫµναβDµ(ω)eIνDα(ω)eIβ
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(i) Nieh-Yan class:

INY = eΣµν
IJ R̃

IJ
µν (ω) + ǫµναβDµ(ω)eIνDα(ω)eIβ

= ∂µ

[

ǫµναβ eIν Dα(ω)eIβ

]
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(i) Nieh-Yan class:

INY = eΣµν
IJ R̃

IJ
µν (ω) + ǫµναβDµ(ω)eIνDα(ω)eIβ

= ∂µ

[

ǫµναβ eIν Dα(ω)eIβ

]

R̃ IJ
αβ (ω) ≡ 1

2ǫ
IJKLRαβKL(ω)
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(i) Nieh-Yan class:

INY = eΣµν
IJ R̃

IJ
µν (ω) + ǫµναβDµ(ω)eIνDα(ω)eIβ

= ∂µ

[

ǫµναβ eIν Dα(ω)eIβ

]

R̃ IJ
αβ (ω) ≡ 1

2ǫ
IJKLRαβKL(ω)

Covariant derivative is: Dµ(ω)eIν = ∂µe
I
ν + ω I

µ Je
J
ν .
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(i) Nieh-Yan class:

INY = eΣµν
IJ R̃

IJ
µν (ω) + ǫµναβDµ(ω)eIνDα(ω)eIβ

= ∂µ

[

ǫµναβ eIν Dα(ω)eIβ

]

R̃ IJ
αβ (ω) ≡ 1

2ǫ
IJKLRαβKL(ω)

Covariant derivative is: Dµ(ω)eIν = ∂µe
I
ν + ω I

µ Je
J
ν .

This is a topological density; it is a total divergence.
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[

ǫµναβ eIν Dα(ω)eIβ
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R̃ IJ
αβ (ω) ≡ 1

2ǫ
IJKLRαβKL(ω)

Covariant derivative is: Dµ(ω)eIν = ∂µe
I
ν + ω I

µ Je
J
ν .

This is a topological density; it is a total divergence.

In the Euclidean theory, this topological density, properly
normalized, characterizes the winding numbers given by three
integers associated with the homotopy groups:
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IJKLRαβKL(ω)

Covariant derivative is: Dµ(ω)eIν = ∂µe
I
ν + ω I

µ Je
J
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This is a topological density; it is a total divergence.

In the Euclidean theory, this topological density, properly
normalized, characterizes the winding numbers given by three
integers associated with the homotopy groups:

Π3(SO(5)) = Z and Π3(SO(4)) = (Z, Z).
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(i) Nieh-Yan class:

INY = eΣµν
IJ R̃

IJ
µν (ω) + ǫµναβDµ(ω)eIνDα(ω)eIβ

= ∂µ

[

ǫµναβ eIν Dα(ω)eIβ

]

R̃ IJ
αβ (ω) ≡ 1

2ǫ
IJKLRαβKL(ω)

Covariant derivative is: Dµ(ω)eIν = ∂µe
I
ν + ω I

µ Je
J
ν .

This is a topological density; it is a total divergence.

In the Euclidean theory, this topological density, properly
normalized, characterizes the winding numbers given by three
integers associated with the homotopy groups:

Π3(SO(5)) = Z and Π3(SO(4)) = (Z, Z).

The NY density is CP odd.

Chandrayana, The Institute of Mathematical Sciences, Chennai, Jan 3-7, 2011 – p. 14/27



(ii) Pontryagin class:
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(ii) Pontryagin class:

IP = ǫµναβRµνIJ(ω)R IJ
αβ (ω)
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(ii) Pontryagin class:

IP = ǫµναβRµνIJ(ω)R IJ
αβ (ω)

= 4∂µ

[

ǫµναβω IJ
ν

(

∂αωβIJ + 2
3ω

K
αI ωβKJ

)]
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(ii) Pontryagin class:

IP = ǫµναβRµνIJ(ω)R IJ
αβ (ω)

= 4∂µ

[

ǫµναβω IJ
ν

(

∂αωβIJ + 2
3ω

K
αI ωβKJ

)]

Same topological density as in the case of QCD except that
the gauge group here SO(1, 3) instead of SU(3).
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integers corresponding to the homotopy group:
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(ii) Pontryagin class:

IP = ǫµναβRµνIJ(ω)R IJ
αβ (ω)

= 4∂µ

[

ǫµναβω IJ
ν

(

∂αωβIJ + 2
3ω

K
αI ωβKJ

)]

Same topological density as in the case of QCD except that
the gauge group here SO(1, 3) instead of SU(3).

For the Euclidean theory, this topological density, properly
normalized, characterizes the winding numbers given by two
integers corresponding to the homotopy group:
Π3(SO(4)) = (Z, Z). This top. density is CP odd.

(iii) Euler class:
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(ii) Pontryagin class:

IP = ǫµναβRµνIJ(ω)R IJ
αβ (ω)

= 4∂µ

[

ǫµναβω IJ
ν

(

∂αωβIJ + 2
3ω

K
αI ωβKJ

)]

Same topological density as in the case of QCD except that
the gauge group here SO(1, 3) instead of SU(3).

For the Euclidean theory, this topological density, properly
normalized, characterizes the winding numbers given by two
integers corresponding to the homotopy group:
Π3(SO(4)) = (Z, Z). This top. density is CP odd.

(iii) Euler class:

IE = ǫµναβRµνIJ(ω)R̃ IJ
αβ (ω)
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Same topological density as in the case of QCD except that
the gauge group here SO(1, 3) instead of SU(3).

For the Euclidean theory, this topological density, properly
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(ii) Pontryagin class:
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= 4∂µ

[
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(

∂αωβIJ + 2
3ω

K
αI ωβKJ

)]

Same topological density as in the case of QCD except that
the gauge group here SO(1, 3) instead of SU(3).

For the Euclidean theory, this topological density, properly
normalized, characterizes the winding numbers given by two
integers corresponding to the homotopy group:
Π3(SO(4)) = (Z, Z). This top. density is CP odd.

(iii) Euler class:

IE = ǫµναβRµνIJ(ω)R̃ IJ
αβ (ω)

= 4∂µ

[

ǫµναβω̃ IJ
ν

(

∂αωβIJ + 2
3ω

K
αI ωβKJ

)]

This top. density is CP even.
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Now the most general Lagrangian density:
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Now the most general Lagrangian density:

L = 1
2 e Σµν

IJ R
IJ

µν (ω) + η
2 INY + θ

4 IP + φ
4 IE
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Now the most general Lagrangian density:

L = 1
2 e Σµν

IJ R
IJ

µν (ω) + η
2 INY + θ

4 IP + φ
4 IE

Since all the topological terms are total divergences, the
classical equations of motion are not changed by including
them;
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Now the most general Lagrangian density:

L = 1
2 e Σµν

IJ R
IJ

µν (ω) + η
2 INY + θ

4 IP + φ
4 IE

Since all the topological terms are total divergences, the
classical equations of motion are not changed by including
them; the EOM are independent of η, θ and φ.
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Now the most general Lagrangian density:

L = 1
2 e Σµν

IJ R
IJ

µν (ω) + η
2 INY + θ

4 IP + φ
4 IE

Since all the topological terms are total divergences, the
classical equations of motion are not changed by including
them; the EOM are independent of η, θ and φ.

However, the Hamiltonian formulation and the symplectic
structure, do see these parameters.
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Now the most general Lagrangian density:

L = 1
2 e Σµν
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µν (ω) + η
2 INY + θ

4 IP + φ
4 IE

Since all the topological terms are total divergences, the
classical equations of motion are not changed by including
them; the EOM are independent of η, θ and φ.

However, the Hamiltonian formulation and the symplectic
structure, do see these parameters.

Quantum theory may depend on them.
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Now the most general Lagrangian density:

L = 1
2 e Σµν

IJ R
IJ

µν (ω) + η
2 INY + θ

4 IP + φ
4 IE

Since all the topological terms are total divergences, the
classical equations of motion are not changed by including
them; the EOM are independent of η, θ and φ.

However, the Hamiltonian formulation and the symplectic
structure, do see these parameters.

Quantum theory may depend on them.

INY and IP are CP-violating and IE is not.
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Now the most general Lagrangian density:

L = 1
2 e Σµν

IJ R
IJ

µν (ω) + η
2 INY + θ

4 IP + φ
4 IE

Since all the topological terms are total divergences, the
classical equations of motion are not changed by including
them; the EOM are independent of η, θ and φ.

However, the Hamiltonian formulation and the symplectic
structure, do see these parameters.

Quantum theory may depend on them.

INY and IP are CP-violating and IE is not.

So in such a quantum theory, besides the Newton’s
coupling constant, we can have additional two CP violating
(η, θ) and one CP preserving (φ) couplings.
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Hamiltonian formulation
Hamiltonian analysis for the theory containing the HP term
and the Nieh-Yan density only
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Hamiltonian formulation
Hamiltonian analysis for the theory containing the HP term
and the Nieh-Yan density only (η 6= 0 , θ = 0 , φ = 0):
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Hamiltonian formulation
Hamiltonian analysis for the theory containing the HP term
and the Nieh-Yan density only (η 6= 0 , θ = 0 , φ = 0):

L = 1
2 e Σµν

IJ R
IJ

µν (ω) + η
2 INY

has been done. (G. Date, RKK and Sandipan Sengupta, Phys. Rev.

D79: 044008, 2009; Mercuri)
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Hamiltonian formulation
Hamiltonian analysis for the theory containing the HP term
and the Nieh-Yan density only (η 6= 0 , θ = 0 , φ = 0):

L = 1
2 e Σµν

IJ R
IJ

µν (ω) + η
2 INY

has been done. (G. Date, RKK and Sandipan Sengupta, Phys. Rev.

D79: 044008, 2009; Mercuri)

This analysis, in the time gauge, leads to the well known
Ashtekar-Barbero-Immirzi real SU(2) gauge theory of gravity
with η−1 identified as the Barbero-Immirzi parameter γ.
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Hamiltonian formulation
Hamiltonian analysis for the theory containing the HP term
and the Nieh-Yan density only (η 6= 0 , θ = 0 , φ = 0):

L = 1
2 e Σµν

IJ R
IJ

µν (ω) + η
2 INY

has been done. (G. Date, RKK and Sandipan Sengupta, Phys. Rev.

D79: 044008, 2009; Mercuri)

This analysis, in the time gauge, leads to the well known
Ashtekar-Barbero-Immirzi real SU(2) gauge theory of gravity
with η−1 identified as the Barbero-Immirzi parameter γ.

Here we present a brief outline of the Hamiltonian analysis for
the Lag. density containing all the three top. terms (RKK and

Sandipan Sengupta):
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Hamiltonian formulation
Hamiltonian analysis for the theory containing the HP term
and the Nieh-Yan density only (η 6= 0 , θ = 0 , φ = 0):

L = 1
2 e Σµν

IJ R
IJ

µν (ω) + η
2 INY

has been done. (G. Date, RKK and Sandipan Sengupta, Phys. Rev.

D79: 044008, 2009; Mercuri)

This analysis, in the time gauge, leads to the well known
Ashtekar-Barbero-Immirzi real SU(2) gauge theory of gravity
with η−1 identified as the Barbero-Immirzi parameter γ.

Here we present a brief outline of the Hamiltonian analysis for
the Lag. density containing all the three top. terms (RKK and

Sandipan Sengupta):
L = 1

2
e Σµν

IJ R
IJ

µν (ω) + η

2
INY + θ

4
IP + φ

4
IE
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Standard parametrization for the tetrad fields:
eIt = NM I +NaV I

a , eIa = V I
a ; MIV

I
a = 0, MIM

I = −1
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Standard parametrization for the tetrad fields:
eIt = NM I +NaV I

a , eIa = V I
a ; MIV

I
a = 0, MIM

I = −1
with N and Na as the lapse and shift fields.
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Standard parametrization for the tetrad fields:
eIt = NM I +NaV I

a , eIa = V I
a ; MIV

I
a = 0, MIM

I = −1
with N and Na as the lapse and shift fields.

The inverse tetrads are:
etI = −MI

N , eaI = V a
I + NaMI

N ; M IV a
I = 0 ,

V I
a V

b
I = δb

a , V I
a V

a
J = δI

J +M IMJ
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Standard parametrization for the tetrad fields:
eIt = NM I +NaV I

a , eIa = V I
a ; MIV

I
a = 0, MIM

I = −1
with N and Na as the lapse and shift fields.

The inverse tetrads are:
etI = −MI

N , eaI = V a
I + NaMI

N ; M IV a
I = 0 ,

V I
a V

b
I = δb

a , V I
a V

a
J = δI

J +M IMJ

In this parametrization, we have, instead of the 16 tetrad
component fields eIµ, the following 16 fields:
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Standard parametrization for the tetrad fields:
eIt = NM I +NaV I

a , eIa = V I
a ; MIV

I
a = 0, MIM

I = −1
with N and Na as the lapse and shift fields.

The inverse tetrads are:
etI = −MI

N , eaI = V a
I + NaMI

N ; M IV a
I = 0 ,

V I
a V

b
I = δb

a , V I
a V

a
J = δI

J +M IMJ

In this parametrization, we have, instead of the 16 tetrad
component fields eIµ, the following 16 fields:

9 : V a
I (M IV a

I = 0) ; 3 : M I (M IMI = −1) ;
and 4 lapse and shift vector fields : N, Na
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a V
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J = δI

J +M IMJ

In this parametrization, we have, instead of the 16 tetrad
component fields eIµ, the following 16 fields:

9 : V a
I (M IV a

I = 0) ; 3 : M I (M IMI = −1) ;
and 4 lapse and shift vector fields : N, Na

From these, we define a convenient set of tetrad variable:
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Standard parametrization for the tetrad fields:
eIt = NM I +NaV I

a , eIa = V I
a ; MIV

I
a = 0, MIM

I = −1
with N and Na as the lapse and shift fields.

The inverse tetrads are:
etI = −MI

N , eaI = V a
I + NaMI

N ; M IV a
I = 0 ,

V I
a V

b
I = δb

a , V I
a V

a
J = δI

J +M IMJ

In this parametrization, we have, instead of the 16 tetrad
component fields eIµ, the following 16 fields:

9 : V a
I (M IV a

I = 0) ; 3 : M I (M IMI = −1) ;
and 4 lapse and shift vector fields : N, Na

From these, we define a convenient set of tetrad variable:
[

Ea
i = 2eΣta

0i ≡ e
(

et0e
a
i − etie

a
0

)

, χi = −Mi/M
0 , N , Na

]
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Standard parametrization for the tetrad fields:
eIt = NM I +NaV I

a , eIa = V I
a ; MIV

I
a = 0, MIM

I = −1
with N and Na as the lapse and shift fields.

The inverse tetrads are:
etI = −MI

N , eaI = V a
I + NaMI

N ; M IV a
I = 0 ,

V I
a V

b
I = δb

a , V I
a V

a
J = δI

J +M IMJ

In this parametrization, we have, instead of the 16 tetrad
component fields eIµ, the following 16 fields:

9 : V a
I (M IV a

I = 0) ; 3 : M I (M IMI = −1) ;
and 4 lapse and shift vector fields : N, Na

From these, we define a convenient set of tetrad variable:
[

Ea
i = 2eΣta

0i ≡ e
(

et0e
a
i − etie

a
0

)

, χi = −Mi/M
0 , N , Na

]

[ 9 + 3 + 1 + 3 = 16 ]
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Convenient set of variables from the 24 ωIJ
µ :
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Convenient set of variables from the 24 ωIJ
µ :

[

Ai
a ≡ ω

(η)0i
a = ω0i

a + ηω̃0i
a , Ki

a ≡ ω0i
a , ωIJ

t

]

: [9 + 9 + 6 = 24]
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Convenient set of variables from the 24 ωIJ
µ :

[

Ai
a ≡ ω

(η)0i
a = ω0i

a + ηω̃0i
a , Ki

a ≡ ω0i
a , ωIJ

t

]

: [9 + 9 + 6 = 24]

The time (boost) gauge χi = 0 where V 0
a ≡ e0a = 0.
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Convenient set of variables from the 24 ωIJ
µ :

[

Ai
a ≡ ω

(η)0i
a = ω0i

a + ηω̃0i
a , Ki

a ≡ ω0i
a , ωIJ

t

]

: [9 + 9 + 6 = 24]

The time (boost) gauge χi = 0 where V 0
a ≡ e0a = 0.

In this gauge Lagrangian density:
L = Êa

i ∂tA
i
a + F̂ a

i ∂tK
i
a + tai ∂tV

i
a −H + (tot space der)

Chandrayana, The Institute of Mathematical Sciences, Chennai, Jan 3-7, 2011 – p. 19/27



Convenient set of variables from the 24 ωIJ
µ :

[

Ai
a ≡ ω

(η)0i
a = ω0i

a + ηω̃0i
a , Ki

a ≡ ω0i
a , ωIJ

t

]

: [9 + 9 + 6 = 24]

The time (boost) gauge χi = 0 where V 0
a ≡ e0a = 0.

In this gauge Lagrangian density:
L = Êa

i ∂tA
i
a + F̂ a

i ∂tK
i
a + tai ∂tV

i
a −H + (tot space der)

Canonically conjugate pairs (Ai
a, Ê

a
i ) , (Ki

a, F̂
a
i ) , (V i

a , t
a
i );
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Ai
a ≡ ω

(η)0i
a = ω0i

a + ηω̃0i
a , Ki

a ≡ ω0i
a , ωIJ

t

]

: [9 + 9 + 6 = 24]

The time (boost) gauge χi = 0 where V 0
a ≡ e0a = 0.

In this gauge Lagrangian density:
L = Êa

i ∂tA
i
a + F̂ a

i ∂tK
i
a + tai ∂tV

i
a −H + (tot space der)

Canonically conjugate pairs (Ai
a, Ê

a
i ) , (Ki

a, F̂
a
i ) , (V i

a , t
a
i );

Êi
a ≡ Ea

i − 1
1+η2 F̂ a

i + 2ea0i(A,K) , F̂ a
i ≡ 2

(

η + 1
η

)

ẽa0i(A,K)
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Convenient set of variables from the 24 ωIJ
µ :

[

Ai
a ≡ ω

(η)0i
a = ω0i

a + ηω̃0i
a , Ki

a ≡ ω0i
a , ωIJ

t

]

: [9 + 9 + 6 = 24]

The time (boost) gauge χi = 0 where V 0
a ≡ e0a = 0.

In this gauge Lagrangian density:
L = Êa

i ∂tA
i
a + F̂ a

i ∂tK
i
a + tai ∂tV

i
a −H + (tot space der)

Canonically conjugate pairs (Ai
a, Ê

a
i ) , (Ki

a, F̂
a
i ) , (V i

a , t
a
i );

Êi
a ≡ Ea

i − 1
1+η2 F̂ a

i + 2ea0i(A,K) , F̂ a
i ≡ 2

(

η + 1
η

)

ẽa0i(A,K)
(

1 + η2
)

eaIJ ≡ ǫabc
[

(θ + ηφ)RbcIJ(ω) + (φ− ηθ) R̃bcIJ(ω)
]
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Convenient set of variables from the 24 ωIJ
µ :

[

Ai
a ≡ ω

(η)0i
a = ω0i

a + ηω̃0i
a , Ki

a ≡ ω0i
a , ωIJ

t

]

: [9 + 9 + 6 = 24]

The time (boost) gauge χi = 0 where V 0
a ≡ e0a = 0.

In this gauge Lagrangian density:
L = Êa

i ∂tA
i
a + F̂ a

i ∂tK
i
a + tai ∂tV

i
a −H + (tot space der)

Canonically conjugate pairs (Ai
a, Ê

a
i ) , (Ki

a, F̂
a
i ) , (V i

a , t
a
i );

Êi
a ≡ Ea

i − 1
1+η2 F̂ a

i + 2ea0i(A,K) , F̂ a
i ≡ 2

(

η + 1
η

)

ẽa0i(A,K)
(

1 + η2
)

eaIJ ≡ ǫabc
[

(θ + ηφ)RbcIJ(ω) + (φ− ηθ) R̃bcIJ(ω)
]

Fields V i
a , tai and F̂ a

i are not independent: V i
a = vi

a, tai = τa
i :
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Convenient set of variables from the 24 ωIJ
µ :

[

Ai
a ≡ ω

(η)0i
a = ω0i

a + ηω̃0i
a , Ki

a ≡ ω0i
a , ωIJ

t

]

: [9 + 9 + 6 = 24]

The time (boost) gauge χi = 0 where V 0
a ≡ e0a = 0.

In this gauge Lagrangian density:
L = Êa

i ∂tA
i
a + F̂ a

i ∂tK
i
a + tai ∂tV

i
a −H + (tot space der)

Canonically conjugate pairs (Ai
a, Ê

a
i ) , (Ki

a, F̂
a
i ) , (V i

a , t
a
i );

Êi
a ≡ Ea

i − 1
1+η2 F̂ a

i + 2ea0i(A,K) , F̂ a
i ≡ 2

(

η + 1
η

)

ẽa0i(A,K)
(

1 + η2
)

eaIJ ≡ ǫabc
[

(θ + ηφ)RbcIJ(ω) + (φ− ηθ) R̃bcIJ(ω)
]

Fields V i
a , tai and F̂ a

i are not independent: V i
a = vi

a, tai = τa
i :

vi
a ≡ 1√

E
Ei

a , τa
i ≡ ηǫabcDb(ω)V i

c ≡ ǫabc
(

ηDb(A)vi
c − ǫijkKj

b v
k
c

)

ǫtabc = ǫabc and Ei
a is the inverse of Ea

i and E ≡ det(Ei
a)
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In the time-gauge, the Hamiltonian density :
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In the time-gauge, the Hamiltonian density :
H = NH +NaHa + 1

2ǫ
ijkωij

t G
rot
k + ξa

i

(

V i
a − vi

a

)

+ φi
a (tai − τa

i ) + λi
a

(

F̂ a
i − 2

(

η + 1
η

)

ẽa0i

)
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In the time-gauge, the Hamiltonian density :
H = NH +NaHa + 1

2ǫ
ijkωij

t G
rot
k + ξa

i

(

V i
a − vi

a

)

+ φi
a (tai − τa

i ) + λi
a

(

F̂ a
i − 2

(

η + 1
η

)

ẽa0i

)

Last three terms express that V i
a , t

a
i and F̂ a

i are dependent
fields; the corresponding Lagrange multiplier ξa

i , φi
a and λi

a.
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In the time-gauge, the Hamiltonian density :
H = NH +NaHa + 1

2ǫ
ijkωij

t G
rot
k + ξa

i

(

V i
a − vi

a

)

+ φi
a (tai − τa

i ) + λi
a

(

F̂ a
i − 2

(

η + 1
η

)

ẽa0i

)

Last three terms express that V i
a , t

a
i and F̂ a

i are dependent
fields; the corresponding Lagrange multiplier ξa

i , φi
a and λi

a.

Grot
i ≡ ηDa(A)Êa

i + ǫijk

(

Kj
aF̂

a
k − tajV

k
a

)
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In the time-gauge, the Hamiltonian density :
H = NH +NaHa + 1

2ǫ
ijkωij

t G
rot
k + ξa

i

(

V i
a − vi

a

)

+ φi
a (tai − τa

i ) + λi
a

(

F̂ a
i − 2

(

η + 1
η

)

ẽa0i

)

Last three terms express that V i
a , t

a
i and F̂ a

i are dependent
fields; the corresponding Lagrange multiplier ξa

i , φi
a and λi

a.

Grot
i ≡ ηDa(A)Êa

i + ǫijk

(

Kj
aF̂

a
k − tajV

k
a

)

Ha ≡ Êb
iF

i
ab(A) + F̂ b

i D[a(A)Ki
b] −Ki

aDb(A)F̂ b
i + tbiD[a(A)V i

b]

− V i
aDb(A)tbi − 1

η
Grot

i Ki
a
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In the time-gauge, the Hamiltonian density :
H = NH +NaHa + 1
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ijkωij

t G
rot
k + ξa

i

(

V i
a − vi

a

)

+ φi
a (tai − τa

i ) + λi
a

(

F̂ a
i − 2

(

η + 1
η

)

ẽa0i

)

Last three terms express that V i
a , t

a
i and F̂ a

i are dependent
fields; the corresponding Lagrange multiplier ξa

i , φi
a and λi

a.

Grot
i ≡ ηDa(A)Êa

i + ǫijk

(

Kj
aF̂

a
k − tajV

k
a

)

Ha ≡ Êb
iF

i
ab(A) + F̂ b

i D[a(A)Ki
b] −Ki

aDb(A)F̂ b
i + tbiD[a(A)V i

b]

− V i
aDb(A)tbi − 1

η
Grot

i Ki
a

H ≡
√

E
2η
ǫijkEa

i E
b
j

[

F k
ab(A) −

(

1 + η2
)

(

D[a(A)Kk
b] −

1
η
ǫkmnKm

a K
n
b

)]

+ Ki
at

a
i − η∂a

(√
EGrot

k Ea
k

)
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In the time-gauge, the Hamiltonian density :
H = NH +NaHa + 1
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ijkωij

t G
rot
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a
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+ φi
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η
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Last three terms express that V i
a , t
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i and F̂ a

i are dependent
fields; the corresponding Lagrange multiplier ξa

i , φi
a and λi
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i ≡ ηDa(A)Êa
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i D[a(A)Ki
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aDb(A)F̂ b
i + tbiD[a(A)V i

b]

− V i
aDb(A)tbi − 1

η
Grot

i Ki
a

H ≡
√

E
2η
ǫijkEa

i E
b
j

[

F k
ab(A) −

(

1 + η2
)

(

D[a(A)Kk
b] −

1
η
ǫkmnKm

a K
n
b

)]

+ Ki
at

a
i − η∂a

(√
EGrot

k Ea
k

)

where in the last expression Ea
i ≡ Êa

i + 1
1+η2 F̂ a

i − 2ea0i(A,K)
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There are no terms in the Lagrangian density with the
velocities of fields N , Na, ωij

t , hence these are Lagrange
multiplier fields. So there are as many constraints
associated with them; and these are first class:
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There are no terms in the Lagrangian density with the
velocities of fields N , Na, ωij

t , hence these are Lagrange
multiplier fields. So there are as many constraints
associated with them; and these are first class:

Grot
i ≈ 0, Ha ≈ 0 , H ≈ 0
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There are no terms in the Lagrangian density with the
velocities of fields N , Na, ωij

t , hence these are Lagrange
multiplier fields. So there are as many constraints
associated with them; and these are first class:

Grot
i ≈ 0, Ha ≈ 0 , H ≈ 0

In addition, we have the constraints due the fact that V i
a , tai

and F̂ a
i are not independent fields:
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There are no terms in the Lagrangian density with the
velocities of fields N , Na, ωij

t , hence these are Lagrange
multiplier fields. So there are as many constraints
associated with them; and these are first class:

Grot
i ≈ 0, Ha ≈ 0 , H ≈ 0

In addition, we have the constraints due the fact that V i
a , tai

and F̂ a
i are not independent fields:

V i
a − vi

a(E) ≈ 0 , tai − τa
i (A,K,E) ≈ 0

χa
i ≡ F̂ a

i − 2
(

η + 1
η

)

ẽa0i(A,K) ≈ 0
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There are no terms in the Lagrangian density with the
velocities of fields N , Na, ωij

t , hence these are Lagrange
multiplier fields. So there are as many constraints
associated with them; and these are first class:

Grot
i ≈ 0, Ha ≈ 0 , H ≈ 0

In addition, we have the constraints due the fact that V i
a , tai

and F̂ a
i are not independent fields:

V i
a − vi

a(E) ≈ 0 , tai − τa
i (A,K,E) ≈ 0

χa
i ≡ F̂ a

i − 2
(

η + 1
η

)

ẽa0i(A,K) ≈ 0

The fields ea0i and ẽa0i are functions of the gauge fields Ai
a

and Ki
a and the topological parameters θ, φ besides η.
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There are no terms in the Lagrangian density with the
velocities of fields N , Na, ωij

t , hence these are Lagrange
multiplier fields. So there are as many constraints
associated with them; and these are first class:

Grot
i ≈ 0, Ha ≈ 0 , H ≈ 0

In addition, we have the constraints due the fact that V i
a , tai

and F̂ a
i are not independent fields:

V i
a − vi

a(E) ≈ 0 , tai − τa
i (A,K,E) ≈ 0

χa
i ≡ F̂ a

i − 2
(

η + 1
η

)

ẽa0i(A,K) ≈ 0

The fields ea0i and ẽa0i are functions of the gauge fields Ai
a

and Ki
a and the topological parameters θ, φ besides η.

Constraints χa
i ≈ 0 are of particular interest.
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Since (Ai
a, Ê

b
j ) and (Ki

a, F̂
b
j ) are canonically conjugate

pairs, these accordingly obey the standard Poisson
brackets relations.
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Since (Ai
a, Ê

b
j ) and (Ki

a, F̂
b
j ) are canonically conjugate

pairs, these accordingly obey the standard Poisson
brackets relations.

Using these we obtain a secondary constraint from the
Poisson bracket of the Hamiltonian constraint H and χa

i ,
[χa

i (x), H(y)] ≈ 0 as:
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Since (Ai
a, Ê

b
j ) and (Ki

a, F̂
b
j ) are canonically conjugate

pairs, these accordingly obey the standard Poisson
brackets relations.

Using these we obtain a secondary constraint from the
Poisson bracket of the Hamiltonian constraint H and χa

i ,
[χa

i (x), H(y)] ≈ 0 as:

tai −
(

1+η2

η2

) [

ηǫijkDb(A)
(√

EEa
jE

b
k

)

+
√
EE

[a
j E

b]
i K

j
b

]

≈ 0
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Since (Ai
a, Ê

b
j ) and (Ki

a, F̂
b
j ) are canonically conjugate

pairs, these accordingly obey the standard Poisson
brackets relations.

Using these we obtain a secondary constraint from the
Poisson bracket of the Hamiltonian constraint H and χa

i ,
[χa

i (x), H(y)] ≈ 0 as:

tai −
(

1+η2

η2

) [

ηǫijkDb(A)
(√

EEa
jE

b
k

)

+
√
EE

[a
j E

b]
i K

j
b

]

≈ 0

which can be rewritten as:
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Since (Ai
a, Ê

b
j ) and (Ki

a, F̂
b
j ) are canonically conjugate

pairs, these accordingly obey the standard Poisson
brackets relations.

Using these we obtain a secondary constraint from the
Poisson bracket of the Hamiltonian constraint H and χa

i ,
[χa

i (x), H(y)] ≈ 0 as:

tai −
(

1+η2

η2

) [

ηǫijkDb(A)
(√

EEa
jE

b
k

)

+
√
EE

[a
j E

b]
i K

j
b

]

≈ 0

which can be rewritten as:

tai −
(

1+η2

η2

)

ǫabc
[

ηDb(A)vi
c − ǫijkKj

b v
k
c

]

≈ 0 : vi
a ≡ Ei

a√
E
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Since (Ai
a, Ê

b
j ) and (Ki

a, F̂
b
j ) are canonically conjugate

pairs, these accordingly obey the standard Poisson
brackets relations.

Using these we obtain a secondary constraint from the
Poisson bracket of the Hamiltonian constraint H and χa

i ,
[χa

i (x), H(y)] ≈ 0 as:

tai −
(

1+η2

η2

) [

ηǫijkDb(A)
(√

EEa
jE

b
k

)

+
√
EE

[a
j E

b]
i K

j
b

]

≈ 0

which can be rewritten as:

tai −
(

1+η2

η2

)

ǫabc
[

ηDb(A)vi
c − ǫijkKj

b v
k
c

]

≈ 0 : vi
a ≡ Ei

a√
E

Next since tai ≈ τa
i (E,A,K) ≡ ǫabc

[

ηDb(A)vi
c − ǫijkKj

b v
k
c

]

,

this implies: tai ≈ 0.
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Thus we have the secondary constraint:
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Thus we have the secondary constraint:

ǫabc
[

ηDb(A)vi
c − ǫijkKj

bv
k
c

]

≈ 0 : vi
a ≡ Ei

a√
E
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This is an additional constraint
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d − δikEm
b Dc(A)Em
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]

This is an additional constraint and forms a second class
pair with the constraint χa

i ≈ 0:

[χa
i (x), ψ

j
b(y)] = − δa

b δ
j
i δ

(3)(x, y)
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To implement these second class constraints, χa
i ≈ 0 and

ψi
a ≈ 0, we need to go over from Poisson brackets to the

corresponding Dirac brackets.
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To implement these second class constraints, χa
i ≈ 0 and

ψi
a ≈ 0, we need to go over from Poisson brackets to the

corresponding Dirac brackets.

Then impose the constraints strongly, χa
i = 0 and ψi

a = 0.

It can be checked that, these Dirac brackets for the set of
fields (Ai

a, Ê
a
i ; Ki

a, F̂
a
i ) are different from their Poisson

brackets.

On the other hand, for the fields Ai
a and Ea

i , Dirac brackets are
same as their Poisson brackets.
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Finally, after implementing all the second class constraints,
the set of first class constraints:
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where now the following hold strongly:
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ẽa
0i(A,K)

Chandrayana, The Institute of Mathematical Sciences, Chennai, Jan 3-7, 2011 – p. 25/27



Finally, after implementing all the second class constraints,
the set of first class constraints:
Grot

i ≡ ηDa(A)Êa
i + ǫijkKj

aF̂
a
k ≈ 0

Ha ≡ Êb
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Effect of the generators of gauge transfs. on various fields
is obtained through the Dirac brackets.
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i (x), Êa
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]
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= ǫijkÊa
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i (x), Ai

a(y)
]
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= −η

(

δij∂a + 1
η
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a

)

δ(3)(x, y)
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Chandrayana, The Institute of Mathematical Sciences, Chennai, Jan 3-7, 2011 – p. 26/27



Effect of the generators of gauge transfs. on various fields
is obtained through the Dirac brackets. For example:

[

Grot
i (x), Êa
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i (y)
]

D
= ǫijkEa

kδ
(3)(x, y)

reflecting the fact Grot
i are generators of SU(2) transfs.

Similar discussion is valid for the diffeomorphism
generators Ha; Dirac brackets of Ha with various fields
yield the Lie derivatives of these fields respectively, modulo
SU(2) gauge transformations.
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This thus provides the Hamiltonian formulation of the theory
of gravity with the three topological terms in terms of an
SU(2) gauge theory.
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The coupling constant of this gauge theory is η−1.

This is to be identified with the Barbero-Immirzi parameter.
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of gravity with the three topological terms in terms of an
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The coupling constant of this gauge theory is η−1.

This is to be identified with the Barbero-Immirzi parameter.

Now if we couple matter, such as fermions, spin 1/2 or spin
3/2 (supergravity), or antisymmetric gauge fields to this
theory, we do that in the usual manner through the minimal
couplings.
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This thus provides the Hamiltonian formulation of the theory
of gravity with the three topological terms in terms of an
SU(2) gauge theory.

The coupling constant of this gauge theory is η−1.

This is to be identified with the Barbero-Immirzi parameter.

Now if we couple matter, such as fermions, spin 1/2 or spin
3/2 (supergravity), or antisymmetric gauge fields to this
theory, we do that in the usual manner through the minimal
couplings.

Hamiltonian analysis, in the time-gauge, can again be set
up in terms of a real SU(2) gauge theory with η−1 as its
coupling constant.
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