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1 Olson’s Theorem

For a non-commutative setting we use multiplicative notations. The Minkowski
product set AB for two subsets A and B of a multiplicative group G is defined
as

AB := {ab : a ∈ A, b ∈ B}.

In general, AB 6= BA. The inverse set of A is given by

A−1 := {a−1 : a ∈ A}

while the left and right translates with respect to an element x ∈ G are
defined as xA := {xa : a ∈ A} and Ax := {ax : a ∈ A}.

We will prove Olson’s theorem, a non-abelian analogue of Kneser’s famous
result. We recall that the stabiliser or period of X in an additive group G ,
denoted by Stab (X), is the subgroup Stab (X) = {g ∈ G : X + g = X}.

Theorem 1 (Kneser, 1955). Let G be an abelian group and A,B ⊂ G two
non-empty finite subsets of G. Then there exists a finite subgroup H ≤ G
such that

|A+ B| ≥ |A+H|+ |B +H| − |H|.

Further we may take H = Stab (A+ B).

The essential tool in the proof is the Kemperman transformation, a non-
commutative analogue of Dyson’s transformation.

The Kemperman transformation

Let G be a group and A,B ⊂ G finite non-empty subsets of G. Let x ∈ G.
We define

A′ = A ∪ (Ax)
B′ = B ∩ (x−1B)

and
A′′ = A ∩ (Ax−1)
B′′ = B ∪ (xB).
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These pairs A′, B′ and A′′, B′′, depending on x, are the Kemperman trans-
formations of A,B.

Lemma 2. Let G be a group and A,B ⊂ G two non-empty finite subsets of
G. Now let

D = (A−1A) ∩ (BB−1).

If AD 6= A or DB 6= B, then there exists a pair of finite non-empty subsets
A1, B1 ⊂ G, obtained by Kemperman transformations of A,B such that

(1) A1B1 ⊂ AB

(2) either |A1|+ |B1| ≥ |A|+ |B| and |A1| > |A| or |A1|+ |B1| > |A|+ |B|.

Proof. By assumption there exists d ∈ D such that Ad 6= A or dB 6= B.
Let p = |(Ad) \ A|, q = |(dB) \ B|. We have max(p, q) > 0. Now we shall
separate the cases p ≥ q and p < q.

• Case p ≥ q. Let us consider the first Kemperman transformation with
respect to d, i.e. A1 = A′ = A ∪ (Ad) and B1 = B′ = B ∩ (d−1B). Then

|A1| = |A ∪ (Ad)| = |A|+ |(Ad) \ A| = |A|+ p,

and

|B1| = |B ∩ (d−1B)| = |B| − |B \ (d−1B)|

= |B| − |(dB) \B| = |B| − q.

It follows that |A1|+ |B1| = |A|+ |B|+ p− q ≥ |A|+ |B|. In addition since
p = max(p, q) > 0 we have Ad 6= A and thus |A1| > |A|.

• Case p < q. This time we consider the second Kemperman transforma-
tion with respect to d, i.e. A1 = A′′ = A∩ (Ad−1) and B1 = B′′ = B ∪ (dB).
This gives

|A1| = |A| − p, |B1| = |B|+ q.

It then follows that |A1|+ |B1| = |A|+ |B|− p+ q > |A|+ |B| as desired.

By applying the above transformation as long as possible starting with
the pair A,B we obtain the following :

Proposition 3. Let G be a group, A,B ⊂ G two non-empty finite subsets
of G. Then there exist non-empty finite E,F ⊂ G such that

(1) EF ⊂ AB

(2) |E|+ |F | ≥ |A|+ |B|

2



(3) If D = (E−1E) ∩ (FF−1), then ED = E and DF = F.

Proof. By repeated use of the last lemma we find a sequence of subsets

(A,B) = (A0, B0), (A1, B1), . . . , (Aj , Bj), . . .

satisfying, for all j ≥ 1,

(1) AjBj ⊂ Aj−1Bj−1.

(2) With lexicographic ordering,

(|Aj|+ |Bj|, |Aj|) > (|Aj−1|+ |Bj−1|, |Aj−1|).

But then the integers |Aj|, |Bj| are bounded since |Aj|, |Bj| ≤ |Aj+Bj| ≤
|A + B| for all j ≥ 0. It is now clear that the sequence (Aj, Bj) is finite.
Therefore there exists an integer n ≥ 0 such that the assumptions of the
lemma no longer applies to the pair (E,F ) = (An, Bn). Let then D =
(E−1E) ∩ (FF−1), which yields ED = E et DF = F . Since AjBj ⊂ AB
and |Aj| + |Bj| ≥ |A| + |B| for every j ≥ 0, it follows that EF ⊂ AB and
|E|+ |F | ≥ |A|+ |B|.

We are now in a position to prove Olson’s theorem.

Theorem 4. Let G be a group and let A,B be two non-empty finite subsets
of G . Then there exist a nonempty subset S ⊂ AB and a finite subgroup H
of G such that

|S| ≥ |A|+ |B| − |H|

and H stabilises S , i.e.

HS = S or SH = S.

Proof. The last proposition assures us that there exist finite non-empty sub-
sets E,F of G such that EF ⊂ AB and |E| + |F | ≥ |A| + |B|. In addition
taking D = (E−1E) ∩ (FF−1) we have ED = E and DF = F .

Let now S = EF which is clearly a nonempty subset of AB and whose
cardinality we would like to bound in terms of |A|, |B| and |H| for some
suitable subgroup H. We distinguish the cases |E| ≥ |F | and |E| ≤ |F |.

Case |E| ≥ |F |. Once again we have two cases depending on whether
FF−1 is contained in E−1E or not.

• Suppose that FF−1 6⊂ E−1E. Then there exist x1, x2 ∈ F such that
x1x

−1

2 6∈ E−1E. We thus have (Ex1) ∩ (Ex2) = ∅ and

S = EF ⊃ (Ex1) ∪ (Ex2).
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This being a disjoint union |S| ≥ |Ex1|+ |Ex2| ≥ |E|+ |F |. Taking H = {1}
to be the subgroup of G that stabilises S we get

|S| ≥ |E|+ |F | ≥ |A|+ |B| ≥ |A|+ |B| − |H|,

as required.
• Suppose now that FF−1 ⊂ E−1E. Then D = FF−1. Our aim is to

show that D is a subgroup of G, that F is a left coset of D and that upto
conjugation D is a suitable candidate for the desired subgroup.

Notice first that 0 ∈ FF−1 = D, et

DD = DFF−1 = FF−1 = D.

Now it is easy to see that D is a subgroup of G. Le z ∈ F be an arbitrary
element. We then have

F = Fz−1z ⊂ Dz ⊂ DF = F.

Thus F = Dz, a left coset of D. Let

H = z−1Dz.

Then H is a subgroup of G which stabilise S from the right, since :

SH = EFz−1Dz = EDz ⊂ EF = S.

We now evaluate |S|.

|S| = |EF | ≥ |E| = |E|+ |F | − |F | = |E|+ |F | − |H| ≥ |A|+ |B| − |H|,

as wished for.

Case |E| ≤ |F |. By the same method as above we obtain a subgroup H
stabilising S from the left.

We now present an application of Olson’s theorem .

Definition 1. LetG be a group and r, s two positive integers. Then µG(r, s) :=
min {|AB|, |A| = r, |B| = s}.

Though the function µG(r, s) has been evaluated for all abelian groups,
it is yet unknown for non-abelian groups in general.

Theorem 5. Let G be a torsion-free group. Then µG(r, s) = r + s − 1 for
all integers r, s ≥ 1.
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Proof. Let A,B ⊂ G with |A| = r, |B| = s. By Olson’s theorem, there exists
a non-empty S ⊂ A+ B and a finite subgroup H ≤ G such that

|S| ≥ |A|+ |B| − |H|.

But H = {1} since G is torsion-free and contains no finite non-trivial sub-
group. It then follows that

|AB| ≥ |S| ≥ r + s− 1.

Thus µG(r, s) ≥ r + s − 1. On the other hand the lower bound is easily
attainable : let 1 6= x ∈ G be an element and let

A = {xi | 1 ≤ i ≤ r}, B = {xi | 1 ≤ i ≤ s}.

Then |A| = r, |B| = s and AB = {xi | 2 ≤ i ≤ r+s} has cardinality r+s−1.
Thus µG(r, s) = r + s− 1.

2 The polynomial method

Let F be a field. If f ∈ F [X] is a non-zero polynomial with r roots in F we
know that deg(f) ≥ r. The polynomial method is a generalisation of this
idea in several variables. The idea originated in a paper of Alon and Tarsi
and was formalised as the Combinatorial Nullstellensatz by Alon in 1999.
Here we use the notations of Eliahou and Kervaire (1998).

Let R = F [X1, . . . , Xn] be the polynomial ring in n variables with coeffi-
cients in F . Every polynomial f ∈ R can be decomposed uniquely as a sum
f = f0 + f1 + · · ·+ fm of its homogenous components.

Notation Let f ∈ R \ {0}. By top(f) we shall denote the homogenous
component of highest degree of f . We set top(0) = 0.

For example, top(X2
1 +X1X2X3 −X3

1 ) = X1X2X3 −X3
1 .

Lemma 6. Let A1, . . . , An ⊂ F be finite subsets of cardinalities |Ai| = ri
for each i. Let f ∈ R be a polynomial that vanishes on the cartesian product
A1 × · · · × An. Then top(f) ∈ (Xr1

1 , . . . , Xrn
n ).

Proof. By induction on n. The case n = 1 is true, since if f(X1) vanishes for
r1 points of F then deg(f) ≥ r1 and hence top(f) is divisible by Xr1

1 .
Let n ≥ 2 and let the result be true for n−1. If every monomial in top(f)

is divisible by Xrn
n then top(f) ∈ (Xr1

1 , . . . , Xrn
n ) and we are done. Let us

therefore suppose that top(f) does not belong to (Xn).
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Let
g =

∏

a∈An

(Xn − a) ∈ F [Xn] ⊂ F [X1, . . . , Xn].

Then degXn
(g) = rn and g(A1 × · · · × An) = {0}. We now write

g = Xrn
n − g′

with g′ ∈ F [Xn] and degXn
(g′) < rn. We have Xrn

n ≡ g′ mod (g) and we
can replace every monomial multiple of Xrn

n in f by g′ . Thus there exists a
polynomial f̄ ∈ F [X1, . . . , Xn] such that

1. f ≡ f̄ mod (g)

2. degXn
(f̄) < rn

3. top(f) ∈ (Xrn
n , top(f̄)).

It now suffices to prove that top(f̄) ∈ (Xr1
1 , . . . , X

rn−1

n−1 ). We notice that f̄
vanishes on A1 × · · · × An. We can write

f̄ = ϕ0 + ϕ1Xn + · · ·+ ϕdX
d
n

with d < rn et ϕi ∈ F [X1, . . . , Xn−1] for every 0 ≤ i ≤ d.
Let α = (a1, . . . , an−1) ∈ A1 × · · · × An−1 and let us write

f̄α(Xn) = ϕ0(α) + ϕ1(α)Xn + · · ·+ ϕd(α)X
d
n ∈ F [Xn].

Then f̄α vanishes on An. Since deg f̄α < rn we have f̄α = 0 ∈ F [Xn]. It
follows that ϕi(α) = 0 for every α ∈ A1 × · · · × An−1 and every 0 ≤ i ≤ d.
By the induction hypothesis we get

top(ϕi) ∈ (Xr1
1 , . . . , X

rn−1

n−1 )

for every i. Clearly

top(f̄) ∈
(

top(ϕ0), . . . , top(ϕd)
)

⊂ (Xr1
1 , . . . , X

rn−1

n−1 )

which gives top(f) ∈ (Xr1
1 , . . . , Xrn

n ) .

An ideal in R generated by monomials is called a monomial ideal.

Lemma 7. Let I = (u1, . . . , ur) be a monomial ideal generated by the mono-
mials u1, . . . , ur ∈ R = F [X1, . . . , Xn]. Let g ∈ R. Then g ∈ I if and only if
every monomial in g with non-zero coefficients is divisible by one of the ui.
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Proof. Let M = {Xa1
1 · · ·Xan

n | ai ∈ N ∀i} the set of monomials in R. Then
M is a F−base of R. If g = 0 the condition is empty. Let g ∈ I \ {0}. Then
there exists g1, . . . , gr ∈ R such that

g = u1g1 + · · · urgr.

On the other hand there exist unique scalars {λu}u∈M and {µv,i}v∈M,i≥1 such
that

g =
∑

u∈M

λuu et gi =
∑

v∈M

µv,iv

for every i = 1 . . . , r. Hence we get

∑

u∈M

λuu = g =
∑

v∈M,i≥1

µv,iuiv.

Since M is a F -base of R it follows that every monomial u ∈ M such that
λu 6= 0 is of the form uiv for i ≥ 1 and some suitable v ∈ M .

We conclude :
If f ∈ R is a non-zero polynomial that vanishes on a finite cartesian

product A1 × · · · × An ⊂ F n, then for every monomial u of maximal degree
in f , there exist i = 1, . . . , n such that

X
|Ai|
i divides u.

Let us consider some applications :

Theorem 8. (Cauchy 1813, Davenport 1935) Let p be a prime number and
let A, B be subsets of Z/pZ. Then |A+ B| ≥ min{p, |A|+ |B| − 1}.

Proof. Let A,B be subsets of Fp = Z/pZ with cardinalities |A| = r, |B| = s.
We know that if r + s > p then A + B = Fp and so |A + B| = p = min(r +
s− 1, p).

So let r + s ≤ p and set n = |A + B|. We would like to show that
n ≥ r + s− 1.

• If n = p all is well.
• If n < p, consider the following polynomial f ∈ Fp[X, Y ] :

f(X, Y ) =
∏

c∈A+B

(X + Y − c).
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By construction we have f(A× B) = {0}. So we use the Lemma above and
obtain top(f) ∈ (Xr, Y s). But

top(f) =
∏

c∈A+B

(X + Y ) = (X + Y )n.

This gives the following condition on n :

(X + Y )n ∈ (Xr, Y s)

in the polynomial ring Fp[X, Y ]. Since the monomial rings X iY j form a base
of Fp[X, Y ] as a vector space over Fp the above condition is equivalent to
every monomial of (X + Y )n belonging to the ideal (Xr, Y s). We have

(X + Y )n =
n

∑

i=0

(

n

i

)

X iY n−i,

where the binomial coefficients are elements of Fp and hence reduced modulo
p. Now since n < p we have

(

n

i

)

6≡ 0 mod p. It follows that for 0 ≤ i ≤ n,
the monomial X iY n−i is in the ideal (Xr, Y s). In particular for i = r− 1 we
have

Xr−1Y n−r+1 ∈ (Xr, Y s),

which yields n− r + 1 ≥ s. Thus n ≥ r + s− 1.

As another example we consider the case of restricted sumsets. Erdős
and Heilbronn conjectured in 1964 that |A+̇A| ≥ min{p, 2|A| − 3}, where
instead of the whole sumset we consider the restricted one

|A+̇B| := {a+ b, a ∈ A, b ∈ B, a 6= b}.

This conjecture was proved by Dias da Silva and Hamidoune in 1994 using
Grassmanian spaces. The proof, due to Alon, Nathanson and Ruzsa became
incredibly simple using the Combinatorial Nullstellensatz.

Theorem 9. Let p be a prime number and let A, B be subsets of Z/pZ.
Then

|A+̇B| ≥ min{p, |A|+ |B| − 3}.

Further if |A| 6= |B|, then

|A+̇B| ≥ min{p, |A|+ |B| − 2}.
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Proof. The idea is the same as that for the Cauchy-Davenport theorem, the
details are not worked out. Here the polynomial considered is

f(X, Y ) = (X − Y )
∏

c∈A+B

(X + Y − c).

The coefficients of the monomial are
(

|A|+ |B| − 3

|A| − 2

)

−

(

|A|+ |B| − 3

|A| − 1

)

mod p =
(|A|+ |B| − 3)!

(|A| − 1)!(|B| − 1)!
(|B|−|A|) mod p

which are non-zero modulo p.

The polynomial method has given many new results in the recent past.
Here we mention two concerning sequences with zero sums. We are interested
in the minimal size of sequences of (Z/pZ)r where p is a prime number, that
always contain a zero-sum subsequence of length p. For r = 1 this size is
known to be 2p− 1 since 1962 but for r = 2 the conjectural size was asserted
only recently by a very clever use of the polynomial method.

Theorem 10. (Reiher, 2007) Every sequence of at least 4p− 3 elements of
Z2

p contains a zero sum sub-sequence of length p.

We do not give a proof here, the interested reader can contact the author
(of these notes).

As an inverse question we describe maximal zero-sum-free sequences of
(Z/pZ)r. For r = 2 where it is known that every sequence of at least 2p− 1
elements necessarily contains a zero-sum sequence (of unspecified length),
it was very recently proved again by Reiher (2010) that a zero-sum-free se-
quence of 2p−2 elements necessarily contains, upto isomorphism, p−1 times
an element of the type (1, 0) and another p− 1 times an element of the type
(0, 1). This has the following pertinent consequence!

Proposition 11. Every sequence of at least 2011 elements of Z3 ⊕Z1005 ⊕
Z1005 always contains a zero-sum subsequence.

How many such elements would be required in the case of an arbitrary
group Za ⊕ Zab ⊕ Zabc is yet unknown and expected to be a+ ab+ abc− 2.
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