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1 Introduction.

In these lectures we will describe the analogy between the theory of rational points

on varieties over number fields, the theory of curves over projective varieties and the

theory of analytic map of affine curves on projective varieties.

This analogy is explained by showing the similarities between height theory, the in-

tersection theory and Nevanlinna theory. In particular a detailed description of Poincaré

Lelong formula in this contest is given.

In the last lectures we well show how these three theories may interact within them.

So we will not have a simple analogy but a richer interaction. This is done to prove

some generalization of the classical Schneider Lang criterion over affine curves.

The reader is supposed to know only standard definitions of schemes and basic facts

about commutative algebra and complex analysis (in one variable). We tried to make

fast overview of the tools in algebraic geometry and analytic geometry used.

These are the notes of a series of lectures I gave at the IMSc of Chennai (india). I

would like to thank the IMSc, in particular Prof. Balusubramanian and Prof Gun, for

the opportunity they gave to me and the warm and friendly hospitality.

2 Lecture I.

One of the leading problems in mathematics is the search of methods to solve dio-

phantine equations:

For instance, given an equation (monic to simplify)

Xn + an−1X
n−1 + . . .+ a0 = 0

with ai ∈ Z, a very easy (even if not the more convenient in computational terms) way

to find all its eventual solutions in Z is the following: Factorize a0, a possible solution

will be a divisor of a0.

In two or more variables, the situation is more difficult; even the case of linear

equations in two variables is part of a course in a first year elementary algebra. In the

higher degree case, the problem is still more difficult and many questions are still open.
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There is another problem which is the other side of question above: suppose that

we have a complex number, defined by some properties (for instance differential), is it

defined over Q? or just defined over Q? One can also ask if, given two, or more, complex

numbers a1 and a2, there exist a polynomial P (X,Y ) with coefficients in Q such that

P (a1, a2) = 0.

The two problems are specular one of the other: in the first one we want to find

the eventual solutions of an equation; in the second one, we want the find the eventual

equation solved by a ”solution”.

2.1 Remark. Observe that there is a theorem by Matiyesevich which tells us that

there is no algorithm which can tell us if a diophantine equation has a solution over Z.

When one wants to study a problem, often a good idea is to find a similar problem

and understand similarities and analogies; so that we can deduce what is formal and

what is strictly related to the situation.

The analogy we have in mind is:

The analogy between number fields and functions fields

Consider the two rings Z and C[z]. They have many properties in common:

– They are both P.I.D.;

– Every prime ideal is either (0) or maximal;

– We can perform euclidean division.

And we will see some other common properties.

Consequently one can think to study the diophantine equations over C[z] and see if

the results we find and the methods developed, have some meaning over the ring Z.

Over the two rings Z and C[z] we can develop the four operations, but over C[t] there

is another operation which do not exists over Z: the derivation.

The derivation is a formal operation (·)′ : C[z]→ C[z] which is C linear and verifies

the Liebnitz formula: (fg)′ = fg′ + f ′g; if we also impose that (z)′ = 1 the derivation

is what we imagine: (zn)′ = nzn−1.

2.2 Remark. Observe that, if we do not impose that (z)′ = 1 there are many deriva-

tions over C[z].

It is easy to prove that the only derivation on Z is (n)′ = 0.

So C[z] is a euclidean domain which is equipped with a non trivial operation which

satisfy Liebnitz rule. We will see that this new tool is incredibly powerful in the study

of diophantine equations: The analogue over C[z] of the famous Fermat Last Theorem

become almost an exercise:
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2.3 Theorem. Let n ≥ 3. If (f(z), g(z), h(z)) ∈ (C[z])3 is a non trivial (which means

fgh 6= 0) solution of the equation

Xn + Y n = Zn

then (f(z), g(z), h(z)) ∈ C3: f , g and h are constants.

Before we start the proof we give the following definition:

2.4 Definition. Let f(z) ∈ C[z]. We denote by N(f) the number of zeros of f(z)

counted without multiplicity and we call it the conductor of f .

For instance N((z − 2)4(z − 3)) = 2.

Proof: The theorem will be consequence of the following very important statement:

2.5 Theorem. Let f(z), g(z) and h(z) three coprime polynomials such that

f(z) + g(z) = h(z).

Then the following inequality holds:

max{deg(f(z),deg(g(z)),deg(h(z))} ≤ N(fgh)− 1.

Let’s show how the Theorem 2.5 implies Theorem 2.3: Suppose that

f(z)n + g(z)n = h(z)n

and suppose that d = deg(f) ≥ deg(g) ≥ deg(h) (we can always suppose it). Theorem

2.5 implies that nd ≤ 3d− 1, consequently

(n− 3)d ≤ −1.

The conclusion easily follows.

Let’s now prove Theorem 2.5:

Proof: (of 2.5) Write

f(z) = a0

N(f)∏
i=1

(z − ai)ni , g(z) = b0

N(g)∏
j=1

(z − bj)mj , h(z) = c0

N(h)∏
k=1

(z − ck)`k .

Let C(z) := Frac(C[z]) be the field of rational functions. The derivation extends to

a derivation on C(z). We introduce the following morphism

d log(·) : C(z)∗ −→ C(z)

F (z) −→ d log(F ) :=
F ′(z)

F (z)
.

It is easy to verify that d log(FG) = d log(F ) + d log(G).
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Denote F := f(z)
h(z) and G := g(z)

h(z) . From the hypothesis we have F +G = 1, thus

Fd log(F ) +Gd log(G) = 0.

From this we obtain
f(z)

g(z)
= −d log(G)

d log(F )
.

Consider the polynomial

N0(z) =

N(f)∏
i=1

(z − ai)
N(g)∏
j=1

(z − bj)
N(h)∏
k=1

(z − ck).

The degree of N0(z) is N(fgh).

Observe that, since d log(F ) = d log(f(z)) − d log(h(z)) we have that N0(z)d log(F )

is a polynomial of degree at most N(fgh) − 1. Similarly the degree of the polynomial

N0(z)d log(G) is at most N(fgh)− 1. We have that

f(z)

g(z)
= −N0(z)d log(G)

N0(z)d log(F )
;

Since f(z) and g(z) are coprime, the maximum between the degree of f(z) and the

degree of g(z) is at most N(fgh)− 1. The conclusion follows.

2.6 Remark. Theorem 2.5 is called the abc conjecture over functions fields and in this

form it has been proved by Mason. This proof is taken from [La].

One could find an easy proof of the Fermat Last Theorem if one could prove an

analogue of Theorem 2.5 in the arithmetic contest. A conjectural form of it is called the

abc conjecture.

We would like to explain another important feature that Z and C[z] have in common:

the Product Formula.

It is well known, after the Hilbert Nullstellensatz, that the set of maximal ideals of

C[t] is in bijection with the set of points of the affine line A1(C).

The affine line can be compactified to the projective line A1 ↪→ P1. The field C(t) is

the field of meromorphic functions of P1 over C.

Let p ∈ P1 be a closed point. We will denote by Op the local ring of p in P1. The

ring Op is a discrete valuation ring and we denote then by tp an uniformizer of it.

2.7 Example. Suppose that p = ∞. Then we define t∞ = 1
z and O∞ is defined in

the following way: Let F (z) ∈ C(t); We can write in a unique way F (z) = t
v∞(F )
∞ G(t∞)

with G(0) 6= 0 and v∞(F ) ∈ Z. We define then O∞ := {F (z) / v∞(F ) ≥ 0}. The

maximal ideal of O∞ is {F (z) / v∞(F ) > 0}.

Given an element F (z) ∈ C(z)∗, we can write it as t
vp(F )
p u(z) where vp(z) ∈ Z and

u(z) is a unit in Op. By definition we say that vp(0) =∞
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It is important to observe the following properties:

– vp(FG) = vP (F ) + vp(G).

– vp(F +G) ≥ max{vp(F ), vp(G)}
– If p 6=∞ and F ∈ C[z] then vp(F ) ≥ 0 and (z−p)vp(F ) divides F while (z−p)vp(F )+1

do not divide F .

– It is easy to see that if F ∈ C[z] then v∞(F ) = −deg(F )

From the properties above we deduce

2.8 Theorem. If F ∈ C(z) then ∑
p∈P1

vp(F ) = 0.

To prove it, one reduces to the case when F is a polynomial and then one apply the

properties above.

If p ∈ P1; we can associate to it a non archimedean norm ‖·‖p on C(t) in the following

way:

‖F (z)‖p := exp(−vp(F )).

Theorem 2.8 becomes then

2.9 Theorem. For every F ∈ C(t)∗ we have∏
p∈P1

‖F‖p = 1.

The formula above is called the product formula for the projective line. Often one

quote it by saying ”a meromorphic function on the projective line has the same number

of zeros and poles, counting multiplicity”.

The Product formula has an important analogue over Z which we will now briefly

describe.

By analogy with the geometric case, the set Specmax(Z) of maximal ideals of Z
can be interpreted as an arithmetic line. The fraction field of Z which is Q, can be

interpreted as the field of ”meromorphic functions on the arithmetic line”. Let p be a

prime number; it corresponds to a point of the arithmetic line. The local ring Zp of p

is a discrete valuation ring with uniformizer p.

2.10 Remark. Observe that this is another feature that Z and C[z] have in common:

for every maximal ideal of them, the associated local ring is a discrete valuation ring.

Every m ∈ Q can be uniquely written as m = pvp(m)u where vp(m) ∈ Z and u is a

unit in Zp. We can associate to p a non archimedean norm ‖ · ‖p defined as

‖m‖p := p−vp(m).
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Thus, we have norms associated to every maximal ideal of Z. There is another natural

norm on Q: the one induced by the inclusion in R:

‖m‖∞ := |m|.

This norm is euclidean.

Consequently we have the Product formula for the arithmetic line:

2.11 Theorem. Let m ∈ Q∗. Then

‖m‖∞ ·
∏

p∈Specmax(Z)

‖m‖p = 1.

Proof: One easily sees that, of p is a prime number, then

‖p‖∞ · ‖p‖p = 1.

By the unique factorization property, we have that if p 6= q are two different primes,

then ‖p‖q = ‖q‖p = 1. Since the norms are multiplicative, the conclusion easily follows.

Formulas of Theorems 2.9 and 2.11 are formally the same and provide another im-

portant common feature betwen Z and C[z]. We observe the important fact that, the

product formula over the projective line requires the point at infinity and the formula

on the arithmetic line requires the euclidean norm. Consequently we are induced to see

the euclidean norm as a point at infinity of the arithmetic line: the arithmetic line and

the point at infinity may be seen as a sort of projective arithmetic line.

Most of the things proved in this lecture generalize to a general curve and to a general

ring of integers of a number field.

3 Lecture II.

In the last lecture we shown many interesting features in common between Z and

C[z]. In order to explain the product formula, in both cases we had to ”compactify”

the situation:

– For C[z] we introduced the projective line as a projective variety naturally com-

pactifying the affine line.

– For Z : each non archimedean absolute value over Q corresponds to a closed point of

Spec(Z). In order to obtain the product formula, we considered the usual archimedean

absolute value as another point: the point at infinity.

As one can imagine, the analogue of the product formula is true over an arbitrary

projective curve and over an arbitrary ring of integers of a number field.

Suppose that X is a smooth projective curve over C and C(X) is the field of rational

functions over it. and f ∈ C(X). For every closed poin p t of X, denote by OX,p the
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local ring of p in X and by tp an uniformizer of it. Every element f ∈ C(X) can be

written as f = t
vp(f)
p · u with u ∈ O×X,p and vp(f) ∈ Z. We define then

‖f‖p := exp(−vp(f)).

If vp(f) > 0 then we will say that f has a zero of order vp(f) at p; if vp(f) < 0 we

will say that f as a pole of order −vp(f) at p.

3.1 Example. Let f(z) := (z−1)2(z−2)
z3(z−3)5 then: f has a zero of order 2 at 1, a zero of

order 1 at 2 a zero of order 5 at ∞, a pole of order 3 at 0 and a pole of order 5 at 3.

3.2 Theorem. For every f ∈ C(X)× we have that∏
p∈C(X)

‖f‖p = 1.

Similarly for number fields, even if here we need to be careful about normalizations:

Let K be a number field and OK be its ring of integers. For every maximal ideal p of

OK , Let OK,p and πp be the local ring of it be an uniformizer of it respectively. Let (p)

be the ideal p ∩ Z of Z. The cardinality of OK/p is pdp for a suitable positive integer

dp (which is usually called the residual degree of p). Every f ∈ K may be written as

π
vp(f)
p × u with u ∈ O×K,p and vp(f) ∈ Z. in particular vp(p) = a > 0. We define then

‖f‖p := p−vp(f)dp .

Observe that

log(Card(OK/p)) = − log ‖πp‖p

And more generally, if f ∈ OK then

log(Card(OK/(f)) = −
∑

p∈Mfin

log ‖f‖p.

For every complex embedding σ : K ↪→ C we define

‖f‖σ := |σ(f)|.

Denote by M∞ the set of complex embedding of K.

3.3 Theorem. For every f ∈ K× we have that∏
σ∈M∞

‖f‖σ ·
∏

p∈Specmax(OK)

‖f‖p = 1.

The product formula is a cornerstone (and if you want the main one) for the theory

of divisors and line bundles on curves. We recall here the main facts of this theory:
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Let X be a smooth projective curve as above.

3.4 Definition. The free abelian group generated by the points of X is called the

group of divisors of X and denoted by Div(X). Each element of Div(X) is a formal

sum

D =
∑
p∈X

np[p]

with the np’s all but finitely many zero.

– Given D ∈ Div(X) we define the degree of D the natural number deg(D) :=∑
p∈x np.

– Let f ∈ C(X) a non zero element. For every point p ∈ X we associated a number

vp(f). For almost all the points p the number vp(f) is zero. Thus we can associate to f

the divisor div(f) :=
∑
p∈X vp(f)[p]. The degree of div(s) is zero because the product

formula 3.2.

In particular one of the main consequences of the product formula over is the follow-

ing:

Suppose that we fix two sets of points Z = {p1, . . . .pr}. For every pi we fix integers

mi . Then a necessary condition the existence of a function f ∈ C(X) such that

div(f) =
∑r
i=1mi[pi] is that

∑
imi = 0. Or equivalently, that the degree of the divisor∑

imi[pi] is zero.

If X = P1 the condition above is also sufficient: we take the function f(z) :=
∏
i(z−

i)mi . Remark that if we make the same construction when
∑
imi 6= 0 then we will have

troubles with the point ∞.

3.5 Definition. A divisor D on a smooth projective curve is said to be principal if

there exists a function f ∈ C(X) such that D = div(f). The set of principal divisors of

X is a subgroup of Div(X) and it is denoted by P (X).

On an arbitrary curve X, there exist divisors of degree zero which are not principal.

3.6 Definition. Let X as above. The Picard group of X is the group

Pic(X) := Div(X)/P (X).

Observe that the product formula tells us that the degree maps factors

deg : Pic(X) −→ Z
[D] −→ deg(D)

.

The kernel of this map is denoted by Pic0(X). If we denote by Div0(X) the subgroup

of elements of degree zero of Div(X), then Pic0(X) = Div0(X)/P (X).

We can resume what we said by the following commutative diagram of abelian groups:
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0 0y y
0 → C× −→ C(X)× −→ Div0(X) −→ Pic0(X)→ 0

= =
y y

0 → C× −→ C(X)× −→ Div(X) −→ Pic(X)→ 0

deg

y deg

y
Z = Zy y
0 0

One can prove that the group Pic0(X) has a natural structure of a smooth projective

algebraic group of dimension g, the genus of X.

Looking carefully to the constructions above, one checks that the main tool was the

product formula, consequently one can transport everything in the arithmetic world:

Let K be a number field and OK be its ring of integers. We denote by M∞ the set

of complex embeddings of K and by MK,f the set of maximal ideals of OK . The set

M∞ corresponds to the classes of archimedean absolute values of K, also called infinite

places; while the set MK,f corresponds to the classes of non archimedean absolute values

of K, usually called finite places of K.

3.7 Definition. A compactified divisor over OK is a formal sum

D =
∑

σ∈M∞

λσ[σ] +
∑

p∈MK,f

np[p]

where λσ ∈ R and np ∈ Z almost all zero. The set of compactified divisors over OK is

naturally a group denoted D̂iv(OK).

we define an arithmetic degree map, using the notation above:

d̂eg : D̂iv(OK) −→ R

D −→ d̂eg(D) :=
∑

σ∈M∞

λσ +
∑

p∈MK,f

np · log(Card(OK/p) .

This is formally the same definition given over a curve. Indeed, the main difference

is that, while in the geometric case the degree of a point is always one, in the arithmetic

case the degree of a point is the logarithm of the norm of it. One can remember

that in order to obtain the product formulas, in the geometric case we introduced an

exponential, while in the arithmetic case we had a natural candidate to pass from the

valuations to the norms.
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Given an element f ∈ K, we can associate to it a natural compactified divisor:

div(f) :=
∑

p∈MK,f

vp(f)[p]−
∑

σ∈M∞

‖f‖σ[σ].

Remark the minus sign in front of infinite places. The product formula can be restated

by saying:

3.8 Proposition. For every f ∈ K× we have that

d̂eg(div(f)) = 0.

The set of compactified divisors which are div(f) for some f ∈ K× is a subgroup

of the group of compactified divisors of OK called the group of principal compactified

divisors and denoted by P̂ (OK).

And eventually we can define

3.9 Definition. We define the compactified Picard group of a number field as the

group

P̂ ic(OK) : D̂iv(OK)/P̂ (OK).

By construction we have an arithmetic degree map:

d̂eg : P̂ ic(OK) −→ R.

Remark that, given a compactified divisor D =
∑
σ∈M∞ λσ[σ] +

∑
p∈MK,f

np[p], we

can associate to it the fractional ideal
∏

pnp of K. we leave as an exercise to the reader

the fact that this induce a surjective map

P̂ ic(OK) −→ Cl(OK)

Where Cl(OK) is the ideal class group of OK .

One of the main theorems of the theory is:

3.10 Theorem. we have a canonical isomorphism

Pic(X) ' H1(X,O×).

In order to prove the theorem above we need to introduce the group of Cartier

Divisors of a scheme:

Let X be a scheme, which we suppose reduced and irreducible (a curve or the spec-

trum of the ring of integers of a number field if you prefer). We introduce two sheaves

in abelian groups on it:

– The total quotient sheaf of X: it is the sheaf K(X)× defined in the following way:

Let U be an open set of X, let S be the multiplicatively closed set of elements of

Γ(U,OX) which are not zero divisors of it; then Γ(U,K(X)×) = S−1Γ(U,OX).
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– The sheaf of units of X: It is the sheaf O×X defined in the following way: Let U be

an open set of X, then Γ(U ;O×X) = Γ(U,OX)× (the group of units of it).

Remark that if X is reduced and irreductible, then we can speak about its quotient

field K(X): it is the local ring of its generic point and, for every U open set of X we

have that Γ(U,K(X)×) = K(X)×.

Observe also that there is a natural inclusion of sheaves

O×X ↪→ K(X)×.

3.11 Definition. A Cartier divisor on X is a global section of the sheaf K(X)×/O×X .

The group of Cartier divisors is denoted by CaDiv(X).

A more explicit description of a Cartier divisor is the following: A Cartier divisor is

the given by a covering {Ui}i ∈ I of X and non zero elements fi ∈ Γ(Ui,K)X)×) such

that on Ui ∩ Uj we have fi/fj ∈ Γ(Ui ∩ Uj ;O×X).

3.12 Definition. A Cartier divisor is said to be effective if fi ∈ Γ(Ui,OX).

3.13 Example. Consider the curve P1
C. We can describe it in the following way: two

open sets U1 and U2 each of them isomorphic to C, the first with variable z and the

second with variable w; the intersection of them is U12 which is C \ {0} in Ui and the

variable z becomes 1/w. A Cartier divisor on P1 is for instance:

– a polynomial of degree n in z: f(z) = anz
n + an−1z

n−1 + . . .+ a0;

– the polynomial in w: g(w) = a0w
n + . . .+ an.

One easily checks that over U12 we have f(z)/g(w) = zn.

3.14 Definition. A Cartier divisor is principal if it is image of an element of K(X)×

via the natural map K(X)× → CaDiv(X).

It is not difficult to see, via the exact sequence of sheaves of abelian groups

0→ O×X −→ K(X)× −→ CaDiv(X)→ 0

that the group CaDiv(X)/K(X)× is isomorphic to H1(X,O×X).

If X is s a smooth projective curve, and D is a Cartier divisor on it, we can associate

to it a divisor in the following way:

Let (Ui, fi) be a Cartier divisor on X, We associate to it the divisor D′ =
∑
imp[p]

in the following way: suppose that p ∈ Ui then mp = vp(fi); one easily checks that this

is independent on the choice of i or on the representative of the Cartier divisor.

Similarly for the ring of integers of a number field.

Since a smooth projective curve and the ring of integers of a number fields are locally

factorial it is not difficult to prove:
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3.15 Theorem. Let X be either a smooth projective curve or the spectrum of the

ring of integers of a number field then:

Pic(X) ' H1(X,O×X).

Where, in the arithmetic case, Pic(X) = Cl(OK).

We can rewrite the theory of degree of divisors on curves in terms of line bundles

and Cartier divisors:

3.16 Definition. A line bundle L on X is a locally free sheaf of rank one.

We can explicitly describe a line bundle on X in the following way: A line bundle

L on X is a sheaf L on X for which there exists a covering U = {Ui} of X by open

sets such that there exists an isomorphism ϕi : OUi
'→ L|Ui . Over Ui ∩ Uj the map

ϕ−1
j ◦ ϕi : OUi∩Uj → OUi∩Uj defines an element gij ∈ Γ(Ui ∩ Uj ;O×). If L1 and L2 are

two line bundles, then L1 ⊗L2 is again a line bundle on X; thus the set of line bundles

(up to isomorphism) is an abelian group.

One easily verify that {gij} is a cocycle so it defines an element of H1(X,O×). Two

lines bundles define the same cocycle if and only if they are isomorphic. Thus the set

of line bundles on X is an abelian group isomorphic to the group of line bundles on X.

Consequently, we see that there is an isomorphism between the group of Cartier

divisors up to principal Cartier divisors and the group of line bundles up to isomorphism.

3.17 Definition. The Line bundle associated to a divisor D = (Ui, fi) is denoted by

O(D) and explicitely given over every open set Ui by free line bundle 1
fi
OUi : they are

glued together in the obvious way. Similarly we will denote by O(−D) the line bundle

O(D)⊗−1. If L is a line bundle on X, we will denote by L(D) the line bundle L⊗O(D):

similarly for L(−D).

Conversely, given a line bundle L over X; we can describe it as a covering {Ui}
and cocycle functions {gij}. A Cartier divisor D is such that O(D) = L if D can be

described by functions fi on Ui with fi = gijfj .

3.18 Definition. Let X be a smooth projective curve and L be a line bundle on it.

A meromorphic section of L is a Cartier divisor D such that O(D) ' L.

More in general we can prove the following proposition:

3.19 Proposition. Let X be a scheme and L be a line bundle over it. We can associate

to every morphism of sheaves ϕ : OX → L a Cartier divisor Dϕ on X which is effective

and O(D) = L. Conversely, every effective Cartier divisor D on X such that O(D) ' L
give rise to an injective morphism ψD : OX → L. Given ϕ : OX → L, we can find a

unit u ∈ Γ(X,OX) such that ψDϕ = u · ϕ.
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Sketch of Proof: Suppose that we have a map ϕ : OX → L. We can choose a covering

{Ui}i∈I of X by affine open sets such that L|Ui is free. Consequently ϕ|Ui is a morphism

OUi → OUi . Define fi = ϕ(1) on Ui. By definition fi is in OUi and fi/fj is a unit of

Ui ∩ Uj . So (Ui, fi) is an effective Cartier divisor on X. We leave as exercice to prove

the fact that O(D) = L and the other part of the proposition.

One easily checks (by local computations again) that this construction is compatible

with the construction given on curves.

3.20 Definition. By the proposition above, given an D effective line bundle on a

Scheme X, it corresponds to a map ψD : OX → O(D). The support of D is the closed

set of X where the map ψD is not an isomorphism.

3.21 Example. Let X be a smooth projective curve. Suppose that D is the divisor∑
np[p]. Then the support of D is the set of points p such that np 6= 0

Let’ s consider again a smooth projective curve X.

3.22 Definition. Let L be a line bundle over X. The degree deg(L) of L is the degree

of any meromorphic section of L. This definition is well posed (it is independent on the

choice of the meromorphic section).

Let η : Spec(C(X)) → X be the generic point of X. Given a line bundle L on X,

we define Lη the pull back η∗(L) of it to Spec(C(X)). It is a vector space of dimension

one on C(X). It is easy to see that to give a meromorphic section of L is equivalent to

give a non zero element of Lη. For each closed point p ∈ X, Let OX,p be the local ring

of X at p. We have a sequence of inclusions of schemes

Spec(C(X)) ↪→ Spec(OX,p) ↪→ X.

We will denote by Lp the free OX,P –module of rank one obtained taking the restriction

of L to Spec(OX,p). Observe that Lp ⊗OX ,p C(X) = Lη.

This defines, for each closed point p ∈ X, naturally a norm on Lη in the following

way: fix p ∈ X; take m ∈ Lη non zero and define

‖m‖p := sup{‖λ‖p / λ ∈ C(X) and λ−1m ∈ Lp}.

One easily check that, for the trivial line bundle this is the norm we defined before.

never the less observe that the definition of the norm on Lη depends on the choice of

the norm on C(X). Moreover, one prove (exercise) that

3.23 Theorem. Let L be a line bundle over a smooth projective curve as before and

m a meromorphic section over it then:

deg(L) = −
∑
p∈X

log(‖m‖p).
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This formula tells us what we need to do to obtain a similar definition in the arith-

metic case: Let OK be the ring of integers of a number field. Let L be a locally free OK
module of rank one (it is a line bundle over Spec(OK)). For every embedding σ : K → C
we can consider the one dimensional C vector space L ⊗ C (where C is a OK algebra

via σ). We will denote it Lσ.

3.24 Definition. An hermitian line bundle over Spec(OK) is a locally free OK module

with, for every embedding σ of K in C an hermitian norm ‖ · ‖σ on Lσ with the

following restriction: If σ = τ (complex conjugate embedding) then the norm at Lσ is

the conjugate of the norm at Lτ .

3.25 Remark. It is important to observe that, exactly as in the geometric case, for

every maximal ideal p of OK , the module Lp give rise to a non archimedean norm ‖ · ‖p
on the K vector space LK : let m ∈ LK and p ∈Mfin then

‖m‖p := sup{‖λ‖p / λ ∈ K and λ−1m ∈ Lp}.

We can now state t the following theorem

3.26 Theorem. The compactified Picard group P̂ ic(OK) is canonically isomorphic to

the group of hermitian line bundles of OK modulo isomorphism. Thus we can speak

about the degree of an hermitian line bundle of OK .

If L is an hermitian line bundle on OK and m ∈ LK is a non zero element. Then we

can compute the degree of L by the formula

d̂eg(L) = −
∑
σ

log ‖m‖σ −
∑

p∈Specmax(OK)

log ‖m‖p.

The reader can prove it by exercise following the strategy used in the geometric

situation. It is worth remarking how the two theories, the geometrical and the arithmetic

are similar and formally identical.

3.27 Example. It is possible to prove that Pic(P1) ' Z and it is generated by the

line bundle OP(1) associated to a point: OP(1) = OP(p) where p ∈ P1(C) is a closed

point. Its degree is 1.

3.28 Example. P̂ ic(Z) is isomorphic to R>0 with the multiplicative structure: if

λ ∈ R>0 the corresponding hermitian line bundle on Z is given by (Z, ‖1‖ = λ); its

degree is − log λ.

14



3.29 Definition. Let X be a smooth projective curve and L be a line bundle on it.

Let m ∈ Lη a meromorphic section of L. We associate to it the divisor

div(m) =
∑
p∈X
− log(‖m‖p)[p].

One checks that O(div(m)) = L. Similarly, if L is an hermitian line bundle over the

ring of integers of a number field OK , and m ∈ LK , we associate to it the compactified

divisor

d̂iv(m) = −
∑

σ∈M∞

log ‖m‖σ[σ]−
∑

p∈Mf in

log ‖m‖p
dp log(p)

· [p].

where p is the positive prime number such that (p) = p∩Z and dp is the residual degree

of p. Of course the hermitian line bundle O( ̂div(m)) is isomorphic, as hermitian line

bundle to L.

The definition above shows the correspondence between line bundles and divisors.

One remark again that, mutatis mutandis, the arithmetic and the geometric situations

are formally similar.

One can check that, essentially by definition the following holds

3.30 Proposition. Let X be a smooth projective curve and L be a line bundle over

it. Let U be a open set of X. Then

Γ(U,L) = {m ∈ Lη / ‖m‖p ≤ 1 ∀ p ∈ U}.

In particular H0(X,L) = {m ∈ Lη / ‖m‖p ≤ 1 ∀ p ∈ X}.

Indeed a section m ∈ Lη is in Γ(U,L) if it belongs to Lp for every p ∈ U , which is

equivalent to say that m has norm at p less or equal then one. Conversely a section in

Γ(U,L) can be extended to a section in Lη because η is contained in every open set.

In particular we obtain that

3.31 Proposition. Let L be a line bundle on X, then if H0(X,L) 6= {0} we have that

deg(L) ≥ 0

.

3.32 Exercise. Prove that if deg(L) = 0 and H0(X,L) 6= {0}, then L ' OX .

Remark that one can prove that H0(X,L) is a finite dimensional vector space over

C.

By analogy with the geometric case we can give the following definition

15



3.33 Definition. Let OK be the ring of integers of a number field and L be an

hermitian line bundle over it. We define

H0
Ar(L) := {m ∈ LK / ‖m‖p ≤ 1 ∀p ∈MK}.

The set H0
Ar(L) is only a set: there is no structure of module on something; for

instance the sum of two elements in H0
Ar(L) is not always an element of H0

Ar(L) (one

can check that it is a module over the group of roots of unities of K).

Observe that the set of elements {m ∈ LK /‖m‖p ≤ 1 ∀p ∈Mfin} is the underlying

OK module L; consequently, the points σ ∈M∞ may be considered as points at infinity

of a scheme which is obtained by ”compactifying” the schemeSpec(OK).

We can prove that

3.34 Proposition. The set H0
Ar(L) is finite

Sketch of proof: Let M ′∞ be a subset of M∞ obtained taking all the real embedding

and only one representative within two complex conjugate embedding. The real vector

space LR :=
∏
σ∈M ′∞

Lσ is a finite dimensional vector space of dimension [K : Q] and

equipped with a norm ‖(mσ)σ∈M ′∞‖ = sup ‖mσ‖σ.

One can check that the image of the natural map

L −→
∏

σ∈M ′∞

Lσ

m −→ (m⊗σ 1)σ∈M ′∞

Is a lattice in LR. Moreover it is easy to see that L is the set of elements m in LK
for which ‖m‖p ≤ 1 for every p ∈ Mfin. The conclusion follows because H0

Ar(L) is the

intersection of the unit ball of LR, which is compact, with L which is a lattice.

In order to check that L is a lattice in LR it suffices to prove that L⊗Z R = LR and

this is an exercise on flat base change.

Given an hermitian line bundle L over OK and a section m ∈ L. We can compute

the degree of L by the following formula

3.35 Proposition. If m ∈ L then

d̂eg(L) = log(Card(L/mOK))−
∑

σ∈M∞

log ‖m‖σ. (3.35.1)

Proof: We need to prove that −
∑

p∈Mfin
log ‖m‖p = log(Card(L/mOK)). We start by

remarking that if R is a Dedekind domain, L is a trivial R module and m ∈ L, then the

Chinese remainders theorem tells us that the map L/mR→
∏

p∈Specmax(R) Lp/mRp is

an isomorphism. Thus, by localization we see that

L/mOK '
∏

p∈Specmax(OK)

Lp/mOK,p.
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Consequently we need to show that − log ‖m‖p = log(Card(Lp/mOK,p)) and this is

true by definition.

It is important to read the similarities between the formula of the degree in the

geometric and the arithmetic contest:

Suppose that X is an affine algebraic curve and X is its projective compactification.

Then X \X = D where D =
∑n
i pi is a divisor which we can call the divisor at infinity

of X. Suppose that L is a line bundle on X and s is a meromorphic function over it.

Then div(s) =
∑
q∈X vq(s)q +

∑
p∈D vp(s)p and we obtain the formula

deg(L) =
∑
q∈X

vq(s)−
∑
p∈D

log ‖s‖p. (3.37.1)

Similarly, let K and OK be its ring of integers. We can consider the embeddings

σ : K ↪→ C as points at infinity of a sort of compactification of S = Spec(OK). denote

by M∞ the set of such embeddongs, we call it the set of points at infinity of S. Let L

be an hermitian line bundle over S and s be a non zero element of LK . We associate

to s the compactified divisor d̂iv(s) =
∑

p∈Specmax(OK) vp(s)p−
∑
σ∈M∞

log ‖s‖σ[σ] and

we have the formula

d̂eg(L) =
∑

p∈Specmax(OK)

vp(s) log(Card(OK/p))−
∑

σ∈M∞

log ‖s‖σ. (3.38.1)

So we see that the degree of a line bundle may be computed by using a meromorphic

section of it in both cases. Moreover this degree is sum of two terms: the first one is a

sum over the zeroes or the poles of the sections in the fixed affine part of the scheme. The

second part is obtained computing norms at places corresponding to points at infinity.

4 Lecture III.

4.1 Construction of the pull back of line bundles. First of all we recall the notion of

pull back of coherent sheaf. Let f : X → Y be a morphism between schemes and F a

coherent sheaf on Y . We define the sheaf f−1(F ) on X in the following way: for every

open set U ⊆ X we consider the presheaf U → limf(U)⊆V Γ(V, F ) where the limit is on

all the open sets containing f(V ). Then f−1(F ) is the sheaf associated to this presheaf.

In particular, if F = OY , then f−1(OY ) is a sheaf in algebras with a natural map

f−1(OY ) → OX . If B is a coherent sheaf over Y , then f−1(F ) is a sheaf in f−1(OY )

modules. We eventually define

f∗(F ) := OX ⊗f−1(OY ) f
−1(F ).

It will be a coherent sheaf on X.
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4.1 Example. Suppose that X and Y are affine: X = Spec(B) and Y = Spec(A).

Then the morphism f : X → Y corresponds to a morphism of rings A → B and F

corresponds to a A–module F̃ . In this case the sheaf f∗(F ) is the sheaf associated to

the B–module B ⊗ F̃ .

Observe that if F is a line bundle on Y then f∗(F ) is a line bundle on X. One easily

verify that the natural map f∗ : Pic(Y )→ Pic(X) is a group morphism.

4.2 Construction of the pull back of a divisor. Suppose that D is an effective divisor

on Y and suppose that the image of f : X → Y is not contained in the support of D.

Choose a covering of Y by affine open sets Ui = Spec(Ai) (which ”trivializes” D) and

a consequent covering of X by affine open sets Vij = Spec(Bij such that f(Vij) ⊆ Ui.

So the restriction of the map f to Vij corresponds to a morphism of rings Ai → Bij . If

D is given by the data (Ui, fi) with fi ∈ Ai then we define an effective Cartier divisor

f∗(D) on X by (Vij ; fi ⊗Ai 1). The reader can check that the condition that f(X) is

not contained in the support of D exactly means that fi ⊗Ai 1 is not a zero divisor on

Bij . Moreover

OX(f∗(D)) ' f∗(OY (D)).

One can check that, set theoretically, f∗(D) is the preimage of D via f . The definition

is more complicated because in this way we give a structure of closed subscheme to it

(and not just of closed subset!)

To resume:

4.2 Proposition. Given a morphism between two schemes f : X → Y then we have

a natural morphism of groups

f∗ : Pic(Y )→ Pic(X).

Moreover, each time we have an effective divisor D on Y such that f(X) is not

contained in the support of it, then we can define a cartier divisor f∗(D) on X. Set

theoretically it is the preimage of D. The two constructions above are compatible.

4.3 Remark. One should remark that the pull back of a divisor is, when defined,

quite easy to define and clear to understand geometrically: it is essentially the preimage

of it. The schematic structure can be computed locally. But the pull back of a divisor

is not always defined. The pull back of a line bundle is less intuitive but always defined.

The fact that they are compatible will be the crucial point of the theory.

4.4 Example. If X is the projective space PN . Every hyperplane is a Cartier divisor

of it. It is not difficult to say that all the hyperplanes are linearly equivalent and

the associated line bundle is called the tautological line bundle of PN and denoted by

OP(1). The line bundle OP(1)⊗n is usually denoted with OP(n). If n ≥ 0, then the
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global sections of OP(n) are the hypersurfaces of degree n. Remark that through each

point there we can find a hypersurface of fixed degree and given two points, we can find

an hypersurface which pass through one point and not through the other.

4.5 Definition. Let X be an algebraic variety. A line bundle L on X is said to be

ample if, for some positive integer n > 0 and a closed embedding ι : X ↪→ PN such that

ι∗(OP(1)) ' L⊗n. The line bundle L is said to be very ample if n = 1.

4.6 Remark. Observe that if a line bundle is ample then for every n� 0 the vector

space H0(X,Ln) is not empty and, for every couple of points p and q of X there is a

global section of Ln whose support contains p and not q.

4.7 Points from a geometric point of view. Before we state the properties of the heights

we need to generalize the notion of point of a scheme.

Given a scheme C, one can introduce the notion of C–point of a variety X. This

notion generalize the notion of point of a variety

4.7 Definition. If X is a variety (or a scheme) and C is a scheme , in the sequel we

will denote by X(C) set {p : C → X} of morphisms of C in X. An element of X(C) is

called a C–point of X.

Observe that:

(1) The set of points X(C) is in bijection with the set of section of the projection

X × C → C. Indeed the graph of a point is a section of the projection.

(2) If f : X → Y is a morphism of varieties (or schemes), then there is a natural map

f : X(C)→ Y (X): indeed f(p) = f ◦ p : C → Y .

(3) If C is a point (the spectrum of a field), then we see that X(C) is the set of closed

points of X.

(4) We can generalize the notion of point to a relative situation: Suppose that C is

a scheme and f : X → C a morphism of schemes, then we define X(C) as the set of

morphisms p : C → X such that f ◦ p = IdC .

The main example which explain the definition is the following:

4.8 Example. Let K be any field and L/K be an extension of it. Consider the

scheme ANK = Spec(K[z1 . . . , zN ]). Suppose that we have a L–rational point of it

p : Spec(L)→ ANK . It corresponds to a map K[z1, . . . , zN ]→ L. Denote by ai he image

of zi; then the point p is the point of coordinates (a1, . . . , aN ) in ANK . Thus we see that

a L–rational point is a point with coordinates in L. The geometric definition coincides

with the intuitive definition but it is intrinsic and do not depend on the choice of the

coordinates.
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4.9 Height theory in the geometric contest. We will now explain how the theory of

degrees of line bundles on curves can be used to measure the first degree of complexity

of a curve in a variety. Of course the basic measure of complexity is the fact that the

curve is a subvariety of dimension one.

4.9 Definition. Suppose that X is a smooth projective variety and L a line bundle

over it. Let C a smooth projective curve and suppose we have a morphism p : C → X.

The integer deg(p∗(L)) is called the height of p with respect to L and denoted by hL(p).

4.10 Example. Suppose that C = P1 and X = PN . let p : C → X; to simplify,

suppose that it is an embedding. The intersection of an hyperplane with the image of

C is a divisor of degree d for a suitable positive integer d (which is usually called the

degree of C). Consequently, p∗(O(1)) = O(d). From this we deduce that hO(1)(p) = d.

The height is the second degree of complexity of a curve in a variety; as we said before,

the first degree of complexity is the fact that the curve is a subvariety of dimension one.

The following properties of heights are essentially evident:

4.11 Proposition. Properties of geometric heights : Let C be a smooth projective

curves and X a projective variety. Then:

(1) If L1 and L2 are line bundles of X and p ∈ X(C) then

hL1⊗L2(p) = hL1(p) + hL2(p).

(2) (Functoriality of heighs)If f : X → Y is a morphisms of varieties, p ∈ X(C) and

L a line bundle on Y , then

hL(f(p)) = hf∗(L)(p).

(3) If D is an effective Cartier divisor on X and p 6∈ D (this means that p do not

factorizes through the support of D) then

hO(D)(p) ≥ 0.

Proof: Each of the properties are easy consequences of the definition. The last one

is proved as follows: Since p is not contained in D, the pull back, via p of D is an

effective divisor on C whose associated line bundle is p∗(O(D); consequently the degree

of p∗(O(D) must be positive.

4.12 Example. : The following example shows that, if p is contained in the support

of D, then it may happen that the height of p with respect to O(D) is negative: Let

X be a surface and q be a closed point on it. Let X̃ → X be the blow up of X in q.

Let E be the exceptional divisor of X̃ and p : P1 → X̃ the inclusion of E in X̃. Then

p∗(O(E)) = O(−1) thus the height of p with respect to O(E) is negative.
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One easily see that the property (3) of proposition 4.11 implies the following corollary

4.13 Corollary. Let X be a projective variety and L be an ample line bundle on X.

Then for every p ∈ X(C) we have hL(p) ≥ 0

Proof: By property (2) and the definition of ample line bundle we may suppose that X

is PN and L = O(1). In this case, either p is constant, and consequently hL(p) = 0 or

p is not constant, so hL(p) is a multiple of the degree of the image of the curve C, so a

positive number.

4.14 Bounded families. The most important property of height is that, if we can bound

the height of a set of C–points on a projective variety, then this set is ”controllable”.

In the best situation, this set will be finite.

4.14 Example. Let C = P1
k, and X = P1

F . We take L = O(1). Rational points

p ∈ X(C) are algebraic maps ϕp : P1 → P1. Let p ∈ X(C) then, as we saw before,

hL(p) = deg(ϕp(O(1))) = deg(ϕp). Suppose that S ⊂ X(C) is a set of rational points

and suppose that it is a set of bounded height. This means that there exists a constant

A such that, for every p ∈ S we have that hL(P ) ≤ A. Consequently, the corresponding

set of maps ϕp, for p ∈ S is a set of rational maps of bounded degree from P1
k to P1

k.

Fix a positive integer n. The set of degree n maps from P1
k to P1

k is in bijection with

the set of lines in H0(P1;O(n)) which is isomorphic to set of homogeneous polynomials

in two variable ; thus it is in bijection with the C rational points of Pn−1.

From the observation above, we deduce that there exists a variety Y and a natural

injection S ⊂ Y (k).

The example above can be generalized. If C is a smooth projective curve, we will

see that the set of C points of bounded height of a variety can be parametrized by the

C–rational points of a variety defined over C.

We concluded the example above by saying that there is a ”natural inclusion” S ⊂
Y (k). We would now clarify what we mean by ”natural inclusion”.

4.15 Definition. Let C and Y be two varieties over C. Suppose that f1 : C → Y and

f2 : C → Y are two morphisms. We will say that f1 is equivalent to f2 are equivalent if

there exist an isomorphism ϕ : C → C such that the following diagram is commutative:

C
f1−→ Y

ϕ

y ↗f2

C .

One can remark that in this case, the images of the morphisms f1 and f2 are the

same.
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Suppose that C and Y are projective varieties. Let U a quasi projective variety.

A morphism F : C × U → Y may be seen as a family of morphisms from C to Y

parametrized by U(C). For every point u ∈ U the map

Fu :X −→ Y

p 7−→ F (p, u)

is a morphism from X to Y so a C– point of Y .

4.16 Definition. Let C and Y be projective varieties over C. Let S be a set of C–

points of Y . We will say that S is a bounded family of morphisms if there exists a quasi

projective variety U a morphism F : C × U → Y a subset V ⊆ U(C) such that every

s ∈ S is equivalent, as a C–point, to a morphism Fu for some u ∈ V (C).

Essentially, a bounded family of C–pointsis a set of C–points which appear as a

subset of a parametrized family of C–points.

One of the cornerstones of the theory of heights in the geometric contest is the

following: bounded height means bounded family:

4.17 Theorem. Suppose that C is a smooth projective curve and X is a projective

variety. Let L be an ample line bundle on X and S ⊂ X(C) be a set of C–points. Then

S is a bounded family of C–points of X if and only if there exists a constant B such

that, for every p ∈ S we have

hL(p) ≤ B.

The proof of this theorem is complicate and we will not give it here. We just remark

that one can suppose that X is PN and L = OP(1). So we need to prove that the set

of curves PN isomorphic to a fixed curve and with bounded degree is a bounded family.

The reader may prove this as an exercise in the case when C = P1: In this case each

morphism of P1 in PN such that the image is a curve of degree d, corresponds to a

subspace of dimension N + 1 in the space of the homogeneous polynomials of degree d

in two variables. So each map corresponds to a point in a suitable Grassmannian...

5 Lecture IV.

5.1 Heights in the arithmetic contest. Once the theory of heights has been developed

in the geometric contest, the arithmetic theory become clear. One recall that in order

to define the degree of line bundles, we need to introduce an hermitian structure over

line bundles on ”arithmetic curves”. Consequently, in order to introduce height theory

in the geometric contest, one needs to introduce hermitian structure on line bundles on

varieties.
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5.1 Arithmetic varieties and models of varieties. First of all we fix a number field K

and its ring of integers OK .

Let XK be a variety (or more generally a scheme) defined over K; we recall that this

means that we have a morphism of schemes XK → Spec(K) which is locally of finite

presentation: X is covered by a finite set of open affine sets Ui = Spec(Ai) and for every

i there exists a surjection of K algebras K[x1, . . . , xni ]→ Ai. We also fix a line bundle

LK over XK .

For every infinite place σ : K ↪→ C we will denote by Xσ the variety XK seen as a C
variety via σ: to be more precise the variety Xσ is the variety for which the following

diagram is cartesian
Xσ

σX−→ XKy y
Spec(C)

σ−→ Spec(K).

We will denote by Lσ the line bundle σ∗X(L).

When we study varieties over number fields, one is often interested to study their

properties when we restrict our attention to finite fields. For this reason we introduce

the notion of model, which generalize the concept introduced in (4) of definition 4.7.

5.1 Definition. (a) An arithmetic variety is a scheme X with a faithfully flat mor-

phism of finite presentation f : X → Spec(OK). The generic fibre of X is the K variety

XK for which the following diagram is cartesian

XK −→ Xy y
Spec(K) −→ Spec(OK).

(b) Let XK be a variety over K. A model of XK over OK is an arithmetic scheme

X whose generic fibre is isomorphic to XK .

5.2 Example. The scheme PNOK = Proj[z0, . . . zN ] → Spec(OK) is an arithmetic

variety and it is a model of PN ; it is called the arithmetic projective space over OK .

Similarly ANOK = Spec(OK [z1. . . . zN ])→ Spec(OK) is an affine arithmetic variety, which

is a model of ANK and it is called the arithmetic affine space.

5.3 Models always exist. If XK is a projective variety, it is not difficult to find a

model for it: since XK is projective and defined over K, it is defined as the zeroes of

an homogeneous ideal IXK = (F1, . . . , Fs) where Fi ∈ K[z0, . . . , zN ] are homogeneous

polynomials. Since we may multiply the Fj by constants, we may suppose that Fi ∈
OK [z0, . . . , zN ]. Suppose that n is an integer such that OK [ 1

n ] is a principal ideals

domain. Then we may suppose that the coefficients of Fi are coprime in OP [ 1
n ]. So

Xn := Proj(OK [ 1
n ][z0 . . . , zN ]/(F1, . . . , Fs)) is a closed set of PN

OK [ 1
n ]

which is an open
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set in PNOK . We take as a model of XK the closure X in the Zariski topology of Xn

in PNOK . Remark that, X may be very singular as a scheme, even if XK is a smooth

variety.

It is important to remark that, given a variety XK , the models of it over OK are not

unique. One can show that they are all birational between them.

In the case of line bundles over Spec(OK) we introduced the notion of hermitian line

bundles. We now need to introduce a similar notion in the higher dimensional situation.

First of all we recall the notion of hermitian line bundles over complex varieties. Let

X be a complex variety and L be a line bundle over it. An hermitian structure over

L is essentially an hermitian metric on the fibres of L which varies smoothly (or just

continuously in some cases). More precisely: Suppose that L is given by a covering {Ui}
and a corresponding cocycle {gij} on Uij := Ui ∩ Uj ; recall that gij are non vanishing

holomorphic functions on Uij verifying the cocycle condition gijgjkgki = 1.

5.3 Definition. A smooth (continuous) hermitian metric (‖ · ‖) on L is a collection of

smooth (continuous) functions

ρi : Ui −→ R>0

such that on Uij we have ρi = |gij |2ρj . A line bundle equipped with an hermitian metric

is called hermitian line bundle.

If V is an open set of X and f ∈ Γ(V ;L) we define the norm of f in the following

way: f is a collection of holomorphic functions fi : V ∩ Ui → C such that fi = gijfj ;

thus we define, for z ∈ V

‖f‖2(z) :=
|fi|2

ρi
;

It is easy to check that the definition is well posed.

Observe that if L is equipped with a metric, then, for every integer n it is easy to

equip L⊗n with a induced metric.

If X is a point then a line bundle on it is just a vector space of dimension one and a

metric is an hermitian metric on it.

5.4 Example. Let X = PN and L = O(1). Fix homogeneous coordinates [x0 : . . . :

xN ] on PN . Every global s section of O(1) may be represented by a homogeneous linear

form s = a0x0 + . . . + aNxN with ai not all zero. We may define metrics on OP(1) in

the following way

‖s‖2L2
([x0 : . . . : xN ]) :=

|a0x0 + . . .+ aNxN |2

|x0|2 + . . . |xN |2

‖s‖2sup([x0 : . . . : xN ]) :=
|a0x0 + . . .+ aNxN |2

sup{|x0|2; . . . |xN |2}
.

One can easily check that this formulæ define a metrics on O(1). Observe that the

first metric is smooth while the second is just continuous. These two metrics are called
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respectively the L2 and the sup Fubini–Study metrics.

5.5 Exercise. Let K be a local ring and p be a maximal ideal of OK . Denote by Op

the localized of OK at p. Consider the tautological line bundle OP(1) of PNOp
. For every

point p ∈ PN (Op) the line bundle p∗(OP(1)) over Spec(Op) is naturally equipped with a

norm. Let p := [z0 : . . . : zN ] such a point and s := a0z0 + . . . aNzN be a global section

of OP(1). Prove that

‖s‖(p) =
‖a0z0 + . . .+ aNzN‖p
sup{‖z0‖p; . . . : ‖zN‖p}

.

The exercise above shows that the Fubini Study metric seems to hide an integral

structure at infinite places of the projective space.

It is easy to see that, if f : X → Y is an analytic map and (L, ‖·‖) is an hermitian line

bundle, then the pull back line bundle f∗(L) is naturally equipped with the structure of

an hermitian line bundle: we take as functions defining the metric the functions ρi ◦ f .

In particular, if p ∈ X is a point, then the C vector space L|p is naturally equipped

with the structure of hermitian vector space of dimension one.

5.6 Definition. Let X be an arithmetic variety and L be a line bundle over it. An

hermitian structure on L is, for every σ ∈ M∞, an hermitian metric on the complex

line bundle Lσ: with the additional condition that if σ = τ then the metric on Lσ is

the complex conjugate of the metric on Lτ (which essentially means that the involved

ρi are the same). A line bundle over X equipped with an hermitian structure will be

called an hermitian line bundle.

Of course we can define the Compactified Picard group P̂ ic(X ) of X : it will be the

abelian group of hermitian line bundles up to isometry (isomorphisms of line bundles

over X which preserve the metrics). we have a surjective morphism of groups:

P̂ ic(X ) −→ Pic(X ).

The surjectivity follows from the fact that, by using partitions of unities, one can always

equip a line bundle with an hermitian metric.

Before we can develop the arithmetic heights theory, we need to explain the relation

between models and rational points.

Let XK be a variety defined over K. Suppose that we have a model X → Spec(OK)

of XK . One easily see that we have an inclusion

X (OK) ⊆ XK(K).

Indeed, let p : Spec(OK) → X . The map Spec(K) → Spec(OK)
p→ X and the identity

map on Spec(K) give rise, since XK is the generic fibre of X to a map Spec(K)→ XK .

The map X (OK)→ XK(K) is an inclusion because Spec(K) is dense in Spec(OK) and

XK is dense in X .
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For general XK the inclusion above is not a surjection: for instance the point 1/2 ∈
A1

Q(Q) cannot be extended to a morphism from Spec(Z) to A1
Z. Nevertheless if XK is

projective the inclusion is a bijection:

5.7 Theorem. Let R be a Dedekind domain and K = Frac(R). Let X → Spec(R)

be a projective R–scheme and XK the generic fibre of it. Suppose that p ∈ XK(K) is a

K-rational point. Then p : Spec(K)→ XK extends, in a unique way, to a R–morphism

P : Spec(R)→ X .

Proof: We need only to show that the morphism extends. Since X is a closed subset of

PNR for a suitable N , we may suppose that X = PNR . Indeed XK will be defined as the

vanishing set of a suitable ideal of the ring of polynomials; if a homogeneous polynomial

vanishes on p, then it will vanish on the curve image of P because Spec(K) is dense in

Spec(R).

In order to prove the theorem we may also suppose that R is a discrete valuation

ring because if the morphism extends to every local ring of an affine scheme it extends

on the scheme itself.

Let R be a discrete valuation ring with uniformizer t. A K rational point has ho-

mogeneous coordinates [tn0u0 : . . . : tnNuN ], where nj are integers and uj are units in

R. We may multiply each coordinate by tn with n sufficiently big in such a way that

each ni is positive and at least one of the ni is zero. Thus the point has homogeneous

coordinates in R and extends to a morphism Spec(R)→ PN .

In the proof above we used the fact that, if R is a discrete valuation ring, the points

of PNR can be described with homogeneous coordinates [a0 : . . . : aN ]. Remark that this

is not true for an arbitrary ring. It will be true for instance if the ring is principal.

5.8 models and arithmetic heights.

5.8 Definition. Let X → Spec(OK) be an arithmetic scheme and L be an hermitian

line bundle on it. Let p : Spec(OK)→ X be a OK rational point. The line bundle p∗(L)

is an hermitian line bundle on OK and the real number

hL(p) := d̂eg(p∗(L))

is called the height of p with respect to L.

Of course we have arithmetic analogue of the properties 4.11:

5.9 Proposition. Properties of heights : Let X → Spec(OK) be be an arithmetic

variety. Then:

(1) If L1 and L2 are hermitian line bundles of X and p ∈ X (OK) then

hL1⊗L2
(p) = hL1

(p) + hL2
(p).
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(2) (Functoriality of heights) If f : X → Y is a morphisms of arithmetic varieties,

p ∈ X (OK) and L an hermitian line bundle on Y, then

hL(f(p)) = hf∗(L)(p).

Observe that we have also an analogue of property (3) of proposition 4.11:

5.10 Proposition. Let X be a projective arithmetic scheme and L be an hermitian

line bundle over it. Let D be an effective Cartier divisor on X such that O(D) = L.

Then there is a constant C (depending on D, and L) with the following property: for

every rational point p ∈ X (OK) not contained in the support of D, we have

hL(p) ≥ −C.

Proof: There is a global section s ∈ H0(X , L) such that div(s) = D. For every infinite

place σ let Cσ be the real number log supx∈Xσ(C){‖s‖σ(x)}. Take as C a constant which

is bigger then [K : Q] supσ{Cσ}. Take p ∈ X (OK) which is not in the support of D.

The Cartier divisor p∗(D) is effective and it corresponds to the the element p∗(s) in

the locally free hermitian OK module p∗(L). The conclusion follows from 3.35 because

log(Card(p∗(L)/p∗(s)OK)) is a positive number.

5.11 Corollary. Suppose that in the hypotheses above L is an ample hermitian line

bundle on X :

(a) There exists a constant C such that, for every p ∈ X (OK) we have

hL(p) ≥ −C.

(b) For every hermitian line bundle M on XK , there exists a positive constants A

and B such that

hM (p) ≤ AhL(p) +B

for every rational point p ∈ X (OK).

Proof: (a) It suffices to remark that there exists a positive integer n such that L⊗n

is very ample. The conclusion follows from the functorial property of the heights and

remark 4.6.

(b) There exists a positive integer A such that L⊗A ⊗M⊗−1 is ample. Thus the

property follows from (a) and (1) of 5.9.

The height theory for varieties over number fields depends on the theory of hermitian

line bundles over arithmetic varieties. Essentially the height associated to a line bundle

is a function on the rational points of a variety which is defined up to bounded functions.

The ambiguity depends on the fact that given a projective variety and a line bundle

over it, we have many choices of models of them and many structures of hermitian line

bundle on the same line bundle.
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5.12 Definition. Let XK be a projective variety defined over a number field K and

LK be a line bundle over it. Suppose that f : X → Spec(OK) is a model of XK and

LK is an hermitian line bundle over it which is a model of LK . For every p ∈ XK(K)

let P ∈ XOK be the corresponding OK point (cf. Theorem 5.7). The function

hL : XK(K) −→ R
p −→ hL(P )

is called a height on XK associated to LK .

Since every line bundle can be written as the difference of two ample line bundles.

Given a line bundle L we can always find a positive integer n such that LN has a model

over OK . Thus, given a line bundle over a projective variety, we can always find a height

function associated to it.

It is very important to observe that, given a line bundle LK we may have many

heights associated. Nevertheless we have the following theorem (which we will not

prove here)

5.13 Theorem. Let XK be a projective variety defined over K and LK be a line

bundle over it. Let h1
LK

and h2
LK

be two heights on XK associated to LK . Then there

exists a constant C, depending on LK and the two heights functions, such that, for

every p ∈ XK(K) we have

|h1
LK (p)− h2

LK (p)| ≤ C.

For a proof cf. for instance [BGS].

Thus we may consider the height associated to a line bundle as a function on rational

points defined up to a bounded function.

The main example we have to keep in mind is the following:

5.14 Example. (The height on projective space): We equip the tautological line

bundle OP(1) of PN with one of the sup Fubini–Study metrics. Let p ∈ PN (K) be the

K–rational point with homogeneous coordinates [z0 : . . . : zN ] then

hO(1)(p) =
∑
v∈MK

log(sup{‖z0‖v, . . . , ‖zN‖v}.

Proof: Suppose that z0 6= 0, this means that p is not contained in the support of the

hyperplane z0 = 0. We may then apply the definitions of Fubini Study metric 5.4 and

exercise 5.5.

One of the main theorems of the heights theory is the Northcott theorem. It tells us

something similar to the bounded families properties in geometry: every set of bounded

height is finite:

5.14 Theorem. (Northcott) Let XK be a projective variety defined over a number

field and LK be an ample line bundle over it. Let hL be an height on XK associated
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to LK and A be a positive constant. Then the set of rational points p ∈ XK(K) such

that hL(p) ≤ A is finite.

The proof requires some lemmas:

5.15 Definition. Let K be a number field. If a ∈ K we define the height h(a) of a to

be the sup Fubini–Study height of the point [a : 1] ∈ P1
K

5.16 Example. Suppose that K = Q and a = b/c with b and c coprime integer

numbers. Then h(a) = log sup{|b|; |c|}

We will use properties of heights to prove the following standard facts. It is a useful

exercise to prove as consequences of the definitions.

5.17 Proposition. Suppose that a and b are two elements of K then:

(1) if aσ is a conjugate of a then h(a) = h(aσ);

(2) There exist constants A1 and A2 such that h(a + b) ≤ h(a) + h(b) + A1 and

h(ab) ≤ h(a) + h(b) +A2

Proof: We leave (1) as exercise to the reader.

To prove (2) consider the morphisms

+ : A1 × A1 −→ A1

(x, y) −→ x+ y

and
x : A1 × A1 −→ A1

(x, y) −→ xy

They can be compactified to morphisms

+̃ : ˜P1 × P1 → P1 and x̃ : P1 × P1 → P1

where q1 : ˜P1 × P1 → P1 × P1 and q2 : P1 × P1 → P1 × P1 are suitable blow ups with

exceptional divisors Ẽ and E respectively.

On P1 × P1 we have the line bundle O(1, 1) := p∗1(O(1)) ⊗ p∗2(O(1)) where pi :

P1 × P1 → P1 are the two projections. The variety P1 × P1 admits as a model the

arithmetic scheme P1
OK
×Spec(OK) P1 and the line bundle O(, 1, 1) admits as hermitian

model over OK the corresponding line bundle over P1
OK
×Spec(OK) P1. Consequently, if

(a, b) ∈ P1 × P1(K) then hO(1,1)(a, b) = hO(1)(a) + hO(1)(b).

By construction we have that +̃
∗
(O(1)) = q∗1(O(1, 1))(−Ẽ) and similarly x̃∗(O(1)) =

q∗2(O(1, 1))(−E). Property (b) follows from the property 5.10

The proof of the proposition above is perhaps not the easier one, one can easily

deduce these properties from the definitions. Nevertheless we find useful the proposed

proof because it shows the geometric way to prove it.

29



From 5.17 we find this important theorem:

5.18 Theorem. Let Q be the algebraic closure of Q. Let A and R be positive con-

stants. The set of numbers a ∈ Q such that

h(a) ≤ A and [Q(a) : Q] ≤ R

is finite.

Proof: First we remark that if R = 1 the proposition is evident. A point of P1(Q)

may be written in a unique way as [a : b] with a and b coprime integers and its height

is log sup{|a|, |b|}. Thus there are only finitely many points p ∈ P1(Q) with bounded

height. Let a be a number which satisfy the hypotheses of the theorem. Let F (z) be

his minimal polynomial over Q. Since the coefficients of F (z) are linear combinations

of products of algebraic numbers conjugate to a, prop 5.17 implies that each of these

coefficients has height at most R!A (we did not write the best constant). Thus, for the

first part of the proof, the polynomial F (z) lies in a finite list. The conclusion follows.

Now we come to the proof of 5.14:

Proof: (of 5.14) By the properties of the heights we may suppose that XK is the

projective space PN . As a consequence of 5.18 we find that the theorem holds for

XK = P1×. . .P1 (N times) with the line bundleO(1, . . . , 1) := p∗1(O(1))⊗· · ·⊗p∗N (O(1))

where pi : P1 × · · ·P1 → P1 is the i-th projection. The Symmetric group ΣR acts

on XK := P1 × . . .P1 and the quotient XK/ΣN is isomorphic to PN . Moreover if

q : XK → PN is the projection, we have that q∗(O(1)) = O(1, . . . , 1). If p ∈ PN (K)

then the points of fiber q−1(p) are at most N ! and defined over an extension of K of

degree at most N !. The conclusion follows from the functoriality of the heights and the

first part of the proof.

6 lecture V.

In the previous lectures we described the height theory in the geometric and arith-

metic contests as a theory of degree of line bundles. To do this we had to introduce

the norms and the product formula. It is important to notice that, from a geometric

point of view, the archimedean norms did not, until now, play any specific role. In the

arithmetic contest, instead, it was indispensable to use archimedean metrics at infinite

places.

To push forward the analogy, we would like to understand the relation between

metrics on line bundles on complex varieties and degree of line bundles on compact

Riemann surfaces. In order to undestand this we will introduce the first Chern class

and the first Chern form of an hermitian line bundle over a complex variety. Its relation

with the degree which is obtained by the Poincaré–Lelong formula.
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One also remark that, in the arithmetic contest, the infinite places seems to play a

special role. They are similar to the points at infinity of a curve. So one may consider

the arithmetic theory as a theory where naturally one has a border. We will see that

we may introduce the theory of analytic maps from affine curves to projective varieties

and obtain a theory which is analogue to the geometric and the arithmetic theories just

described and where again, metrics play special roles and the border too.

Thus one may have the impression that, geometry, arithmetic and analysis have

interesting similar descriptions. In the sequel we will see how they can interact together.

In order to relate the metrics with the degree, we need to do an excursus in the

complex differential geometry:

6.1 The Laplace operator on a Riemann surface. Let Ω be a domain on a Riemann

surface with regular border. We denote the border of Ω by Γ. We suppose that Ω is

relatively compact and denote by Ω the closure of it. If α is a smooth 1 form on a open

set containing Ω we have the Stokes formula:∫
Γ

α =

∫
Ω

d(α).

On a domain as above we introduce the two operators ∂ and ∂ in the following way:

Locally on Ω we have a holomorphic coordinate z and an anti–holomorphic coordi-

natez. The operators are defined as follows

∂ : A0(Ω) −→ A(1,0)(Ω)

f(z, z) −→ df

dz
dz

and
∂ : A0(Ω) −→ A(0,1)(Ω)

f(z, z) −→ df

dz
dz

One may check that these definitions do not depend on the holomorphic coordinates

and that the operator d : A0(Ω) → A1(Ω) is given by ∂ + ∂. Observe that f(z) is

holomorphic if and only if ∂(f) = 0.

We introduce the new operator dc : A0(Ω)→ A1(Ω) as follows: dc := 1
4πi (∂ − ∂).

Observe that ddc is 1
2πi∂∂ which, up to a constant is the Laplacian.

Let g be a smooth function. By abuse of notation, we will call the (1, 1) form ddc(g)

the Laplacian of g.

Without entering in the theory of the distributions, we will explain a operative way

to extend the laplacian operator to locally integrable functions.

6.1 Definition. A function g(z) on Ω is said to be locally integrable if it is de-

fined almost everywhere, measurable and every point has a neighborhood U such that∣∣∫
U
gdz ∧ dz

∣∣ <∞.

The main example of locally integrable function is the following: Let f(z) be a

meromorphic function in Ω, then log |f(z)|2 is locally integrable. Observe that, the

function log |f(z)|2 is not defined near the points where f(z) has zeroes or poles.
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We may extend the operator ddc to the locally integrable functions in the following

way:

6.2 Definition. If g(z) is a locally integrable function, then we define the distribution

ddc(g) as follows: Let h be a smooth function with support contained in Ω then

ddc(g)(h) :=

∫
Ω

g · ddc(h).

Let’s show that this definition extends the Laplacian on smooth functions: let g be

a smooth function on Ω and h be a smooth function with compact support. We want

to show that ∫
Ω

h · ddc(g) =

∫
Ω

g · ddc(h). (6.3.1)

6.4 Proposition. Let h and g be two smooth functions on a neighborhood of Ω, then∫
Γ

dc(h) · g − h · dc(g) =

∫
Ω

g · ddc(h)−
∫

Ω

h · ddc(g). (6.4.1)

Proof: For every couple of smooth functions g and h one has d(g)∧dc(h)−d(h)∧dc(g) =

0. Thus we have that d(gdc(h) − hdc(g)) = gddc(h) − hddc(g) consequently, by Stokes

theorem, the conclusion follows.

If the support of h is contained in Ω, then the first integral of 6.4.1 is zero. Thus

6.3.1 holds.

Let f(z) be a non vanishing holomorphic function on Ω. The function log |f(z)|2 is

a well defined smooth function on Ω and since ∂(f(z)) = ∂(f(z)) = 0 we have that

ddc(log |f(z)|2) = 0. This is not the case when f(z) has zeroes. Remark that in the

zeroes of f(z) the function log |f(z)|2 is not defined but it is integrable in a neighborhood

of them.

We want now to compute the distribution ddc log(|f(z)|2 when f(z) is an arbitrary

meromorphic function on Ω.

6.6 Definition. Let P := {pn}n∈N be a sequence of points in Ω with no accumulation

point. Let M := {mn}n∈N be a sequence of integers. We associate to the senquences

a formal sum D :=
∑
nmnpn and a distribution (a current) δD on Ω defined in the

following way, let h be a smooth function with compact support on Ω then:

δD(h) =
∑
n

mn · h(pn).

The current δD is called the Dirac distribution associated to D.
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Observe that, even if D is a finite sum, every compact set of Ω contains only finitely

many points of the sequence P ; thus, for every h smooth with compact support the sum

in δD(h) is a finite sum.

The typical example of such a D is the set of zeroes and poles of a meromorphic

function defined over Ω.

6.7 Theorem. Let f(z) be a meromorphic function over Ω and for every point in

Ω denote by vp(f) the order of zero or pole of f at p. Let div(f) the formal sum

div(f) :=
∑
p∈Ω vp(f)p. Then

ddc(log |f(z)|2) = δdiv(f).

Proof: First of all we remark that we already proved the theorem in the case when f(z)

is holomorphic and non vanishing. We need to prove that. given a smooth function

with compact support h on Ω then∫
Ω

log |f(z)|2ddc(h) =
∑
p∈Ω

vp(f)h(p).

For each p ∈ Ω with vp(f) 6= 0 let B(p, εp) be a small open open neighborhood of p

contained in Ω, holomorphically equivalent to a disk centered in p and such that for

every q in the closure of B(p, εp) we have that vq(f) = 0. Similarly let B(p, εp/2) be a

open set, holomorphically equivalent to a disk centered at p and the closure of which is

contained in B(p, εp). Let Ω′ = Ω\∪vp(f) 6=0B(p, εp/2) where B(p, εp/2) is the closure of

B(p, εp/2) and {ρΩ′ , ρp vp(f) 6= 0} be a partition of unity subordinated to the covering

{Ω′, B(p, εp) vp(f) 6= 0}. We need to compute∫
Ω

log |f(z)|2ddc(ρΩ′h+
∑

vp(f)6=0

ρph).

By what we noticed before,
∫

Ω′
log |f(z)|2ddc(ρΩ′h) = 0 because f(z) is a holomorphic

non vanishing function on Ω′ and ρΩ′h is a smooth function with compact support in

Ω′. Consequently∫
Ω

log |f(z)|2ddc(h) =
∑

vp(f)6=0

∫
B(p,εp)

log |f(z)|2ddc(ρph).

Thus, since ρph is a smooth function with compact support contained in B(p, εp), we

may suppose that Ω is a disk and it suffices to prove the following:

6.8 Lemma. Let g(z) be a non vanishing holomorphic function on the unit disk B(0, 1)

of the plane and f(z) = zng(z) with n ∈ Z. Let h(z) be a smooth with compact support
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in B(0, 1) ∫
B(0,1)

log |f(z)|2ddc(h) = nh(0).

Proof: Since log |f(z)|2 = n log |z|2 + log |g(z)|2 and g(z) is holomorphic non vanishing,

we need to prove that ∫
B(0,1)

log |z|2ddc(h) = h(0).

For every ε ∈]0, 1[ denote by C(ε) the annulus {z ∈ B(0, 1) / ε < |z| < 1} and by

S(ε) the circle {|z| = ε}. Notice that ddc log |z|2 = 0 on C(ε) and h log |z|2 = 0 on the

circle {|z| = 1}. Thus we may apply formula 6.4.1 to h and log |z|2 to the domain C(ε)

and obtain that ∫
B(0,1)

log |z|2ddc(h)

= lim
ε→0

∫
C(ε)

log |z|2ddc(h)− hddc log |z|2

= lim
ε→0

(
−
∫
S(ε)

log |z|2dc(h) +

∫
S(ε)

hdc log |z|2
)
.

(remark that we changed the sign because of the inverse orientering of the circle) Write

z = reiθ. Since h is a smooth function, we can find a constant B such that if dc(h) =

ad(r) + bd(θ) then |b| ≤ B. Consequently there exists a constant B1 independent on ε

such that ∣∣∣∣∣
∫
S(ε)

log |z|2dc(h)

∣∣∣∣∣ ≤ ε log ε2B1

Thus limε→0

∫
S(ε)

log |z|2dc(h) = 0. The conclusion will be a consequence of the follow-

ing lemma:

6.9 Lemma. With the notations as above, for every ε ∈]0; 1[ we have∫
S(ε)

dc log |z|2 = 1.

Proof: We have that

dc log |z|2

=
1

4πi
(∂ − ∂)(log zz) =

1

4πi
(
dz

z
− dz

z
)

Write z = reiθ, then dz
z = dr

r + idθ and dz
z = dr

r − idθ. From this we deduce dc log |z|2 =
1

4πi · 2idθ = 1
2πdθ. The conclusion follows.

To show the relation with the degree and what we described in the previous lectures,
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we deduce from what we did the two following basic facts:

6.10 Corollary. (a) Let X be a compact Riemann surface.

(a) Let f be a holomorphic function on X; then f is constant.

(b) let g be a meromorphic function on X: then the degree of div(g) :=
∑
vp(g)p is

zero.

Proof: (a) Suppose that f is not constant, changing f by f−f(p) where p ∈ X, we may

suppose that f has at least a zero. Consequently div(f) 6= 0 and since f is holomorphic,

we should have deg(div(f)) > 0. The function 1(p) = 1 on X is a smooth function

with compact support on X, because X is compact; thus formula 6.4.1 becomes, since

ddc(1) = 0,

0 =

∫
X

ddc log |f(z)|2

But this is in contradiction with 6.7 which should give
∫
X
ddc log |f(z)|2 = deg(div(f)).

(b) The proof of (b) is similar. Let d = deg(div(g)); then the same argument as

above gives 0 =
∫
X
ddc log |g(z)|2 = d.

Remark that the same proof gives the following proposition which will be useful in

the sequel:

6.11 Proposition. Let X be a compact Riemann surface and g be a locally integrable

function on it. Then ∫
X

ddc(g) = 0.

The proposition above may be seen as a version of Stokes theorem on X: the differ-

ential of a function on a surface with no border is zero.

6.12 Chern classes and the Poincaré–Lelong formula. In the previous subsection we

defined the Laplace operator on a RIemann surface. An interesting consequence of its

property is the new proof of the Product formula 6.10. We will see that it can be

interpreted as the case of the trivial line bundle with trivial metric of the Chern forms

theory.

Let X be a Riemann surface and L be a line bundle on it. We suppose that L is

equipped with a smooth hermitian metric ‖ · ‖.

6.12 Definition. Let s be a meromorphic section on L and U the open set X \
{Supp(div(s))} where Supp(div(s)) is the support of the divisor div(s). The (1, 1) form

on U defined by

c1(L, ‖ · ‖) := −ddc log ‖s‖2

is called the Chern form of the hermitian line bundle (L; ‖ · ‖).

We show now that the form c1(L, ‖ · ‖) extends to a smooth form on X.
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6.13 Proposition. Let s1 and s2 two meromorphic sections of L and U be the open

set of X where si have no zeros and poles. Then, over U we have

ddc log ‖s1‖2 = ddc log ‖s2‖2.

Proof: The statement is local on U . Consequently we may suppose that the line bundle

L is trivial, the si are non vanishing holomorphic functions and that there exists a

smooth positive function ρ such that ‖si‖2 = |si|2
ρ . Thus, since ddc log |si|2 = 0,

ddc log ‖s1‖2 = ddc log |s1|2 − ddc log(ρ) = ddc log |s2|2 − ddc log(ρ) = ddc log ‖s2‖2.

The proposition above shows that, given an hermitian line bundle (L, ‖ · ‖) on X, we

can associate to it a global smooth (1, 1) form c1(L, ‖ · ‖) which we will call the Chern

form of (L, ‖ ·‖): To compute the Chern form of (L, ‖ ·‖) in the neighborhood of a point

p of x, take a meromorphic section s which do not have zeroes or poles in p, the Chern

form c1(L : ‖ · ‖) near p is given by the (1, 1) form −ddc log ‖s‖2.

The following proposition is easy and left as exercise:

6.14 Proposition. Let L1 and L2 be two hermitian line bundles on M , then

c1(L1 ⊗ L2) = c1(L1) + c1(L2).

If s is a meromorphic section of an hermitian line bundle L then, a local computation

shows that the function log ‖s‖2 is locally integrable even near the poles and the zeroes

of s. Thus we may compute the laplacian ddc log ‖s‖2 of it as a distribution.

The fomula which compute it is called the Poincaré–Lelong formula:

6.15 Theorem. (Poincaré–Lelong formula) Let X be a Riemann surface and (L, ‖ · ‖)
be an hermitian line bundle on it. Let s be a meromorphic section of L and div(s) the

formal sum
∑
vp(s)p of points of X (for arbitrary X and s the sum div(s) may have

infinitely many terms so it is not a divisor). Then the following equality of distributions

holds:

ddc log ‖s‖2 = δdiv(s) − c1(L, ‖ · ‖)

Where δdiv(s) is the Dirac distribution defined in 6.6.

The proof is a direct application of 6.7: again the statement is local on X so we may

suppose that L is trivial, s is a meromorphic function and there exists a non negative

smooth function ρ such that ‖s‖2 = |s|2
ρ . From 6.7 we get

ddc log ‖s‖2 = ddc log |s|2 − ddc log ρ = δdiv(s) − c1(L‖ · ‖).

The Poincaré–Lelong formula above is very important because it shows the strict

relation between the hermitian metrics on line bundles over a compact Riemann surface

and the degree of the line bundle itself:

36



We recall that every compact Riemann surface is algebraic: it can be realized as a

Smooth projective curve in a suitable projective space. Thus, given a line L bundle

on it, we can speak about the degree deg(L). Here we show that the Poincaré–Lelong

formula allows to compute this degree using a metric on L.

6.16 Theorem. Let X be a compact Riemann surface and (L, ‖ · ‖) be an hermitian

vector bundle on it. Then ∫
X

c1(L, ‖ · ‖) = deg(L).

Proof: Let s be a meromorphic section of L and div(s) the associated divisor. Let

1(z) be the (smooth with compact support) function on X such that 1(z) = 1. Then

δdiv(s)(1) = deg(div(s)) = deg(L).

By proposition 6.11, we have that
∫
X
ddc log ‖s‖2 = 0 thus, by Poincaré–Lelong

formula

0 =

∫
X

ddc log ‖s‖2 = δdiv(s)(1)−
∫
X

c1(L, ‖ · ‖).

The conclusion follows.

6.17 Remark. The theory of the first Chern form holds on any smooth complex

variety. Once one defines the operator ddc on a variety (and this can be done with no

difficulties), we define the first Chern form of an hermitian line bundle L on a complex

variety X exactly in the same way we defined it over a Riemann surface. It is not difficult

to prove the following functorial property: if f : Y → X is an analytic morphism, then

c1(f∗(L)) = f∗(c1(L)). Moreover one can prove an analogue of the Poincaré–Lelong

formula on arbitrary variety. We refer to the literature for more details on the subject

7 Lecture VI.

7.1 Enters Nevanlinna theory. The height theory of points over arithmetic varieties

is strictly related to the introduction of metrics over the restriction of line bundles

to infinite places. One should remark that in order to define heights, we need to (a)

introduce a sort of compactification of the spectra of ring of integers of number fields.

(b) introduce metrics on the compactified objects.

The first point is achieved considering the infinite places as if they were some ”new

points” of the curves. This is similar to the compactification of affine curves. Never-

theless what is natural to consider is the ”open” affine object Spec(OK). Thus when

we consider the geometric analogue of it, we should deal with morphisms from ”open”

affine curves to projective varieties. The difference is not without interest because, when
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we deal with morphisms from affine curves to varieties, we have a much wider class of

morphisms: the class of analytic morphisms.

7.1 Example. The map f : C → P2 defined as f(c) = [1, z, ez] is an analytic map

which do not extends to an algebraic map from the projective line to P2.

Thus one would like to find analogy between the height theory and the theory of

analytic maps from an affine curve to a projective variety. We will show now that, if

we properly interpret the Nevanlinna theory, once again the analogy is striking.

Before we start, let’s make a remark: the theorem 6.16 tells us that the degree of a

line bundle is obtained by integrating a suitable (1, 1) form on a Riemann surface Y .

A form ω is said to be positive if locally we write it as ω = iF (z)dz ∧ dz with F (z) a

smooth positive real function. When the for is positive, we may see it as a measure on

X. Consequently we may conclude that the degree is the area of Y with respect to the

metric of the line bundle.

Let X be a smooth projective variety equipped with an hermitian ample line bundle

L. We denote by c1(L) the first Chern form of L. We want to study an analytic map

f : C→ X.

Instead of computing the area of C with respect to f∗(c1(L)), which may very well

be infinite, we compute a sort of averaged area of the disks of C.

7.2 Definition. We define the analytic characteristic function of f or the analytic

heigh of r with respect to f to be the number

Tf (r, L) =

∫ r

0

dt

t

∫
|z|<t

f∗(c1(L)).

Some explanations to the definition above are necessary:

(a) If we consider the standard measure idz ∧ dz on C we have that∫ r

0

dt

t

∫
|z|<t

idz ∧ dz = πr2 :

Thus if we compute the analytic height of r with respect to the standard Lebesgue

measure on C we obtain the area of the disk of radius r.

(b) Let ω = F (z)idz ∧ dz be a (1, 1) form on C. Near the origin, we can find a

constant A such that |F (z)| ≤ A. Thus
∣∣∣∫|z|<ε ω∣∣∣ ≤ 2πAε2. Consequently the integral

in the definition of the analytic height do not diverges near the origine and it is well

defined.

(c) By the Poincaré–Lelong formula, if f : C → P1 is the natural inclusion and

L = O(1) with the Fubini–Study metric (or any other metric) then, if we fix ε > 0, for
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every ε1 and r sufficiently big, for every integer n we have∣∣∣∣∣
∫ r

ε

dt

t

∫
|z|<t

f∗(c1(L⊗n))− n log
r

ε

∣∣∣∣∣ ≤ ε1 log
r

ε
.

(The reader is invited to prove this by exercise) Thus, in this situation, the analytic

degree is similar to the standard degree (geometric height) multiplied by a factor log(r).

(d) Formula in (c) shows that the analytic height has something in common with

the geometric heigh. Observe that, in order to introduce it, we need to work with line

bundles equipped with metrics. This feature is similar to the introduction of arithmetic

heights.

(e) A curve, with map in a projective variety is the geometric analogue of a point in

the variety. In the analytic contest, we start with a given analytic map f : C→ X and

each positive real number r is the analytic analogue of a rational point in the arithmetic

contest.

(f) In order to explain the analogue of Northcott theorem 5.14 we need to introduce

the notion of positive metric on a line bundle. Let ∆ be the unit disk and ω :=

F (z)idz ∧ dz be a smooth (1, 1)–form on it. We recall that ω is said to be positive if

F (z) is a smooth function with values in R>0. A smooth positive form defines a positive

measure on the disk: the area of every open set with compact closure is strictly positive.

We generalize this to a variety:

7.3 Definition. Let X be a projective variety and L be an hermitian line bundle on

it. The metric on L is said to be positive if, for every analytic map f : ∆ → X the

restriction f∗(c1(L)) of the first Chern form of L to ∆ is a smooth positive (1, 1) form

on it.

7.4 Example. Let X = PN and L = O(1). One can check that the Fubini–Study

metric on L is a smooth positive metric.

One of the basic theorems of the theory of hermitian line bundles, is a theorem due

to Kodaira:

7.5 Theorem. (Kodaira) Let X be a smooth projective variety and L a line bundle

on it. Then L admits a smooth positive metric if and only if L is ample.

The analogue of Northcott theorem in this contest is the following ”trivial observa-

tion”:

7.6 Proposition. Let X be a smooth projective variety and L be an hermitian ample

line bundle equipped with a positive metric. Let f : C→ X be an analytic map and A

be a positive constant. Then the set A(r) := {r ∈ R / Tf (r, L) ≤ A} is a compact set.
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Proof: It suffices to remark that , since the metric is positive, for every positive t the

integral
∫
|z|≤t f

∗(c1(L)) is positive. Consequently Tf (r, L) is a increasing function of r:

its derivative is 1
r

∫
|z|≤r f

∗(c1L)) which is positive. Thus A(r) is compact.

(g) The most striking analogy between the geometric, the arithmetic and the analytic

theory is the analogue of properties 4.11 (c) and 5.10: the fact that if a point p do not lie

on a effective Cartier divisor D, then the height if p with respect to D is uniformly lower

bounded. This is the main issue of the so called ”Nevanlinna First Main Theorem”:

In order to explain and prove this property we need to introduce some new concepts.

We will see that the formulas we find will have also a much wider interpretation and

application.

7.7 Definition. Let r > 0, we define the Green function of the origin 0 in the disk of

radius r to be the function

gr0(z) :=

 log(
r2

|z|2
) if |z| ≤ r

0 if |z| ≥ r.

The Green function is a continuous, thus locally integrable, function on C. Conse-

quently we can compute its laplacian. We introduce some notation:

For every positive real number r we denote

B(0, r) := {z ∈ C / |z| < r} and S(r) := {z ∈ C / |z| = r}.

7.8 Theorem. With the notations above, there exists a positive measure µr on C of

total mass 1 and supported on S(r) such that

ddcgr0 = µr − δ0.

Proof: Let ε > 0 be a real number strictly less then r. The restriction of ddc(gr0) to the

ball B(0ε) is −δ0 because of theorem 6.7. We claim that the restriction of ddc(gr0) to

C \ {0} is a positive measure µr supported on S(r). This suffices to prove the theorem:

indeed choose r > ε′ > ε > 0 and consider the covering of C made with the two open sets

U1 = {|z| > ε} and U2 := {|z| < ε′}. Let {ρ1 , ρ2} be a partition of unity subordinated

to the covering. Let h be a smooth function with compact support on C. To compute∫
C hdd

c(gr0) it suffices to compute I1 =
∫
U1
ρ1hdd

c(gr0) and I2 =
∫
U2
ρ1hdd

c(gr0); but the

claim implies that I1 =
∫
S(r)

hµr and I2 = h(0).

Let’s prove the claim. Let h be a smooth function with compact support contained in

C\{0}. We may suppose that there exists ε > 0 such that the support of h is contained

in {|z| > ε}. Let g̃r0(z) := log r2

|z|2 . it is a smooth function on C \ {0}. We apply formula
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6.4.1 to the domain B(ε, r) := {ε < |z| < r} and obtain∫
B(ε,r)

g̃r0dd
ch− hddcg̃0

r =

∫
∂B(ε,r)

g̃r0d
ch− hdcg̃r0.

Observe that:

– Since gr0 vanishes outside the ball B(0, r), we have that∫
C\B(0,ε)

gr0dd
ch =

∫
B(r,ε)

g̃0
rdd

ch :

– the distribution ddc(g̃r0) vanishes on B(r, ε);

– ∂B(ε, r) = S(r) ∪ S(ε);

– Since h has compact support on {|z| > ε}, the restriction of both h and dc(h) to

S(ε) vanish.

– The function g̃r0 vanishes on S(r). Thus we obtain∫
C
hddcgr0 =

∫
B(r,ε)

g̃r0dd
ch = −

∫
S(r)

hdcg̃r0.

This prove that the distribution ddc(gr0) is supported on S(r). An explicit com-

putation gives that −dcg̃r0 = dc log |z|2 and if we parametrize the cercle S(r) by the

coordinate z = reiθ, then the restriction of dc log |z|2 to S(r) is the measure 1
2πrdθ. The

claim follows.

We can now state and prove the First Main Theorem.

7.9 The First Main Theorem of Nevanlinna theory. Let Xbe a smooth projective

variety and L be an hermitian line bundle over it. Let f : C→ X be an analytic map.

7.9 Theorem. Let s ∈ H0(X,L) a non zero holomorphic global section. Suppose that

the restriction of s to f(0) is not zero: s|f(0) 6= 0. Then

Tf (r, L) =
∑
|z|<r

vz(f
∗(s)) log

r

|z|
−
∫
|z|=r

log ‖f∗(s)‖µr + log ‖s‖(f(0)). (7.9.1)

Let’s make some comments to the formula 7.9.1 above:

(a) The term −
∫
|z|=r log ‖f∗(s)‖µr is usually called proximity function, it is denoted

by mf (s, r) and it compute, in some way, the average of the logarithm of the norm of

the section on the border of the disk B(0, r) := {|z| ≤ r}.
(b) The term

∑
|z|<r vz(f

∗(s)) log r
|z| is the sum of the zeroes in B(0, r) when we

give to a number z the weight gr0(z). It is usually called the counting function and it is

denoted by Nf (s, r).

(c) The First Main theorem is often written as Tf (r, L) = mf (s, r) +Nf (s, r) +O(1).

where the symbol O(1) means that the left hand side and the right hand side are the

same up to a bounded function (actually a constant).
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(d) One should compare the formula 7.9.1 with formulas 3.37.1 and 3.38.1. As ex-

plained before, in the analytic contest, the analogue of a point is a positive real number

r, and the corresponding disc {|z| < r}. In this situation the degree Tf (r, L) is com-

puted as sum of two terms: the first term is the weighted sum, on the points inside

the disk , of zeroes and poles of the global section. The weight of each point is not 1

as in the geometric case, but it is log r
|z| ; thus the logarithm of something, as in the

arithmetic case!. The second term is minus the sum (an integral) over the border of the

point of the norm of the section.

(e) Suppose that supx∈X{‖s‖(x)} ≤ 1; since X is compact, this condition can always

be achieved multiplying s by a constant. Then formula 7.9 implies that there exists a

constant C independent on r such that Tf (r, L) ≥ C. This is a feature similar to 5.10.

We now come to the proof of the Nevanlinna First Main theorem: It suffices to prove

the following:

7.11 Theorem. Let L be an hermitian line bundle on C and s ∈ H0(C, L) be a

holomorphic section of it. We suppose that s(0) 6= 0. Then, for every positive real

number r we have∫ r

0

dt

t

∫
|z|<t

c1(L) +

∫
|z|=t

log ‖s‖µr =
∑
|z|<r

log
r

|z|
+ log ‖s‖(0).

Proof: Consider the functions log ‖s‖(0) and gr0(z). Their laplacian is not just a distri-

bution but it is a measure (it can be computed on continuos functions). By Poincaré–

Lelong formula and theorem 7.8 we have

ddc log ‖s‖2 = δdiv(s) − c1(L) and ddcgr0 = µr − δ0.

Observe that, the fact that s(0) 6= 0 implies that we can apply ddcgr0 to log ‖s‖ and

ddc log ‖s‖ to gr0.

An argument similar to the one used in the proof of theorem 6.7, authorizes to say

that the following equality holds:∫
C

log ‖s‖2ddcgr0 =

∫
C
gr0dd

c log ‖s‖2;

Indeed, even if neither log ‖s‖2 or gr0 are smooth functions, nevertheless:

– they are both locally integrable functions;

– the function gr0 is smooth on C\{0} and the function log ‖s‖2 is smooth everywhere

but a discrete set of points.

– The function gr0 vanishes on {|z| ≥ r} thus, at least formally, the formula above is

an application of 6.4 on a disk of radius bigger then r.

– To rigorously justify the formula above we need to take a covering of the disk of

radius r made by a domain obtained removing from it small disks centered on 0 and the

zeroes of s and disks slightly bigger then the removed ones and centered on the same
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set. Then apply a partition of unity etc. The details are left to the reader, in any case

they are exactly the same then the method used in proof of theorem 6.7

From the formula above we obtain:∫
|z|=r

log ‖s‖2µr − log ‖s‖2(0) =

δdiv(s)(g
0
r)−

∫
|z|<r

g0
rc1(L)

We remark that δdiv(s)(g
0
r) =

∑
|z|<r log r2

|z|2 and the conclusion follows from the follow-

ing lemma:

7.12 Lemma. Let α be a smooth (1, 1) form on C. Then

2

∫ r

0

dt

t

∫
|z|<t

α =

∫
C
gr0α.

Proof: We consider the variety Ct(r) ⊂ C×R≥0 defined in the following way: Ct(r) :=

{(z, t) / |z| < t t < r}. Let p1 : Ct(r) → C and p2 : Ct(r) → R the natural

projections. Then we can compute the integral
∫
Ct(r) p

∗
1(α) ∧ p∗2(dtt ) in two ways, using

Fubini Theorem and we obtain:∫
Ct(r)

p∗1(α) ∧ p∗2(
dt

t
) =

∫ r

0

dt

t

∫
|z|<t

α

=

∫
C
α

∫ r

|z|

dt

t
.

The conclusion follows from the fact that
∫ r
|z|

dt
t = 1

2g
r
0.

Observe that the First Main theorem implies this, often useful, corollary.

7.13 Corollary. Let f : C→ C be an entire function, then

Tf (r,O(1)) =

∫
|z|=r

log
√

1 + |f(reiθ)|2 dθ
2π

+ log |f(0)|.

Proof: It suffices to remark that the image of f do not meet the divisor [∞] of P1 and

the norm of the section s ∈ H0(P1,O(1) such that div(s) = [∞] is, over the chart C,

given by ‖s‖(x) = 1√
1+|x|2

.

8 Lecture VII.

In the last lecture we developed some tools from Nevanlinna theory of analytic maps

from C to a projective variety. We saw that, when duly interpreted, this theory has
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features very similar to the theory of heights and the theory of degree of line bundles

on projective curves.

Of course one would like a more general Nevanlinna theory of analytic maps from

Riemann surfaces to projective variety. In principle this can be developed but, if the

Riemann surface do not have nice properties, it will not be very satisfactory.

We briefly describe here how the theory may be generalized to analytic map from

affine Riemann surfaces to projective varieties. The wider class where we can develop a

nice Nevanlinna theory is the so called class of Parabolic Riemann surfaces in the sense

of Ahlfors Myrberg: every affine Riemann surface and every finite covering of the affine

line is in this class.

Let M be a smooth affine curve and M the smooh projective compactification of it.

We denote by D =
∑r
i=1 the divisor M \M . We also fix a point p ∈M . Fix a smooth

projective variety equipped with an hermitian line bundle L.

Let f : M → X be an analytic map.

Lemma 7.12 tells us that, in order to define the counting function when M = C
and p = 0, the main tool is the introduction of the Green functions gr0. And these

are obtained, essentially from the global function log |z|2 on C. Indeed, if we denote

by g0(z) the real function log |z|2 then we remark that the only properties we used to

develop the Nevanlinna theory on C are:

– we have that ddc(g0(z) = δ0 and g0(z) is a smooth function outside 0;

– we have that g0(z)→ +∞ when |z| → +∞;

– If, for every real number a we denote by (a)+ the number sup{a, 0}, then gr0 =

(log r2 − g0(z))+.

The reader may check by exercise that the only properties which are used to prove

the first main theorem are the properties above.

Consequently, if on an arbitrary Riemann surface we have a function which has

properties similar to the properties above, we can develop a Nevanlinna theory over it.

We now quote, without proof, some theorems which allow to develop Nevanlinna

theory for analytic maps from M to X. We will see that, at least formally, the definitions

are very similar to the constructions we made in the previous section. The proofs require

a little bit of more involved complex analysis and Hodge theory. Since we will not need

the proofs, we omit them.

We recall that an harmonic function is a function v on a Riemann surface, such that

ddc(v) = 0.

8.1 Theorem. Up to an additive scalar, there exists a unique function gp : M →
[−∞; +∞] with the following properties:

a) it satisfies the differential equation

ddcgp = δp −
1

d
· δD;

δp (resp. δD) being the dirac operator on p (resp. on D).
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b) It is a C∞ function on M \ {p} ∪ {|D|}.
c) There is a open neighborhood U of p and an harmonic function vp on U such that

gp|U = log |z − p|2 + vp.

The function gp plays, over an arbitrary Riemann surface M , the role played by

log |z|2 on C. Let’s quote some properties of it.

8.2 Example. If M = C, so M = P1 then gp = log |z − p|2 up to a constant.

The reader will notice the similarities with the function gr0 used in the previous

section.

The following property tells us that gp is an exhaustion function over M :

8.3 Proposition. For every constant C, we have that g−1
p ((C,+∞]) is a non empty

neighborhood of D in M .

If p and q are two different points of M then we can compare gp and gq:

8.4 Proposition. Suppose that p and q are two different points of M . For every

relatively compact open neighborhood U of p and q there exists a constant CU such

that

|gp(z)− gq(z)| ≤ CU

for every z 6∈ U .

We introduce then the Green functions over an arbitrary Riemann Surface.

8.5 Definition. Let U be a regular region on a Riemann surface M and p ∈ U . A

Green function for U and p is a function gU ;p(z) on U such that:

a) gU ;p(z)|∂U ≡ 0 continuously;

b) ddcgU ;p = 0 on U \ {p};
c) near p, we have gU ;p = − log |z−p|2 +ϕ, with ϕ continuous, thus harmonic, around

p.

One extend gU,p to all of M by defining gU,p ≡ 0 outside the closure of U . We easily

deduce from the definitions that ddcgU ;p+δP = µ∂U ;p where µ∂U ;p is a positive measure

of total mass one and supported on ∂U .

Moreover the following is true:

8.6 Proposition. The Green function, if it exists, it is unique.

For every positive real number r, we consider the following two closed sets of X

B(r) :=
{
z ∈M s.t gp(z) ≤ log(r2)

}
and S(r) :=

{
z ∈M s.t gp(z) = log(r2)

}
.

The function gp is strictly related with the Green function on B(r):

45



8.7 Proposition. Let r be a positive real number. The function

grp := log(r2)− gp|B(r)

is the Green function of B(r) and p. Consequently, for every p and q in X there is a

constant C, depending on p and q, such that, for every r sufficiently big,∣∣grp(q)− log(r)
∣∣ ≤ C.

For a proof of all these statements cf. [Ga] and the references there.

We may remark that proposition above is a formal consequence of the definitions and

the properties of the gp and the Green functions. Observe that in also in this case, the

measure µ∂B(r), p is the restriction to S(r) of the form dcgp.

8.8 The function gp and metrics. Over the affine curve C the function gp(z) may be

used to define a metric on the line bundle O(p): Indeed let Ip be the section of O(p)

which defines the divisor p then we define ‖Ip‖(z) = e
1
2 gp(z); this is nothing else then

‖Ip‖(z) = |z − p|. Evidently this metric extends over p.

This procedure can be generalized to any affine curve. Let M be an affine curve and

p ∈ M then we define a metric on O(p) in the following way: let Ip be the section of

O(p) which defines the divisor p then we define ‖Ip‖(z) = e
1
2 gp(z).

Notice that gp is defined up to an additive constant and Ip is defined up to a multi-

plicative constant. The reader will check that all the statements will remain true if we

make other choices.

It is important to observe that this also defines a metric on the stalk of the cotangent

bundle at p:

Let Ω1
M be the cotangent bundle of M . We have a canonical isomorphism

Ω1
M (p)p

'−→ C.

f(z − p) dz

z − p
−→ f(p)

The isomorphism above, which is called the residue isomorphism, do not depend on the

choice of the local coordinate around p (the reader can check it by exercise). Thus, if

we denote by TpM the tangent space of M at p it defines a canonical isomorphism

TpM
'−→ O(p)|p.

Consequently the metric on O(p) defined above defines also a metric on the tangent

space TpM . This is defined as following: the space TpM is generated by the derivation
d
dz and ∥∥∥∥ ddz

∥∥∥∥ = e
1
2vp(p).
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8.9 Nevanlinna theory over arbitrary affine curve. We are now ready to generalize

the notion of analytic height theory to an arbitrary analytic map f : M → X. First

we define the analytic degree of a hermitian line bundle L on M (it is also called the

characteristic function of L ad then the height as an analytic degree:

8.9 Definition. (a) Let N be an hermitian line bundle over M and r be a positive

real number. We define

T (r, L) :=

∫ r

0

dt

t

∫
B(r)

c1(N)

to be the analytic degree of r with respect of N .

(b) Suppose that L is an hermitian line bundle on X and r s a positive real number.

Then we define

Tf (r, L) :=

∫ r

0

dt

t

∫
B(r)

f∗(c1(L))

to be the the analytic height of r with respect to f and L.

The reader will notice that the definition is formally identical to its analogue when

M = C.

8.10 Example. Suppose that we put on O(p) the metric such that, if Ip is the sec-

tion of it vanishing at p then ‖Ip‖(z) = e
1
2 gp(z). Then outside p we have c1(O(p)) =

−ddc(gp) = 0. Thus T (r,O(p)) = 0.

The Poincaré–Lelong formula and the same proof given before allows to obtain the

First Main Theorem (and its consequences):

8.11 Theorem. (a) Suppose that N is an hermitian line bundle on M and s ∈
H0(M,N) is such that s(p) 6= 0, then

T (r,N) = −
∫
S(r)

log ‖s‖dc(gp) +
1

2

∑
q∈B(r)

vq(s)g
r
p(q) + log ‖s(p)‖.

(b) Suppose that f : M → X is as above. Let s ∈ H0(X,L) be a global section such

that s(f(p)) 6= 0. Then

Tf (r, L) = −
∫
S(r)

log ‖s‖dc(gp) +
1

2

∑
q∈B(r)

vq(f
∗(s))grp(q) + log ‖s(f(p))‖.

We may then resume the properties of the analytic heighs. The reader will compare

these properties with the properties of geometric heights 4.11 and the properties of

arithmetic heights 5.9:

8.12 Theorem. : (Properties of analytic heights) Let X be a projective variety and

f : M → X be an analytic map.
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(a) Let L1 and L2 be two hermitian line bundles on X then

Tf (r, L1 + L2) = Tf (r, L1) + Tf (r, L2);

(b) (functoriality of analytic heights) Suppose that Y is another projective variety,

L is an hermitian line bundle on Y and h : X → Y is an analytic map then

Th◦f (r, L) = Tf (r, h∗(L));

(c) Suppose that L is an hermitian line bundle on X and s ∈ H0(X,L) is such that

s((f(p)) 6= 0. Then we may find a constant C independent on r such that

Tf (r, L) ≥ C.

(d) Suppose that L is an ample line bundle equipped with a positive metric on X.

Let A be a posive constant, then the set {r ∈ R / Tf (r, L) ≤ A} is compact in R.

Moreover there exists a constant C, independent on r such that Tf (r, L) ≥ C.

8.13 Order of growth. Suppose that f : C→ C is an entire function. We say that the

function f has finite order of growth ρ if we may find an constant C > 0 such that , for

every positive real number R we have

log sup{|f(z)| / |z| ≤ R} ≤ C ·Rρ.

Most of the known functions are of finite order: for instance f(z) = ez has fi-

nite order of growth 1 and every polynomial h(z) has even smaller order of growth:

log sup{|h(z)| / |z| ≤ R} ≤ C log |z|.
With a little bit of work one can also prove the following:

8.13 Proposition. Let f : C → C be an entire function. For every real number

r > 0 denote by Mf (r) the number sup|z|≤r{ 1
2 log(1 + |f(z)|2)}. For every couple of

real numbers 0 < r < R the following inequalities hold

Tf (r,O(1)) ≤Mf (r) ≤ R+ r

R− r
Tf (R,O(1))

where O(1) is the tautological line bundle on P1 with the Fubini–Study metric.

Thus the order of growth of a function is essentially controlled by the analytic height

function. For this reason we give the following definition.

Suppose that M is an affine Riemann surface with a marked point p ∈M . Let X be

a smooth projective variety equipped with an ample line bundle L. We suppose that

the metric on L is positive.

8.14 Definition. We will say that the order of growth of f is ρ > 0 if

lim sup
r→∞

log(T (r, L))

log(r)
= ρ.
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It is important to observe that:

(a) The order of growth do not depend on:

– the choice of the base marked point p,

– the choice of the ample line bundle L,

– the choice of the metric on L.

(b) If X = P1, and f : C→ P1 is an entire function, then the two definition of order

of growth coincide.

(c) One can prove that, f : M → X extends to an algebraic map f : M → X if and

only if

lim sup
r→∞

Tf (r, L)

log(r)
< +∞.

9 Lecture VIII.

In the previous lectures we developed three parallel theories, the arithmetic, the

geometric and the analytic height theory and we showed interesting common features.

One would hope that the list of these common features will increase in the future. Many

interesting conjectures are made about this.

On the other direction one would like to see if these three theories may be part of

a unified theory where arithmetic, geometry and analysis where may interact together

and give informations which may be interesting for all of them.

The theory where they can interact is the geometric transcendence theory.

The principal objects of the analytic theory are analytic maps from affine curves to

projective varieties. Similarly, the principal objects of the arithmetic theory are rational

points on projective varieties again. Thus one would like to study the interactions

between analytic maps of affine varieties and rational points. This is exactly the subject

of the geometric transcendence theory!.

Of course there should be some relationship between the analytic map we are looking

to and the arithmetic of the variety otherwise it is easy to show that everything may

happen.

Suppose that f : M → X is an analytic map. And, in order to deal with arithmetic,

we suppose that X is a projective variety defined over a number field K. The first

condition we may suppose verified is that locally around the points p of f(M)∩X(K),

the analytic variety f(M) is in some way defined over K. By this we mean the following:

let p ∈ M a point such that f(p) = q ∈ X(K). Let z1, . . . , zn algebraic coordinates

around q, then we can choose a coordinate t around p in such a way that the function f

is given by power series zi = zi(t) =
∑∞
j=1 aijt

j with aij ∈ K. In this case we say that

the germ of f at p is defined over K. This condition, even if quite natural, is difficult

to be verified for an arbitrary analytic map f . But it is verified when f is for instance

a solution of an algebraic differential equation defined over K.
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9.1 Example. Consider the differential equation y′ = y. A solution of it defines an

analytic map f : C → C2 given by f(z) = (z, ez). A point in f(C) ∩ A2(Q) would

be a rational number z such that ez ∈ Q. Near the point z the map f is given by

f(z) = (z,
∑∞
i=0

zn

n! ). We will prove in the sequel that the only possible z is z = 0.

We saw that a good method to study rational points on projective varieties over

number fields has been to choose models of these and extend the rational points to

morphisms from Spec(OK) to the model. Of course it would be difficult to extend

analytic maps to models. But the germs of analytic maps are easier to handle and

easier to extend.

9.2 Overview of formal schemes. In order to work with germs of analytic maps, the

natural language is the language of formal schemes. Formal geometry is a way to do

local analysis on arbitrary schemes. Since it is not possible to give here an account of

the theory of formal schemes, we will simply define and recall here the properties we

need:

– Let X be a scheme and Y be a closed subscheme of it. We define the formal

neigborhood of Y in X in the following way:

Let IY be the sheaf of ideals defining Y in X. The completion X̂Y of X around Y

is the following ringed topological space: As topological space it is Y and as a ring of

sheafs one has the limit lim←OX/InY .

– We will call the subscheme of X given by the ideal InY the i-th infinitesimal neighbor-

hood of Y in X and denote it by (X̂Y )n. Observe that we have natural closed inclusions

of schemes: (X̂Y )n−1 ↪→ (X̂Y )n.

9.2 Example. Let A be a ring and X = Â1
A. Let 0 be the origin of Â1

A. The

completion A1
0 is the formal spectrum of the ring A[[z]]. By this we mean the projective

limit of the spectra of the rings A[t](tn) with the natural maps A[t]/(tn)→ A[t]/(tn−1).

We have to imagine the i–th infinitesimal neighborhood of 0 as the ring of formal power

series truncated at the order i.

– In particular, if A is a ring and I is an ideal, we denote by Spf(AI) the projective

limit of the schemes An := A/In. Observe that in this situation we have an exact

sequence

0→ In−1/In −→ An −→ An−1 → 0.

Observe that In−1/In is a sheaf supported on the closed subscheme A/I.

– Denote by X = Spec(A) and Y = Spec(A/I). One can prove that, if I is defined by

a regular sequence (for instance if X is the ring of regular function of a smooth variety

and the closed subvariety Y is also smooth), then the sheaf I/I2 is locally free on Y ; it

is usually called the conormal sheaf of Y in X and moreover In−1/In = Symn−1(I/I2).

– The construction above generalize to arbitrary closed schemes of a scheme. A

subscheme locally defined by an ideal which is generated by a regular sequence is called

a locally complete intersection subscheme. If Y is a closed subscheme of a scheme X
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with ideal sheaf IY , then NX(Y ) := IY /I
2
Y is a sheaf with support on Y , thus a sheaf

on Y . It is called the conormal sheaf of Y in X. If Y is a locally complete intersection

of a scheme X then NX(Y ) is locally free. In this situation we have a generalization of

the exact sequence above

0→ Symn−1(IY /I
2
Y ) −→ O(X̂Y )n

−→ O(X̂Y )n−1
→ 0.

– A typical example of locally complete intersection is the following: X → Spec(OK)

an arithmetic scheme and P : Spec(OK)→ X a section of it. If the local sheaf OX,P is

regular, then P is locally complete intersection in X .

– If X is as above and there exists a neighborhood of P which is smooth of relative

dimension N over Spec(OK) then, non canonically

X̂P ' Spf(OK [[z1, . . . , zN ]]).

– Moreover in the situation above, the restriction Ω1
X/OK of Ω1

X/OK to P is locally

free and Symn(Ω1
X/OK ) is free and generated by the ”monomials” (dz1)⊗i1 · · · (dzN )⊗iN

with i1 + . . .+ iN = n.

– Similarly, if M is a Riemann surface and p ∈M is a point, then, non canonically

M̂P ' Spf(C[[t]]).

– More generally, if X is a smooth algebraic variety of dimension N , and p ∈ X, then

non canonically,

X̂p ' Spf(C[[z1, . . . , zN ]].

If f : M → X is an analytic map. For every z ∈M , the map f induces a map of formal

schemes

Spf(C[[t]]) ' M̂z
f̂z−→ X̂f(p) ' Spf(C[[z1, . . . , zN ]].

Conversely suppose that q ∈ X and

ĥ : Spf(C[[t]]) −→ X̂q

is a map of formal schemes, we will say that ĥ has positive radius of convergency if there

exists a Riemann surface M , a point p ∈M and an analytic map f : M → X such that

h(p) = q and ĥ = f̂p.

9.3 Example. (a) The morphism of formal germs ĥ(t) =
∑∞
i=1 t

i defines a map with

positive radius of convergency ĥ : Spf(C[[t]])→ Ĉ0.

(b) The morphism of formal germs ĥ(t) =
∑∞
i=1 i!t

i is a map of formal schemes

ĥ : Spf(C[[t]])→ Ĉ0 which do not have positive radius of convergency.

– Suppose that X → Spec(OK) is an arithmetic scheme and P : Spec(OK) → X be

a point of it. Denote by XK the generic fibre of X and p ∈ XK(K) the induced point.
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We have a commutative diagram̂(XK)p −→ X̂Py y
Spec(K) −→ Spec(OK).

Remark that this diagram is not cartesian.

9.4 Germs of type E. Let K be a number field, OK be its ring of integers, MK the set of

places ofK. Denote with M∞ ⊂MK the set of infinite places ofK and with Mfin ⊂MK

the set of finite places of K. In the sequel we will denote by ÂN0 the OK formal scheme

Spf(OK [[Z1, . . . , ZN ]]) and by (ÂN0 )K the K–formal scheme Spf(K[[Z1, . . . , ZN ]]). We

fix a σ ∈ M∞. For every geometric object X defined over OK , we will denote XK

its restriction to the generic fibre K and Xσ its extension to C via the embedding

σ : K ↪→ C.

9.4 Definition. Let C := (Cv)v∈Mfin
be a sequence of numbers indexed by the finite

places of K. We will say that C is an admissible sequence if:

– Cv ≥ 1 for every v ∈Mfin;

–
∏
v∈Mfin

Cv = C <∞.

We will say that C is the radius of C.

We denote by 1 the admissible sequence with Cv = 1 for every v ∈ Mfin. Once we

fix an admissible sequence we may define series which are suitable for the study of the

geometric transcendence theory:

9.5 Definition. Let C an admissible sequence and α be a non negative real number.

We will say that a formal power series f(t) =
∑∞
i=0 ait

i ∈ K[[t]] is a E germ of type

(C,α) at finite places if, for every finite place v ∈Mfin we have

‖ai‖v ≤
Civ
‖i!‖αv

.

The set of E–germs of type (C,α) at finite places is a ring containing OK [[t]], it will

denoted by RC,α and called the ring of E–germs of type (C,α) at finite places.

It is easy to see that OK [[t]] = R(1,0). We also have a natural inclusion

iK : RC,α ⊗OK K ↪→ K[[t]] (9.6.1)

In the sequence, we will denote by DC,α the OK–formal scheme Spf(RC,α).

A way to think about DC,α is to imagine it as a sequence of disks, one for each place

of K. The radius of each disk being not too small. For instance D1,0 is a sequence of

disks of radius one.
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We remark that for every C we have a canonical morphism ιC,α : DC,α → D1,0 =

Spf(OK [[t]]). The natural inclusion Spf(K[[t]]) ↪→ (D1,0)K factorizes:

Spf(K[[t]]) ↪→ (DC,α)K ↪→ (D1,0)K .

Similarly if σ is an infinite place of K, the natural inclusion σ : K ↪→ C induces a

series of inclusions: Spf(C[[t]]) ↪→ Spf(K[[t]]) ↪→ (DC,α)K ↪→ (D1,0)K .

As we remarked before, the sheaf of relative differentials Ω1
D1/OK

is free or rank one

and canonically generated by dt. We will denote by T1/OK the free OK module of rank

one P ∗C(Ω1
D1/OK

)∨.

For every non negative integer i, we denote by (RC,α)i the ring RC,α/t
i+1 and by

(DC,α)i the scheme Spec((RC,α)i)). The scheme (DC,α)i is the i–th infinitesimal neigh-

borhood of the center of DC,α.

For every positive integer i the canonical closed inclusions (DC,α)i−1 ↪→ (DC,α)i ↪→
DC,α induces a canonical exact sequence

0 −→ (t)i−1/(t)i −→ (RC,α)i −→ (RC,α)i−1 −→ 0. (9.6.1)

Moreover the inclusion ιC,α give rise to a commutative diagram

0 −→ (t)i−1/(t)i −→ (RC,α)i −→ (RαC)i−1 −→ 0.x x x
0 −→ T

⊗−(i−1)
1/OK

−→ (OK [[t]])i −→ (OK [[t]])i−1 −→ 0.

where all the vertical arrows are inclusions. Moreover observe that when we tensorize

by K we obtain an isomorphism

ιK : (T⊗−i1/OK
)K → ((t)i/(t)i+1)K . (9.7.1)

This shows in particular that the rings RC are not regular when C 6= 1.

Let X → Spec(OK) be an arithmetic scheme and P : Spec(OK) → X be a point

of it. Denote by XK the generic fibre of X and p ∈ XK(K) the induced point. Will

denote again by X̂P the completion of X around P and by ̂(XK)p the completion of XK

around p respectively.

Let γK : Spf(K[[t]])→ ̂(XK)p be a morphism of formal schemes. For every σ ∈M∞
the inclusion K[[t]] ↪→ C[[t]] induces a morphism of formal schemes γσ : C[[t]]→ ̂(Xσ)p.

We give now the definition of E germ; it is a particular map of formal schemes

γK : Spf(K[[t]])→ ̂(XK)p with good property of convergency at every place:

9.8 Definition. A E–germ of type (C,α) of XK is a K–morphism of formal schemes

γK : Spf(K[[t]])→ ̂(XK)p

with the following properties:
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(a) For every σ ∈ M∞ the induced map γσ : C[[t]] → ̂(Xσ)p has positive radius of

convergency;

(b) There exists a morphism of OK–formal schemes γ : DC,α → X̂P for which the

following diagram is commutative:

Spf(K[[t]])
γK−→ ̂(XK)py y

(DC,α)K
(γ)K−→ (X̂P )K .

At this point we are ready to study arithmetic properties of analytic maps.

Let K be a number field, OK be its ring of integers and σ an infinite place of K. We

fix an admissible sequence C and α ≥ 0

Suppose that X → Spec(OK) is a projective arithmetic variety. We denote by XK

its generic fibre and by Xσ its restriction to the place σ. We suppose that XK is a

smooth variety of dimension N > 1. For every rational point p ∈ XK(K) denote by

P : Spec(OK)→ X the corresponding section.

Let M be a Rieman surface and f : M → Xσ(C) be an analytic map. As explained

before, for every point z ∈M the map f induces a map

Spf(C[[t]]) ' M̂z
f̂−→ ̂(Xσ)z.

Denote by Sf (α) the subset of points p of M such that f(p) ∈ XK(K) and for wich

there exists a (C,α) germ fp : Spf(K[[t]]) → ̂(XK)p such that the following diagram is

commutative

Spf(C[[t]])
f̂−→ ̂(Xσ)py y

Spf(K[[t]])
(γ)K−→ ̂(XK)p.

Observe that C may vary for different points.

The set Sf (α) it the set of rational points in the pre–image of XK(K) for which the

germ of f in their neighborhood is defined over K and have good arithmetic properties.

9.9 Example. Suppose that we have a differental form ω := f(z, w)dz + g(z, w)dw

defined over K (f and g are algebraic functions defined over K) and q is a point where

either f(q) 6= 0 or g(q) 6= 0 (or both). Suppose that f∗(ω) = 0, this means that f is the

unique solution of the differential equation ω = 0. Then one can show that every point

in f−1(q) is in Sf (C, 1) for some suitable C.

The main theorem of these lectures is:

9.10 Theorem. Suppose , in the hypotheses above that the order of growth of f

is ρ and the image of f is Zariski dense. Then the cardinality of Sf (α) is at most
N+1
N−1ρ · α[K : Q].
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This theorem implies at once the transcendence of e and the transcendence of π:

– Suppose that e is algebraic. Then since the function f : C → C2 defined by

f(z) = (z, ez) defines (1, 1) germs in every integral point, the set Z ⊂ C will be contained

in Sf (1) and this is a contradiction.

– Suppose that π is algebraic, then iπ is algebraic and again the set iπ · Z ⊂ C will

be contained in Sf (1) and this is a contradiction.

10 Lecture IX.

We will now introduce some other general tools from Arakelov geometry necessary

to the proof of Theorem 9.10. The reader will observe that this proof requires an

interaction of the three theories we described so we go over the simple analogy.

Unfortunately the proof requires some other tools which are a little bit more involved

of what we proved until now. Once again we try to give details of the proofs but

sometimes we will need to use some facts without proofs.

We suppose that K, OK , σ, the arithmetic variety X , the analytic map f : M → Xσ

etc. are fixed as in the previous lecture. for every τ ∈M∞ we fix a smooth metric ητ on

Xτ . We also fix an ample line bundle L on X equipped with, for every τ ∈ M∞, with

a positive metric on Lτ . For every positive integer N , the C–vector space H0(Xτ , L
N
τ )

is equipped with a natural norm ‖ · ‖τ and a natural hermitian product:

– if s ∈ H0(Xτ , L
N
τ ) then we define ‖s‖τ := supz∈Xτ (C){‖s‖τ (z)}. This is a norm on

H0(Xτ , L
N
τ ).

– If s1 and s2 are in H0(Xτ , L
N
τ ) then we define 〈s1; s2〉τ :=

∫
Xτ
〈s1; s2〉τητ . This

defines an hermitian structure on H0(Xτ , L
N
τ ). The corresponding norm will be denoted

by ‖s‖τ,L2
.

Even if a priory the sup and the L2 norms may be very different, asymptotically the

things are not too bad:

10.1 Theorem. (Gromov) Let X be a compact complex variety of dimension N

equipped with a measure η. Let L be an hermitian line bundle over it. Then there

exists positive constants Ci such that, for every positive integer D and for every global

section s ∈ H0(X,L⊗D) the following inequality holds:

C1‖s‖L2
≤ ‖s‖sup ≤ C2D

N‖s‖L2
.

We will not need the theorem above but nevertheless we provide a proof for sake of

completeness.

Proof: The first inequality is evident:
∫
X
‖s‖2η ≤ ‖s‖2

∫
X
η = ‖s‖2V ol(X, η).

We may cover X with a finite set of open set which are biholomorphic to the disk

of dimension N . We may also suppose that the disks of radius ε also cover X. Let B
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such a disk and dλ the standard Lebesgue measure on it. There is a constant, which

depends only on X such that η|B ≥ Cdλ. The restriction of L to B is trivial and

there exist a uniformly on X bounded function p(z) such that if f ∈ H0(B,LD|B) then

‖f‖2(z) = |f |2p(z)D. Since X is compact and p continuous, so uniformly continuous,

we may find a constant C, which depends only on X and L such that, for every z and

y in B we have p(y) ≥ p(z)− C|z − y|. As soon as |y − z| is sufficiently small we have

that p(z)− C|z − y| > 0 and again this uniformly on X.

Suppose that s ∈ H0(X,LD) and z0 is a point such that sup{‖s‖(z)} = ‖s‖(z0) We

may suppose that z0 is center of a disk Br of radius r entirely contained in one of the

disks of the covering and that r is independent of z0. We can find a positive smooth

function p(z) such that Br we have that ‖s‖2(z) = |s|2p(z)D. Denote by St the border

of the disk of radius t and centered in z0 and by dµt the standard Lebesgue measure on

it. Thus ∫
X

‖s‖2 η ≥ c1
∫
Br

|s|2p(z)Ddλ = c1

∫ r

0

dt

∫
St

|s|2p(z)Ddµt.

Since the function |f(z)|2 is plurisubharmonic, we can find a constant c2 > 0, depending

only on N , such that
∫
St
|f(z)|2dµt ≥ c2t

N−1|f(z0)|2. Consequently we may find a

positive constant c3 such that∫
X

‖s‖2 η ≥ c3|f(z0)|2
∫ r

0

tN−1(p(z0)− Ct)Ddt.

As soon as D is sufficiently big, the last integral is lower bounded by

p(z0)N )

∫ p(z0)

CD

0

tN−1(1− 1

D
)Ddt

which is uniformly lower bounded by p(z0)Dc4 for a suitable constant c4 > 0. The

conclusion follows.

Similarly to the geometric case, the theory of bundles over spectra of rings of integers

of number fields may be generalized to higher rank. We briefly explain here what we

need:

10.2 Definition. An Hermitian rm vector bundle of rank r on Spec(OK) is a couple

(E, 〈·; ·〉σ)σ∈M∞ where:

– E is a locally free OK module;

– for every complex embedding σ : K → C the C–vector space Eσ is equipped with

an hermitian metric 〈·; ·〉σ with the condition that, if σ is the conjugate of τ then the

hermitian metric 〈·; ·〉σ is the conjugate of 〈·; ·〉τ .

It is very important to observe that, as in the case of rank one, a hermitian OK
module is equipped with norms at every place even at finite places; this is due to the

following lemma:
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10.3 Lemma. Let Kv be a non archimedean field with ring of integers R and V be

a finite dimensional vector space on it. To give a norm on V is equivalent to have a

R–module VR such that VR ⊗R Kv = V

Proof: Suppose that VR is such a module, then if v ∈ V we define

‖v‖ = inf{|λ|−1 / λ ∈ Kv s.t. λ · v ∈ VR}.

Conversely, suppose that ‖ · ‖ is a norm on V , then we define VR to be VR = {v ∈
V ‖v‖ ≤ 1}. The reader will check by exercise that the first one is a norm that VR is a

R module and the two constructions are on e the inverse of the other.

If E1 and E2 are two hermitian vector bundles, then E1⊗E2 and E∨1 := Hom(E1, OK)

are hermitian vector bundles. If F ↪→ E is a sub OK module of an hermitian vector

bundle, then F has also the structure of hermitian vector bundle (it has the restriction

of the metric structure of E). Also the quotient of an hermitian vector bundle has a

natural structure of hermitian vector bundle. So, being quotient of the tensor copies of

a vector bundle, the symmetric and the exterior powers of a hermitian vector bundle

have a natural structure of hermitian vector bundles. In particular if E has rank r, then∧r
E is an hermitian line bunde so we can give the

10.4 Definition. Let E be an hermitian vector bundle of rank r then we define d̂eg(E)

to be deg(
∧r

E). We will also define the slope of E to be µ(E) := d̂eg(E)
r

Here we list some properties of the degree of higher rank vector bundles:

– d̂eg(E∨) = − ̂deg(E) and µ(E∨) = −µ(E);

– if we have an exact sequence of locally free OK modules

0→ F1 −→ E −→ F2 → 0

and E is equipped with the structure of hermitian vector bundle, then F1 and F2 also

have the structure of hermitian vector bundles and we have

d̂eg(E) = d̂eg(F1) + d̂eg(F2). (10.4.1)

The reader will check the two previous properties by exercise.

– Property 10.4.1 implies that if E = E0 ⊇ E1 ⊇ E2 ⊇ . . . ⊇ {0} is a filtration of

an hermitian vector bundle E. Each Ei and Ei/Ei+1 will be endowed with the induced

metric and we have

d̂eg(E) =
∞∑
i=0

d̂eg(Ei/Ei+1). (10.5.1)

– Suppose that E is an hermitian vector bundle of rank r and E1 ↪→ E is a subbundle

of the same rank (we put on E1 the induced metric). Then E/E1 is a torsion module

and

d̂eg(E1) ≤ d̂eg(E); (10.6.1)
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Proof: Suppose for the moment that r = 1. Let s ∈ E1, then E1/sOK ↪→ E/sOK
consequently Card(E1/sOK) ≤ Card(E/sOK). So the statement is consequence of

3.35.1. The general case follow from the rank one case because if E1 ↪→ E then we have

an inclusion of line bundles
∧r

E1 ↪→
∧r

E.

– Suppose that E is an OK module with two hermitian structures E1 and E2. The

identity morphism is a map ι : E1 → E2 between the hermitian vector bundles. For

every infinite place σ denote by ‖ι‖σ the norm of ι as map between normed vector

spaces. Then

µ(E1) ≤ µ(E2) +
∑
σ

log ‖ι‖σ (10.7.1)

Proof: . Suppose that E is of rank one. In this case the statement is evident: let e ∈ E
be a non zero element, then ‖ι(e)‖2;σ = ‖ι‖σ · ‖e‖1,σ. Thus

d̂eg(E2) = log(Card(E/sOK))−
∑
σ

log ‖s‖2,σ

= log(Card(E/sOK))−
∑
σ

(log ‖s‖1,σ − log ‖ι‖σ

= d̂eg(E1)−
∑
σ

log ‖ι‖σ.

Suppose now that the rank of E is arbitrary. By the spectral theorem, for every infinite

place σ we may find a basis {e1, . . . , er} of Eσ such that 〈ei; ej〉1,σ = δij (Kronecker

symbol) and 〈ei; ej〉1,σ = λiδij for suitable real numbers λi. Be aware that, in general

the ei are not elements of E. The norm of ι at the place σ is ‖ι‖σ = max(|λi|) and

the norm of ∧r(ι) :
∧r

(Ei) →
∧r

(e2) is
∏
|λi| which is bounded above by ‖ι‖rσ. The

conclusion follows then from the case of rank one vector bundles.

– Suppose that L1, . . . , Ln are hermitian line bundles over OK and let E ↪→
⊕r

i=1 Li
is a subbundle, then

µ(E) ≤ max{d̂eg(Li)}. (10.8.1)

Proof: Suppose for the moment that E is of rank one. Then the inclusion E ↪→
⊕r

i=1 Li
implies that there exists i and a non zero map E → Li; this map must be injective

because E is of rank one and Li is locally free. Thus d̂eg(E) ≤ d̂eg(Li) because of

formula 10.6.1. Suppose that the rank of E is r. Then we have an inclusion

r∧
E ↪→

r∧
(
n⊕
i=1

Li) =
⊕

j1+j2+...jn=r

Lj11 ⊗ L
j2
2 ⊗ . . .⊗ Ljnn .

The conclusion follows from the fact that, because of the additivity of the degrees,

max{d̂eg)(Lj11 ⊗ L
j2
2 ⊗ . . .⊗ Ljnn )} = rmax{d̂eg(Li)}.

– From formulae 10.6.1, 10.7.1 and 10.8.1 we get that if E is any hermitian vector

bundle and ι : E ↪→
⊕r

i=1 Li (we do not suppose that the metric on E is the induced
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metric and that the quotient is locally free), then

µ(E) ≤ max{d̂eg(Li)}+
∑
σ

log ‖ι‖σ. (10.9.1)

Remark that the norm of a linear map is defined as soon as we have a linear map

between normed spaces, in particular also on non archimedean spaces. In particu-

lar observe that if h : V1 → V2 is an injective linear map between two finite dimen-

sional normed vector spaces over a non archimedean field, then, ‖h‖ ≤ A implies that

‖
∧r

(h)‖ ≤ Ar. Consequently we get the following generalization:

– Suppose we have an injective map ι : E −→ (
⊕r

i=1 Li)K , then

µ(E) ≤ max{d̂eg(Li)}+
∑
v∈MK

log ‖ι‖v. (10.10.1)

– Suppose that X → Spec(OK) is an arithmetic projective variety of relative dimen-

sion N . We suppose that XK is smooth and that, for every σ it is equipped with a

metric ησ. Let L be an ample line bundle on X equipped with a smooth hermitian

structure. For every integer D, the OK module H0(X , LD) is equipped with the struc-

ture of an hermitian OK module: at every place at infinity we put the L2 structure

defined before. The following estimate is crucial:

10.11 Theorem. Suppose that L is relatively ample, then we can find a constant C

independent on D, such that

µ(H0(X , LD)) ≥ CD. (10.11.1)

Proof: (Sketch) The proof of this fact requires some algebraic geometry: Let RL(X ) be

the algebra ⊕∞D=0H
0(X , LD). As a consequence of Serre asymptotic vanishing theorem

we have that RL(X ) is a OK finitely generated algebra (the reader who is not acquainted

with this, is suggested to admit this fact). If s is a global section of H0(X , LD) we define

‖s‖sup := supσ∈M∞{‖s‖sup}. Let s1, . . . , sr be a basis of it as OK algebra. Suppose that

‖si‖sup ≤ A for a suitable constant A ≥ 1. Then, since every element in H0(X , LD)

may be written as a polynomial in the si, each H0(X , LD) is generated by elements

fJ such that ‖fJ‖sup ≤ AD. Let nD be the dimension of H0(X , LD)K . We may find

nD linearly independent elements between the fJ which form a basis of H0(X , LD)K .

Denote by ED the sub OK–module of H0(X , LD)K generated by them.

Let MD be the hermitian OK module ⊕nDJ=0OK · fJ . We have that

µ(MD) =

∑
J d̂eg(OJ · fJ)

nD
=
−
∑
J

∑
σ log ‖fJ‖σ
nD

≥ −[K : Q] log(A)D.

Call −[K : Q] log(A) = C. The norm of the identity map ι : MD → ED is bounded

above by 2 thus, by 10.7.1 we have that µ(ED) ≥ CD − 2[K:Q]
nD

and by 10.6.1 the

conclusion follows.
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10.13 Remark. A small improvement of the argument in the proof implies that we

can suppose just that LK is ample on the generic fibre. The details are left as exercise.

– Recall that If L is an ample line bundle on a projective variety XK of dimension N ,

then we can find positive constants Ci such that C1D
N ≤ dimK(H0(XK , L

D)) ≤ C2D
N

(cfr. for instance [Ha chap I]).

11 Lecture X.

11.1 The proof of the main theorem. We can now start the proof of Theorem 9.10.

We recall the situation: X is a projective arithmetic variety, M is an affine curve and

f : M → Xσ is an analytic map of finite order ρ; We fix a non negative α and we

consider the set Sf (α). Let p1, . . . , pr be r points in Sf (α). We fix an hermitian ample

line bundle L on X and a, for every σ ∈ M∞, a positive measure ησ on Xσ. For every

non negative integer D we denote by ED the hermitian OK–module H0(X ;LD).

Let p one of the pj ’s. By definition we have an admissible sequence C and a map

fp : DC
p
,α −→ X

extending the germ of the map f . the map fp induces a map

f∗p : ED −→ H0(DC,α;LD).

This map is injective because the map f is Zariski dense: indeed if it were not injective,

we could find a divisor of Xσ whose restriction to M is locally defined by an analytic

function with infinite order of vanishing at the point p, thus identically zero; which

means that the image of f is contained in a divisor of Xσ and this contradicts the

denseness of the image of f .

Consider the injection

f1 := (fp1 , . . . , fpn) : ED −→
n⊕
j=1

H0(DCpj ,α;LD).

For every positive integer i, the map above and the natural inclusions (DUCpj ,α))i ↪→
DC

pj
,α induces a map

f i1 : ED −→
n⊕
j=1

H0((DC
pj
,α)i, L

D)

(we omitted the symbol of restriction of line bundle to subschemes). denote by EiD
the kernel of this map. The snake lemma, canonical exact sequence 9.6.1 and the
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isomorphism 9.7.1 give rise to an inclusion

γiD : EiD/E
i+1
D −→

 n⊕
j=1

LD|pj ⊗ T⊗−i1/OK


K

.

The idea of the proof is the following: Because of theorem 10.11 we have a lower

bound for d̂eg(ED) in terms of D. Formula 10.10.1 imply that we can find a constant

C independent on i and D such that

µ(Ei/Ei+1) ≤ C(i+D) +
∑
v∈MK

log ‖γiD‖v.

We will see that formula 10.5.1 applied to the filtration ED ⊃ E1
D ⊃ . . . ⊃ EiD ⊃ . . .

and a good estimate of log ‖γiD‖v for every place v ∈ MK will give a contradiction as

soon as n is too big.

11.1 Estimation of the norm of γiD at infinite places. First of all we deal with infinite

places different from σ: LetX be a smooth projective variety defined over C. Let L be an

ample line bundle over it and by ED the vector space H0(X,LD); this space is naturally

equipped with the L2 and the sup norms. Let q ∈ X and γ : Spf(C[[t]])→ X̂q be a map

of formal schemes. Denote by Bi the closed subscheme Spec(C[t]/(t)i) ↪→ Spf(C[[t]]).

We have an induced map ED → H0(Bi, L
D); denote by EiD(q) the kernel of it. Thus,

as before we get an injective map

γiD(q) : EiD(q)/Ei+1
D (q) ↪→ LD|q ⊗ ((t)/(t2))⊗i.

Suppose that γ has positive radius of convergency. Thus there exists a disk D of radius

1 and a map γD : M → X such that γD(0) = q and the germ of it at 0 coincides with γ.

Consequently (t)/(t2) is the cotangent space of M at 0 the class of t corresponds to dt

and it is equipped with a metric. Thus Ld|q ⊗ ((t)/(t2))⊗i is naturally equipped with a

metric.

11.1 Proposition. With the notation as above, we can find a constant C independent

on D and i such that

log ‖γiD(q)‖ ≤ C(i+D).

Proof: we may suppose that on ED we put the sup norm because of theorem 10.1.

Shrinking the radius of D if necessary, may suppose that the image of the disk D is

contained in a open set B which of X which is biholomorphic to a disk of dimension

N . The restriction of L to B is trivial and generated by an element I. Moreover there

are two positive constants A1 and A2 such that, denoting by ‖I‖ the norm of I we have

A1 ≤ ‖I‖Â2. Let s ∈ ED and denote by sB its restriction to B. We may find an analytic

function F (z) such that sB = F (z)ID. Denote by ‖sB‖sup the supremum of ‖s‖ in B.
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We have

‖s‖sup ≥ ‖sB‖ ≥ sup{|F (z)|} ·AD1 .

Let’s compute explicitely the map γiD: We may suppose that the variable t converges

on the disk D thus γ∗D(s) = F (z(t)) · ID(z(t)) = (
∑∞
j=1 ajt

j) · ID(z(t)). Since s ∈ EiD
we have that aj = 0 for j = 1, 2, . . . , i − 1 and γiD(s) = aiID(dt)i. Now we apply the

classical Cauchy inequality in the version below and conclude.

11.2 Proposition. Let f(t) =
∑∞
j=0 ajt

j be an analytic function on the disk of radius

r. Then

|aj | ≤
sup{|f(z)| / |z| = r}

rj
.

From 11.1 we get the estimate we want:

11.3 Proposition. Let τ ∈M∞ then we can find a constant C independent on i and

D such that

log ‖γiD‖τ ≤ C(i+D).

Proof: If h : V1 → ⊕nj=0Wj is a map of normed vector spaces, denote by hj : V →Wj the

map obtained composing it with the projection on the j-th factor. It is an easy exercise

to prove that ‖h‖ ≤ r · sup{‖hj‖}. For each of the pj we have that EiD is contained in

EiD(pj) thus by prop 11.1 the restriction to it of γiD(pj) is bounded by C(i + D) for a

suitable C. The conclusion follows from the fact that γiD = (γDi (p1), . . . , γiD(pj)).

11.3 Remark. Since the Cauchy inequality holds also over p–adic fields, In principle

we could bound the norm of the γiD’s at every place (provided that the germ has positive

radius of convergency at every place). Unfortunately the constant C involved would

depend on the place we are dealing with, thus the sum of all the C’s may be too big and

we cannot conclude. The introduction of the E–germs is due to deal with this problem.

11.4 estimation of the norm of γiD at finite places. We now deal with the finite places.

Here is where the E–germs play a crucial role. Let p be a maximal ideal of Spec(OK).

We denote by Kp the local field of p and by Rp its local ring. We will denote by Xp the

smooth projective variety XK ×K Spec(Kp) and by abuse of notation, we will denote

again by L the restriction of the line bundle L to it. The Rv–module H0(X , LD)⊗OKRp

give rise to a norm on H0(Xp, L
D). Again we denote by Xp the projective Rp–scheme

X ×OK Spec(Rp) and by abuse of notation, we denote by EiD the restriction to Rp of

the OK–module EiD defined before. Observe that Xp = Xp ×Rp
Spec(Kp).

We denote again by p the section over Xp(Rp) induced by p ∈ XK(K).

We fix an isomorphism over Rp

(̂Xp)p ' Spf(RV [[z1, . . . , zN ]]).
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We fix a trivializaton of L near p, thus each section s ∈ ED give rise, by restriction, to

an element sp of RV [[z1, . . . , zN ]].

The E–germ fp : DC
p
,α → X induces a map

γp : RV [[z1, . . . , zN ]] −→ RC,α ⊗OK RV .

In particular,

γp(sp) = sp(t) =
∞∑
n=1

a(sp)nt
n

Again, if s ∈ EiD then aj(sp) = 0 for n = 1, . . . , i−1 and the term corresponding to p of

γiD(s) in
(⊕n

j=1 L
D|pj ⊗ T⊗−i1/OK

)
K

is a(sp)i (we omit the notation of the trivializations).

Thus, since the norm is non archimedean and the map is an E–germ, we have |i! ·
a(sp)i| ≤ Civ and we obtain:

11.4 Proposition. With the notations as above we have that for every finite place p

log ‖γiD‖p ≤ i log(Cv)− α log |i!|p.

Thus, using the product formula, and the Stirling formula: log(i!) ≤ i log(i) +Ai we

obtain

11.5 Proposition. With the notation above we may find a constant C such that∑
p∈Mfin

log ‖γiD‖ ≤ [K : Q]α · i log(i) + C · i.

11.6 estimation of the norm of γiD at the place σ. Now we deal with the infinite place

σ. Here we are going to use that the germs near the points are germs of an analytic

map from an affine Riemann surface to X.

We recall the situation. We have an analytic map f : M → Xσ of finite order of

growth ρ, where M is an affine Riemann surface. We fixed the points p1, . . . , pn ∈M .

For each of the pj we denote by Ij a section of O(pj) vanishing exactly at pj with

order of vanishing one and we will suppose that O(pj) is equipped with the metric

defined before ‖Ij‖(z) = exp( 1
2gpj (z)).

Fix one of the pj ’s and denote it p. The statement below give the estimate we need:

11.6 Theorem. Let

γiD(p) : EiD/E
i+i
D −→ LD|f(p) ⊗ TpM⊗−i

be the map obtained composing γiD with the projection
⊕r

j=1 L
D|f(pj) ⊗ TpjM⊗−i →

LD|f(p) ⊗ TpM⊗−i. Then we may find constants C1 and C2 independent on i and D
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such that

log ‖γiD(p)‖ ≤ − i · n
ρ
· log

i

D
+ C1(i+D).

as soon as i
D ≥ C2

11.7 Remark. Observe that if we have many points (n is very big) then the norm of

γiD is very small.

Proof: Let s ∈ EiD and we suppose that the sup norm of it is one. The section s̃ := f∗(s)∏
j
Ii
j

is a global section of f∗(LD)(−
∑
pj). The ratio between the norm of s̃ at p and the

norm of γiD(p)(s) is
(∏

pj 6=p exp(
1
2gpj (p)

)i
. Thus it suffices to find an upper bound for

‖s̃‖(p).
We may suppose that s̃(p) 6= 0 and we apply the First Main Theorem to the section

s̃ ∈ H0(M,f∗(LD)(−i
∑
j pj)) and the base point p and we obtain:

T (r, f∗(LD)(−i
∑
j

pj)) ≥ −
∫
S(r)

log ‖s̃‖dcgp + log ‖s̃(p)‖.

Observe that:

– We can find a constant λ such that T (r, f∗(LD)(−i
∑
j pj)) = D ·Tf (r, L) ≤ D ·λrρ.

This is due to the choice of the metrics on O(pj) (cf. remark 8.10) and the fact that f

has order of growth ρ.

– Since we may find a constant C such that for every j we have
∣∣gpj (z)− gp(z)∣∣ ≤ C

(cf. proposition 8.4) and the sup norm of s is one, we may find a constantB1 independent

on i and D such that ∫
S(r)

log ‖s̃‖dcgp ≤∫
S(r)

log ‖s‖dcgp −
i

2

∑
j

∫
S(r)

gpjd
cgp

≤ −i · n · log(r) +B1 · i.

From these two inequalities we obtain

log ‖s̃(p)‖ ≤ D · λrρ − i · n log(r) +B1 · i.

We can choose r in such a way the right hand side is minimal: this will be obtained for

rρ = n·i
ρ·λ·D and for this value we obtain new constant B2 and B3 independent on i and

D such that if i
D ≥ B3 then

log ‖s̃‖ ≤ − i · n
ρ

log
i

D
+B2 · i.

The conclusion follows.
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11.8 The conclusion of the proof. We now have all the tools to conclude the proof of

Theorem 9.10. We begin by resuming what we found on the estimates of the norms of

the γiD:

11.8 Proposition. In the hypotheses of the previous subsection we may find constants

Ai with the following properties:

(a) If i ≤ A1D then∑
v∈MK

log ‖γiD‖v ≤ α[K : Q] · i log(i) +A2(i+D).

(b) If i ≥ A1D then∑
v∈MK

log ‖γiD‖v ≤ −
i · n
ρ
· log

i

D
+ α[K : Q] · log(i) +A3(i+D).

11.9 Remark. Observe that the inequality in (a) holds for every i and D, while the

inequality in (b) holds only for i
D sufficiently big.

Proof: (of Theorem 9.10). In the sequel a constant will be a non negative real number

independent on i and D but depending on the other data. Call B the number n
ρ .

Formula 10.10.1 and proposition 11.8 give that there are constants Ai such that

– If i ≤ A1D then

d̂eg(EiD/E
i+1
D ) ≤ rk(EiD/E

i+1
D ) · (α[K : Q] log(i) +A2(i+D)) ;

– if i ≥ A1D then

d̂eg(EiD/E
i+1
D ) ≤ rk(EiD/E

i+1
D ) ·

(
−B log

i

D
+ (α[K : Q] log(i) +A2(i+D)

)
.

Thus we may find constants Ai such that

A1 ·DN+1 ≤ d̂eg(ED) ≤
∞∑
i=0

d̂eg(EiD/E
i+1
D )

≤
∞∑
i=0

rk(EiD/E
i+1
D ) ·

( ∑
v∈MK

log ‖γiD‖v +A2(i+D)

)
.

Choose a such that 1 < a < N+1
2 . We may divide the last sum in the following way

A1 ·DN+1 ≤
∑
i≤Da

rk(EiD/E
i+1
D ) ·

( ∑
v∈MK

log ‖γiD‖v +A2(i+D)

)

+
∑
i>Da

rk(EiD/E
i+1
D ) ·

( ∑
v∈MK

log ‖γiD‖v +A2(i+D)

)
.

(11.10.1)
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Let ε > 0 very small. We suppose D sufficently big to have that if i > Da then

i < εi log(i). Moreover observe that i > Da implies that log(D) ≤ 1
a · log(i) and in

particular D ≤ εi log(i).

By 11.8 (a), the first term of the sum above may be bounded from above by

Da∑
i=1

rk(EiD/E
i+1
D ) (A2(i+D) + α[K : Q]i log(i))

≤
Da∑
i=0

A3(i+D) +A3i log(i)

because the rank of EiD/E
i+1
D is bounded above by n. Since for every ` we have∑`

h=1 h log(h) ≤
∫ `+1

0
tlog(t)dt ≤ (`+ 1)2 log(`+ 1), the sum above is bounded by

A5(Da + 1)2

for a suitable constant A5. Since as soon as D is sufficiently big, A5(Da + 1)2 log(D) <

εA1D
N+1; thus the first sum on the right is bounded by something which is much

smaller then the term on the right.

Now we deal with the second sum on the right. As soon as D is very big and i > Da

we have that

−Bi log(i) + [K : Q]α · i log(i) +Bi log(D) +A2(i+D)

is bounded above by

−Bi log(i) + [K : Q]α · i log(i) +
B

a
i · log(i) + ε1i log(i)

which is negative as soon as ε is sufficently small, D sufficently big and

B − B

a
− [K : Q]α > 0.

Consequently, if B(1− 1
a ) ≥ [K : Q]α the second sum on the right of 11.10.1 is negative

and this is impossible. Thus

n

ρ
= B ≤ a

a− 1
α[K : Q] ≤

(
N + 1

N − 1
+ ε3

)
α[K : Q]

for an arbitrarily small ε3 > 0. The conclusion follows.
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