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Chapter 1

Natural Units, Scales, Notations &

Conventions

In this chapter we survey the various units, scales, notations and conventions we shall be using in our

discussions ahead. More over this is done keeping in mind the current practices followed by the modern

literatures in high energy physics.

1.1 Natural units

As is true for any branch of physics, particle physics is based on experiments. And these experiments look

for the most elementary constituents of matter. These necessarily involve probing at extremely small

length scales (typically of the order of 10−15 m or less). And the typical masses involved are 10−27 kg.

The standard system of units in physics, in general, is the International System of Units (SI). In particle

physics we use a system of units known as the ‘Natural Units’.

There are two fundamental constants in relativistic quantum mechanics:

1. Reduced Planck’s constant ~ (dimension ML2T−1): ~ ≡ h

2π
= 1.054 571 628(53)× 10−34 J s.

2. Speed of light in vacuum c (dimension LT−1): c = 299 792 458 m s−1.

In natural units, we specify the energy in units of GeV (1 GeV = 109 eV)1. This choice is motivated by

the fact that the rest energy of a nucleon (proton or neutron) is approximately 1 GeV. In the natural

units, we put

~ = c = 1, (1.1)

so that we won’t have to worry about the pesky ~ and c that appear in most of the equations in particle

physics. Instead of mass, length and time, we use mass, action (~) and speed (c). In these units. In

1One eV (electron-Volt) is the energy gained by an electron when accelerated by a potential difference of one volt.
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these units

E = E′c2, t = t′
~

c2
, p = p′c, v = v′c, l = l′

~

c
, e2 = e′

2
~c, J = J ′

~

where all the primed quantities are either dimensionless or some power of mass. We can always use

dimensional analysis to figure out where the ~’s and c’s enter a formula. This deliberate sloppiness in

dealings with ~’s and c’s allows us to express:

1. mass (m), momentum (mc) and energy (mc2) in terms of GeV; and

2. length (~/mc) and time (~/mc2) in terms of GeV−1.

The following table summarizes the relations between the SI units and Natural units for mass, length

and time.

Quantity SI unit Natural unit Relation (Conversion factor)

Mass (M) kg GeV
1 GeV = 1.78× 10−27 kg

1 kg = 5.61× 1026 GeV

Length (L) m GeV−1
1 GeV−1 = 0.1975× 10−15 m

1 m = 5.07× 1015 GeV−1

Time (T ) s GeV−1
1 GeV−1 = 6.59× 10−25 s

1 s = 1.52× 1024 GeV−1

In particle physics, we deal with cross-sections often. Cross-section has dimension of area (L2). In

particle physics it is expressed in a unit called barn (b): 1 b = 10−28 m2 . If we use the conversion

factor given in the table above, we get

1 b = 2570.49 GeV−2,

=⇒ 1 GeV−2 = 0.389× 10−3 b = 0.389 mb.

Another important quantity that comes up when we study interactions between particles is their

electric charge. The electric charge of an electron in SI units (coulomb) is given by

e = 1.602 176 487(40)× 10−19 C, (1.2)

and the fine structure constant is given by a dimensionless number

α =

1

4πǫ0

e2

(~/mc)

mc2
=

e2

4πǫ0~c
≃ 1

137
. (1.3)

Here ǫ0 is the permittivity of free space, while its permeability is denoted by µ0 and satisfies the relation

ǫ0µ0 =
1

c2
. In the description of various interactions, such units are not generally useful, so physicists
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have considered another set of units (known as Heaviside-Lorentz units) where

ǫ0 = µ0 = ~ = c = 1, (1.4)

keeping the value of α unchanged (as it should be since this is a constant)

α =
e2

4π
≃ 1

137
. (1.5)

In the Heaviside-Lorentz units the Maxwell’s equations take the following form:

~∇ · ~E =ρ, (1.6a)

~∇ · ~B =0, (1.6b)

~∇× ~E =− ∂ ~B

∂t
, (1.6c)

~∇× ~B =
∂ ~E

∂t
+ ~J, (1.6d)

where ~E is the electric field, ~B is the magnetic field, ρ is the charge density and ~J is the current density.

Electric charge is also a constant in the Heaviside-Lorentz units, the charge of electron being

e ≃ 0.3028. (1.7)

For sake of completeness we provide the SI prefixes in the following table.

Factor Prefix Symbol Factor Prefix Symbol

1024 yotta- Y 10−24 yocto- y

1021 zetta- Z 10−21 zepto- z

1018 exa- E 10−18 atto- a

1015 peta- P 10−15 femto- f

1012 tera- T 10−12 pico- p

109 giga- G 10−9 nano- n

106 mega- M 10−6 micro- µ

103 kilo- k 10−3 milli- m

102 hecto- h 10−2 centi- c

101 deka- da 10−1 deci- d

Example 1.1. de Broglie wavelength: The de Broglie wavelength associated with a 1 GeV photon

is given by:

λdBγ =
h

p
=

2π~c

E
= 2π GeV−1 = 2π × 0.1975× 10−15 m = 0.395π fm.
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Example 1.2. Compton wavelength: The compton wavelength of a particle of mass m is defined as

λC =
~c

mc2
=

~

mc
.

In natural units the Compton wavelength is

λC =
1

m
.

So the Compton wavelength for a pion (whose mass is approximately 140 MeV) is

λCπ =
1

140 MeV
=

103

140 GeV
=

0.1975× 103

140
fm = 1.411 fm.

Similarly the Compton wavelength for an electron (whose mass is approximately 0.5 MeV) is

λCe =
1

0.5 MeV
=

103

0.5 GeV
=

0.1975× 103

0.5
fm = 395 fm.

If we approximate the proton’s mass to be 1 GeV, then its Compton wavelength is

λCp = 1 GeV−1 = 0.1975 fm.

Example 1.3. Classical electron radius: The classical electron radius, also known as the Lorentz

radius or the Thomson scattering length, is given by

re =
1

4πǫ0

e2

mc2
. (1.8)

In the ‘Natural-Heaviside-Lorentz units’ we have ǫ0 = µ0 = ~ = c = 1 and e ≃ 0.3028. Using these

values we have

re =
e2

4πm
≃ 0.30282

4π(0.5 MeV)
=

0.30282 × 0.1975× 103

4π × 0.5
fm = 2.88 fm (1.9)

One can compare it with the more accurate value is re = 2.817 940 289 4(58) fm.

Example 1.4. The Bohr radius: The Bohr radius is the radius of the lowest energy stable orbit of

the atomic electron. The energy of the electron in a Hydrogen atom is given by

E ≃ p2

2m
− α

r
, (1.10)

where the first term is kinetic energy and the second term is the electrostatic energy. The momentum p
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scales as 1/r and hence

E ≃ 1

2mr2
− α

r
. (1.11)

Taking the stability condition
dE

dr
= 0 we get the Bohr radius:

r =
1

αm
≃ 137

0.5 MeV
=

137× 103 × 0.1975× 10−15

0.5
m = 0.541× 10−10 m = 0.541 Å

1.2 Ranges and Strengths of the Four Fundamental Interactions

Every particle (massive or massless2) is subject to gravitational interaction. Particles that are electri-

cally charged experience electromagnetic interaction. There are two more interactions responsible for

happenings in the domain of elementary particles, namely the strong interaction responsible for binding

nucleons inside a nucleus and the weak interaction which figures itself in decay processes. There is no

classical analogue for these two short ranged forces unlike the electromagnetic and gravity which are

long ranged. All the fundamental interactions are possible by via exchange of some elementary particles,

which are variously called as messenger particles, force carriers, intermediate bosons and gauge bosons.

Many a times when these elementary particles are involved in interactions, they cannot be observed;

they act as virtual particles.

1.2.1 Virtual Particles and Fundamental Interactions

Particle creations may sometimes appear to violate energy conservation, but only for a limited period of

time as allowed by the Heisenberg unicertainty principle:

∆E ∆t >
~

2
. (1.12)

Thus a particle with energy E can come into existence for a time ∆t which does not exceed
~

2E
.

During its brief life, the virtual particle can travel a maximum distance:

∆l = c∆t =
~c

2E
. (1.13)

Now for an interaction to have long range (wider area of influence) the corresponding force carrier

has to travel large distances. If the force carrier has no mass, then its energy can be arbitrarily small

(E → 0) such that the range of that interaction becomes infinity. On the other hand if the force carrier

is massive with mass M (say), the range of the interaction is upto the distance
~

2Mc
. Photon being

massless, the electromagnetic interaction, which it mediates, is of infinite range. The carrier particle

2Remember that photon is massless, but yet it is affected by gravity. Light bends under gravity. This is because space
itself is bent due to presence of matter and energy according to the General Theory of Relativity.

5



‘graviton’ (still undiscovered, so only speculated) is also massless (if it exists), and thus leads to the

infinite range of the gravitational interaction that it mediates. The W± and Z bosons, which mediate

the weak interaction are massive (approximately of 90 GeV), so the range of weak interaction is given

by:

Rweak =
1

180
GeV−1 =

0.1975

180
× 10−15 m = 1.097× 10−18 m. (1.14)

The strong interaction is mediated by massless gluons, so it might be thought to be of infinite range.

However, in fact it is confined to nuclear dimensions only. This is because of the property of ‘confinement’.

We can however find out the range of strong interaction by analysing the force between two nucleons,

which is mediated by pions (having mass around 140 MeV). This is a residual strong force3. If we

consider the mass of pion then the range of strong interaction is given by:

Rstrong =
1

280 MeV
=

197.5

280
× 10−15 m = 0.7053 fm. (1.15)

This is exactly half of the Compton wavelength for pion.

If you are absorbing or producing a force

carrier particle, you’d better be

affected by the force carried!

Violators will be prosecuted for

undermining reality.

WARNING

4

Thus far we have talked about the ranges of the fundamental interactions. However, there is another

aspect to these interactions and that is their relative strengths.

1.2.2 Strengths of Fundamental Interactions

We shall consider the four fundamental interactions one by one.

Gravitational Interaction Let us consider two protons of mass Mp, separated by a distance r. The

gravitational potential energy between them is given by Newton’s law:

V = GN
M2
p

r
, (1.16)

3Residual means that it is a consequences of gluonic exchanges amongst the consituting quarks of the nucleons. The
idea of pion exchange is due to the Japanese physicist Hideki Yukawa.

4The content and essential design is taken from one such picture in the beautiful website ‘The Particle Adventure’:
www.particleadventure.org
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where GN is Newton’s gravitational constant:

GN = 6.674 28(67)× 10−11 m3 kg−1 s−2 = 6.708 81(67)× 10−39 GeV−2. (1.17)

Suppose we consider the two protons to be inside a nucleus, i.e. say r = 10−15 m = 5.07 GeV−1.

Then

V ≃ 6.708× 1

5.07
× 10−39 GeV = 1.323× 10−39 GeV. (1.18)

This energy is thus found to be extremely negligible in comparison to the mass of proton itself.

However, it must be noted that

√

GN =0.819× 10−19 GeV−1,

=0.819× 0.1975× 10−34 m = 1.617× 10−35 m = LPlanck,

=0.819× 6.59× 10−44 s = 5.397× 10−44 s = TPlanck,

and
1√
GN

=
1

0.819
× 1019 GeV = 1.221× 1019 GeV =MPlanck,

where LPlanck, TPlanck,MPlanck are called as the Planck length, the Planck time and the Planck

mass respectively. At these Planck scales gravitation becomes the dominant interaction of the

four in the realm of elementary particles. Assuming that at the Planck mass scale the gravitational

interaction has as much strength as electromagnetic interaction at the proton mass scale, we obtain

the relative strength of gravitational interaction as follows:

αgr =
M2
p

M2
Planck

αem. (1.19)

However, we know that αem = 1/137. Therefore

αgr =
1

137× (1.221)2 × 1038
= 0.4896× 10−40. (1.20)

Looking at these extremely small numbers, it must be clear that gravity has no measure bearings

in the realm of elementary particles at our currently available energies.

Weak Interaction Weak interaction is the driving mechanism behind most of radioactive decays, e.g.

n→ p+ e− + νe,

O14 → N14 + e− + νe.

All these decays are characterised by their half-life. The average life-time of the neutron is about
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885 s and the half-life of O14 is about 71.4 s. Its possible to estimate the half-life for such decays

by folowing the Fermi theory of weak interaction5. The Fermi theory contains a constant called as

Fermi constant GF which is a measure of the strength of the weak interaction:

GF =1.166 37(1)× 10−5 GeV−2,

√

GF =3.415× 10−3 GeV−1,

=3.415× 0.1975× 10−18 m = 0.674× 10−18 m,

=3.415× 6.59× 10−28 s = 2.2505× 10−27 s,

and
1√
GF

=292.8 GeV.

So at around 300 GeV the weak interaction strength becomes comparable to that of electromagnetic

interaction. At the proton mass scale the relative strength of weak interaction is as follows:

αwk = GFM
2
pαem =

1.166

137
× 10−5 = 0.851× 10−7 (1.21)

Electromagnetic Interaction We are very familiar with the electromagnetic interaction. The strength

of electromagnetic interaction is determined by the dimensionless number α ≡ αem, which is

αem =
e2

4πǫ0~c
=

1

137
. (1.22)

Strong Interaction This interaction not only binds the quarks and antiquarks into various baryons

and mesons, but also leads to the residual strong force that binds the nucleons inside any nucleus.

The electromagnetic binding enegy for a proton-antiproton (pp) system is about 14 keV, however

the binding energy for a deuteron (np) is about 2 MeV. So the residual strong force is about 100

times stronger than the electromagnetic force. In the same way the strong force is around 100 to

1000 times stronger than the electromagnetic force. So

αst =















100 αem ∼ 1,

1000 αem ∼ 10.

(1.23)

We conclude that the relative strengths of the four fundamental interactions are in the order:

αst : αem : αwk : αgr :: 1-10 : 10−2 : 10−7 : 10−40 (1.24)

5Remember that this is not the accurate description of weak interaction. However at the low energies involved in the
radioactive decay modes it is fairly accurate.
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Note. It must be kept in mind that the values given here and those that will be given in the next section

are not always true. In some particular particle event deviations from these numbers can be found.

Here we are trying to make only a few gross quantitative comparisons amongst the four fundamental

interactions. Our estimates are not valid for all processes, but these are typical values (that is, most

particle events will testify these numbers to be approximately correct). Since we have found that gravity

plays absolutely no role in particle events at the currently achieved (or near future) energy regimes, we

shall henceforth drop gravity from our discussion.

1.3 Typical Cross-sections and Mean Life-times

The cross-section is directly proportional to the square of the coupling constant of the relevant underlying

interaction. So we expect that

σst : σem : σwk :: 1-102 : 10−4 : 10−14 (1.25)

The mean life-time of a particle decaying via a particular channel (involving mediation by a particular

interaction) is inversely proportional to the coupling constant of the mediating interaction. Thus we

expect that

τst : τem : τwk :: 1-10−2 : 104 : 1014 (1.26)

These are, however, only approximate ratios. We have to look at some specific examples to find out the

typical values of cross-sections and mean life-times.

1.3.1 Typical Cross-sections

Let us consider the electromagnetic scattering of electron and positron to muon and antimuon:

e−(p1) + e+(p2)→ µ+(k1) + µ−(k2).

The cross-section for this process is given by

σe−e+ = α2f(s,me,mµ), (1.27)

where f is a function of the center-of-momentum energy (
√
s where s = (p1 + p2)

2 = (k1 + k2)
2), and

the masses: me and mµ. Note that the total cross-section is in general a function of Lorentz invariant

variables, which in this case are the square of the sum of the two four momenta in the initial state (or

final state) and the masses.

At very high energies we may neglect the masses of the particles, and purely by dimensional consid-
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erations the cross section must be given by

σe−e+ ≃
α2

s
. (1.28)

The exact expression is in fact

σe−e+ =
4πα2

3s
. (1.29)

At a center-of-momentum energy of 1 GeV, we have

σe−e+ =
4πα2

3s
=

4π

3× 1372
GeV−2 =

4π

3× 1372
× 0.19752 × 10−30 m2 = 87.05 nb. (1.30)

If we consider that the energy of each colliding beam is Eb, then
√
s = 2Eb. Therefore

σe−e+ =
21.7625 nb

E2
b (in GeV2)

. (1.31)

Another example of electromagnetic scattering is the scattering of low-energy photon on proton. At

low-energy (which corresponds to long-wavelength photons) we can use the Thomson formula for the

scattering cross-section. In our case

σγp =
8π

3

(

α

mp

)2

≃ 8π

3

(

1

137
GeV−1

)2

= 1.741× 10−35 m2 = 174.1 nb. (1.32)

Let us now consider the strong scattering of proton and proton. The charge radius of the proton

as measured by experiments (electron- proton scattering) is about 0.81 fm. This is infact larger than

the compton wavelength of the proton. Because the strong interaction strength is close to unity, the

cross-section for proton-proton scattering is given by

σpp = πr2p ≃ 3.141× 0.812 × 10−30 m2 = 2.061× 10−30 m2 = 20.61 mb

using the classical analogy for the cross-section. Indeed the experimental value is close to this, about

45 mb at close to 1 GeV energy.

Therefore, the ratio of electron-positron and proton-proton scattering cross-sections is given by

σe−e+

σpp
=

87.05 nb

45 mb
= 1.934× 10−6. (1.33)

Similarly

σγp
σpp

=
174.1 nb

45 mb
= 3.869× 10−6. (1.34)

These are consistent with our observation

10



σst : σem :: 1-102 : 10−4 which implies σst : σem :: 1 : 10−4-10−6.

Now let us consider a scattering event that is mediated by weak interaction gauge boson. We shall

consider the scattering of an electron-neutrino and a neutron into an electron and a proton:

νe + n→ e− + p.

The total cross-section may be written as

σνen = G2
F f(s,me). (1.35)

Unlike the electromagnetic and strong interactions the coupling strength GF = [L2] is not dimensionless.

Therefore from dimensional arguments the cross section must go as

σνen = G2
F s. (1.36)

If the center-of-momentum energy
√
s is about 1 GeV, then

σνen = G2
F s = 1.166372× 10−10 GeV−2 = 1.360× 0.19752 × 10−40 m2 = 53.05 fb. (1.37)

Then

σνen
σpp

=
53.05 fb

45 mb
= 1.179× 10−12. (1.38)

Another example of weak scattering is the scattering of electron-neutrino and electron. The cross-section

for this scattering is given by

σνee =
G2
F s

π
. (1.39)

If we consider that
√
s = 1 GeV, then

σνee =
G2
F

π
GeV2 =

1.166372 × 0.19752

π
× 10−40 m2 = 16.89 fb. (1.40)

Therefore

σνee
σpp

=
16.89 fb

45 mb
= 3.75× 10−13. (1.41)

If we consider the laboratory frame of reference where the electron is at rest before the interaction with

neutrino. In such a case we can approximate s by 2meEν , where me is the mass of electron and Eν is

the energy of the neutrino in laboratory. If Eν is given in units of GeV, then

σνee =
2G2

FmeEν
π

=
2× (1.16637× 10−5 GeV−2)2 × 0.511× 10−3 GeV× Eν(in GeV)

π
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=Eν(in GeV)× 0.44256× 0.19752 × 10−43 m2 = Eν(in GeV)× 1.726× 10−45 m2

=Eν(in GeV)× 1.726× 10−17 b = Eν(in GeV)× 17.26 atto-barn (ab).

So if Eν = 1 GeV, then σνee = 17.26 ab. Therefore, for this case

σνee
σpp

=
17.26 ab

45 mb
= 3.83× 10−16. (1.42)

This result is consistent with our observation

σst : σwk :: 1-102 : 10−14 which implies σst : σwk :: 1 : 10−14-10−16.

So we conclude that our observations for the relative cross-sections are approximately correct.

1.3.2 Typical Mean life-times

Let us consider a particle decay that proceeds via strong interaction. One such decay is: ∆++ → π++p.

Experimentally, the peak corresponding to ∆++ has a full width at half maximum of Γ∆++ ≃ 100 MeV.

Now the life-time of ∆++ is given by

τ∆++ =
1

Γ∆++

=
1

100
MeV−1 = 10 GeV−1 = 6.59× 10−24 s. (1.43)

Let us now consider a decay that proceeds via electromagnetic interaction, e.g. π0 → γ+γ. The life-time

of π0 is found to be about 10−16 s. So

τπ0

τ∆++

≃ 10−16

6.59× 10−24
= 1.52× 107. (1.44)

Now let us look at one decay that proceeds via weak interaction: Σ→ n+π. The life-time of Σ is about

10−10 s. So

τΣ
τ∆++

≃ 10−10

10−24
= 1014. (1.45)

As we can see these ratios confirm that our observation for mean life-times is approximately corrct:

τst : τem : τwk :: 1-10−2 : 104 : 1014 which implies τst : τem : τwk :: 1 : 104-106 : 1014-1016.

We would like to stress that all these ratios about cross-sections and life-times are given here only to

make out a gross quantitative comparisons amongst the various fundamental interactions.

1.4 Notation and Conventions

We shall follow the notation and conventions as given below. If there is any deviation from these, then

they would be specified at their place of usage. Also not all the conventions and notations are listed
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below. The most general ones have been listed, to make the presentation of the latter concepts clear and

smoother.

Lorentz indices µ, ν, ρ, σ, etc.

Three-vector indices i, j, k, l, etc.

Three-vector ~x

Unit vector x̂ =
~x

|~x|

Kronecker delta δij =















1, i = j

0, i 6= j

.

Levi-Civita tensor ǫijk: totally antisymmetric. ǫ123 = 1.

Contractions ǫijkǫijk = 6, ǫijkǫijm = 2δkm, ǫijkǫimn = δjmδkn − δjnδkm.

Dot product ~A · ~B =
∑

i

AiBi

Cross product ( ~A× ~B)i = ǫijkAjBk

metric gµν = gµν = diag(1,−1,−1,−1)

gνµ = gνσgµσ = δνµ =















1, µ = ν

0, µ 6= ν

.

Contravariant four-vector Aµ = (A0, ~A), xµ = (t, ~x)

Covariant four-vector Aµ = gµνA
ν = (A0,− ~A), xµ = (t,−~x)

Lorentz invariant A ·B ≡ AµBµ = gµνA
µBν = A0B0 − ~A · ~B

antisymmetric tensor ǫµνρσ. ǫ0123 = +1 and ǫ0123 = −1

contractions ǫµνρσǫµνρσ = −24, ǫµνρσǫµνρτ = −6gστ , ǫµνρσǫµντω = −2(gρτgσω − gρωgστ )

derivatives ∂µ ≡
∂

∂xµ
=

(

∂

∂t
, ~∇

)

, ∂µ ≡ ∂

∂xµ
=

(

∂

∂t
,−~∇

)

∂µ∂
µ = ∂2

∂t2 − ~∇2

∂ · A = ∂µA
µ =

∂A0

∂t
+ ~∇ · ~A

A
←→
∂µB = A(∂µB)− (∂µA)B

1.5 Particle Nomenclature

With discovery of large number of particles, it has been really troublesome to name and denote them.

During the early days of particle physics, both Greek and Latin characters were used. They are stil used,

though there has been some modification of names for hadrons. The only particle which uses both Greek

and Latin characters is the particle J/Ψ.

There is one convention we shall follow in these notes. An anti-particle can be denoted by putting

a horizontal line above the particle name, e.g. anti-proton ≡ proton, positron ≡ electron, anti-neutrino

≡ neutrino etc. The practice of denoting the anti-particle by putting a horizontal line over the particle
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symbol is very ancient in particle physics.

1.5.1 Particles denoted by Greek Characters

Particle Symbol Name

alpha particle α alpha

beta particle (electron) β beta

gamma (photon) γ gamma

delta particle ∆ Delta

eta particle η eta

lambda particle Λ Lambda

muon µ mu

neutrino ν nu

xi particle (cascade) Ξ Xi

pion π pi

rho particle ρ rho

sigma particle Σ Sigma

tauon or tau τ tau

upsilon or bottomium Υ Upsilon

chi χ chi

psi or charmonium ψ psi

omega minus Ω Omega

1.5.2 Particles denoted by Latin Characters

This is a very long list of particles. We know about the folowing: b (bottom quark), c (charm quark),

d (down quark), e (electron), g (gluon), h or H (Higgs), K (kaons), n (neutron), p (proton), s (strange

quark), t (top quark), u (up quark), W (charged weak gauge boson), Z (neutral weak gauge boson).

1.5.3 Naming Scheme for Hadrons

Hadrons being the most numerous particles to populate the detectors in high energy collisions, it is

emphatic to systematically name them. The Particle Data Group has been revising its naming scheme

for hadrons since 1986. The ones which are given below are according to the 2012 Particle Data Book.

For a concise and original account on the naming scheme for hadrons, have a look at J. Beringer et al.

(Particle Data Group), Phys. Rev. D86, 010001 (2012).

“Flavor neutral” Mesons: The ‘flavor neutral’ mesons are those mesons that have all the heavy flavor

quantum numbers zero, i.e. S = C = B = T = 0. In the following table we list the naming scheme
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for these mesons by specifying their quark-antiquark content and by the value of 2S+1LJ , where

S6, L, J stand for spin, orbital and total angular momenta of the qq system.

qq content

2S+1LJ

1(L even)J
1(L odd)J

3(L even)J
3(L odd)J

ud, uu− dd, du (I = 1) π ba ρ a

dd+ uu

and/or ss

}

(I = 0) η, η′ h, h′ ω, φ f, f ′

cc ηc hc ψb χc

bb ηb hb Υ χb

tt ηt ht θ χt

aDo not confuse this with bottom quark.
bThis is the same J/ψ particle.

Note. Although there are names for the tt mesons, such bound states are unlikely to be formed and

found. Top quark is evidently so heavy that even before it can pair with top, it decays in laboratory.

We have not shown any electric charges of the mesons in the above table, but they are usually placed

on the top-right corner of the symbol.

“Flavored” Mesons: By ‘flavored’ mesons we mean those mesons which have nonzero heavy flavor

quantum numbers, i.e. either S 6= 0, or C 6= 0, or B 6= 0, or T 6= 0. The main symbol for such a

meson is an upper-case italic letter that indicates the heavier quark (or quark) as follows:

s→ K, s→ K, c→ D, c→ D, b→ B, b→ B, t→ T, t→ T .

If the lighter quark is not an up (u) or down (d) quark, its identity is specified by keepting its

symbol as a subscript. In the literature, it is also found that physicists use the subscripts u (d)

also to specify that the lighter quark is u (d).

Example 1.5. Following are some examples illustrating the above scheme of nomenclature.

K mesons D mesons B mesons

qq content Symbol qq content Symbol qq content Symbol

us K+ uc D0 ub B+

ds K0 dc D− db B0

us K− uc D0 ub B−

ds K0 dc D+ db B0

sc D−
s sb B0

s

sc D+
s sb B0

s

6Do not confuse this S with strangeness.
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Baryons: For baryons the old symbols N (nucleons), ∆, Λ, Σ, Ξ, and Ω are extensively and exclusively

used. The following diagram succinctly explains the current nomenclature for baryons.

Baryon

three u and/or d quarks N
I = 1

2

∆

I = 3
2

two u and/or d quarks Λ
I = 0

Λ

The 3rd quark is

denoted by a

subscript.

Σ

I = 1

one u or d quark Ξ

I = 1
2

Ξ

one (two) subscript(s) to denote the

remaining heavy quark(s).

no u or d quark

Ω

I = 0

Ω

Subscripts denote

any heavy quark

content.

Example 1.6. The four light quarks u, d, c and s can be combined in 20 different ways to create baryons

and in 16 different ways to create mesons7. The sixteen mesons are grouped into a 15-plet and a singlet.

Figures 1.1 and 1.2 show the ground-state pseudoscalar and vector mesons respectively. Figures 1.3 and

1.4 show the ground state baryon multiplets with spins 1
2 and 3

2 respectively. The scheme of nomenclature

as described above is used in all these diagrams and the quark contents are also explicitly shown.

EXERCISE

Question 1.1. What is the energy of an electron that has a de Broglie wavelength of 10−16 m?

Question 1.2. In units of the electron Bohr radius, what would be the Bohr radius for a muonic

atom and pionic atom.

Question 1.3. The size of the proton (charge radius) is approximately 1 fm. Typically one needs

a probe whose wave length is much less than this size to probe the structure of the proton. Suppose

we assume that a photon probe has a wavelength less than 1/10 fm, calculate the energy of the photon

required to probe the internal structure of the photon.

Question 1.4. The pions are unstable particles. Investigate the decay modes of charged and neutral

pions. Assuming an equal number π± are enter the earths atmosphere (approximately correct), what

particles are left in what ratios after all the pions and even their decay products have decayed.

Question 1.5. Suppose the proton could decay with a life time of 1030 years, how many cubic meters

of water would have to be observed if one wanted to have about 100 events in a year.

Question 1.6. Low energy neutrinos pass through a piece of solid iron- if the neutrino-nucleon cross

section is about σ ≈ 10−47 m2, estimate the mean free path of the neutrinos in iron (density of iron is 8

7How do we arrive at these numbers? The answer will be given in Chapter 2.
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cs

us

ds

du

cu

sd

cd

ud

su

sc

ucdc

K0 K+

K0K−

π+π−

η′

η

ηc

π0

D0 D+

D− D0

D+
s

D−
s

C = +1

C = 0

C = −1

Figure 1.1: Pseudo-scalar meson super-multiplet with charm quark included.
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cs

us

ds

du

cu

sd

cd

ud

su

sc

ucdc

K∗0 K∗+

K∗0K∗−

ρ+ρ−

φ

ω

J/ψ

ρ0

D∗0 D∗+

D∗− D∗0

D∗+
s

D∗−
s

C = +1

C = 0

C = −1

Figure 1.2: Vector meson super-multiplet with charm quark included.
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dds

udd uud

uus

ussdss

ddc uuc

ssc

dcc ucc

scc

Λ+
c

Σ+
c

Σ−

n p

Σ+

Ξ0Ξ−

Σ0
c Σ++

c

Ω0
c

Ξ+
cc Ξ++

cc

Ω+
cc

Ξ+′
c

Ξ+
c

Ξ0′
c

Ξ0
c

Λ0

Σ0

uds

uscdsc

udc

C = +2

C = +1

C = 0

Figure 1.3: Spin- 12 baryon super-multiplet with charm quark included.
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ddd uuu

sss

ddc uuc

ssc

dcc ucc

scc

ccc

Σ∗0

Ω++
ccc

Ξ∗+
cc Ξ∗++

cc

Ω∗+
cc

Σ∗0
c Σ∗+

c Σ∗++
c

Ξ∗+
c

Ω∗0
c

Ξ∗0
c

∆− ∆0 ∆+ ∆++

Σ∗+

Ξ∗0

Ω−

Ξ∗−

Σ∗−

uds

udd uud

uus

ussdss

dds

udc

uscdsc

C = +3

C = +2

C = +1

C = 0

Figure 1.4: Spin- 32 baryon super-multiplet with charm quark included.
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times the density of water).

Question 1.7. Verify that the spin of the neutral pion can be deduced from the fact that it decays

into two photons. Photons have spin-1 and are massless.

Question 1.8. Free neutron is an unstable particle with a life time of about 13 minutes. Investigate

the decay mode of the neutron. Is it possible to have more than one decay mode for the neutron?

Question 1.9. Neutrons bound in nucleus like He4 or O16 remain stable. Why? Apply the same

reasons to understand why neutrons in some heavier nuclei are allowed to decay.

Question 1.10. Consider a world in which the masses of neutrons and protons are equal. What

would be the consequences, how would this world look like?

Question 1.11. Construct a baryon multiplet like the one shown in Fig. 1.3, by taking the bottom

quark instead of the charm quark as the heavier quark.
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Chapter 2

Symmetries and Conservation Laws

When learning about the laws of physics you find that there is a large number of complicated and detailed laws,

laws of gravitation, of electricity and magnetism, nuclear interactions and so on. But across the variety of these

laws there sweep great general principles which all the laws seem to follow. Examples of these are the principles

of conservation, some qualities of symmetry. . . .

Richard P. Feynman

Symmetry considerations are a powerful tool to explore and understand the behaviour of elementary

particles. They provide the backbone of our theoretical formulations. Even when some of the apparent

symmetries are not exact they provide a basis for classification of states assuming exact symmetry and

allow us to look at possible sources and pattern of symmetry breaking.

We know that every elementary particle is characterised by a set of quantum numbers. These quantum

numbers summarize the intrinsic properties of the particle, and therefore are called as internal quantum

numbers1. The existence of these quantum numbers implies that there are some underlying symmetries

in the realm of elementary particles. In this chapter we will discuss some such symmetries that are

relevant in particle physics.

Symmetries can be classified into two broad categories:

• Global Symmetry: A global symmetry is one which is valid at all spacetime points. The existence

of quantum numbers in a system always arise from the invariance of the system under a global

geometrical transformation.

• Local Symmetry: A local symmetry is one which has different symmetry transformations at

differents points in spacetime. Such symmetries play a pivotal role in physics, as they form the

basis of what are known as gauge theories.

1By saying that some property of a system is internal we want to stress that the particular property under consideration
has nothing to do with the dynamical state of the system, which is described by other conserved quantities such as energy,
momentum or angular momentum.
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Symmetries that are relevant in particle physics may be classified as follows:

• Permutation symmetry: This is also called as the exchange symmetry, and deals with the

symmetry of the system under permutation (or exchange) of identical particles. It results in Bose-

Einstein statistics (for bosons) and Fermi-Dirac Statistics (for fermions).

• Continuous symmetry: This type of transformation deals with the symmetry of the system

under infinitesimally small (therefore continuous) transformations. Translation in space and time,

rotation in space, Lorentz transformation are examples of such symmetry. The corresponding

quantum numbers are additive, i.e. the quantum number associated with a given symmetry of a

composite system is obtained by adding together (algebraically or vectorially) the corresponding

quantum numbers of all the components of the system.

• Discrete symmetry: This kind of symmetry is evidently not continuous. The system ex-

hibits symmetries which are steps apart from each other. Space inversion, time reversal, charge-

conjugation are examples of discrete symmetry. The quantum numbers are multiplicative in this

case, i.e. such a quantum number of a composite system is given by the product of the quantum

numbers of all the constituents.

• Unitary symmetry: Such symmetries arise from phase transformations of fields, or from gen-

eraised rotations in the internal space of the system. They are related to conservation of many

generalised “charges”, for example, U(1) symmetries are associated with conservation of electric

charge, baryon number, lepton number; SU(2) symmetry is associated with conservation of isospin,

SU(3)(flavour) symmetry is associated with conservation of flavors and SU(3) (colour) symmetry

is associated with conservation of color. The associated quantum numbers are additive.

We shall briefly discuss the first three symmetries. We will not discuss about unitary symmetry in

this chapter. It is most conveniently discussed in the context of quark models. It suffices to say that there

are many conservation laws which arise from invariance of the Hamiltonian under the so-called U(1) (or

phase) transformations, like the conservation of lepton number, Baryon number, etc in a manner that is

analogous to the charge conservation.

2.1 Permutation Symmetry

All physically identical, indistinguishable, many particle states must have definite symmetry under per-

mutation symmetry. It is an observed fact that all particles are either bosons or fermions depending on

their behaviour with respect to another particle of the same kind. The state of a system of identical

bosons is symmetric under permutations where as a system of identical fermions is anti-symmetric under

permutations. While one may be able to define systems with mixed symmetry (symmetric under some
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exchanges and antisymmetric under others) they are not realised in nature. Indeed this symmetry played

fundamental a role in the formulation of quarks with colour as the basic entities in the theory of strong

interactions. More about this later.

2.2 Continuous Symmetries

A symmetry under space translation implies that the interaction energy between two particles is inde-

pendent of their positions but depends only on their relative distance. Classically the Lagrangian L ,

which is a function of generalised coordinates qi and generalised velocities q̇i: L ≡ L (qi, q̇i), remains

unchanged under the displacement qi → qi + δqi. That is

∂L

∂qi
= 0

Then by virtue of the equations of motion2, we have

dpi
dt

= 0

which is a statement of the conservation of momentum. Similarly invariance under translation in time

leads to the conservation of energy.

In quantum mechanics if there is a continuous operation like rotation or translation, say G , it may

be generated from transformations which differ infinitesimally from the identity transformation

G = 1− iǫg,

where g is the Hermitian generator of the symmetry operator in question. (There may be more than

one generator.) For example for rotations about z-axis, it is the z-component of the angular momentum.

By definition G is a unitary transformation. Suppose the Hamiltonian H is invariant under G, then we

have

G†
H G = H

This is equivalent to

[g,H ] = 0

2Given a lagrangian L ≡ L (qi, q̇i) the Euler-Lagrange equations of motion are given by
d

dt

(

∂L

∂q̇i

)

−

∂L

∂qi
= 0. The

canonically conjugate momentum pi to the coordinate qi is defined as pi ≡
∂L

∂q̇i
.
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and by virtue of Heisenberg equation of motion, we have

dg

dt
= −i[g,H ] = 0

and hence g, or more precisely its quantum expectation value, is a constant of motion. For example if

H is invariant under rotations, then the angular momentum about the axis of rotation is a constant of

motion.

Furthermore, when two operators commute, they can be simultaneously diagonalised. The set of

eigenfunctions will be labelled by the eigenvalues, quantum numbers, of both operators. If the Hamil-

tonian for a transition is invariant under the transformation, then the quantum numbers labelling the

initial state will also be conserved. This is a very powerful result which results in selection rules for

reactions to occur.

2.3 Discrete symmetries

All symmetry operations in quantum mechanics are not necessarily continuous. The Hamiltonian may

also be invariant under discrete transformations, for example space-time inversion. We consider three

important symmetries here, namely, Parity, Charge Conjugation and Time Reversal.

2.3.1 Parity

We first consider parity or space inversion. Classically under a parity transformation ~r → −~r and

~p→ −~p. That is a right-handed coordinate system is changed to a left-handed coordinate system. This

can not be achieved by rotation which is a continuous transformation in three-space dimensions. Hence

it is a discrete symmetry. Infact it is easy to verify that the determinant of the transformation matrix is

positive for rotation matrices where as for Parity it is negative.

If |α〉 is a quantum mechanical state then we require under space inversion,

〈α|P †~rP |α〉 = −〈α|~r|α〉

We accomplish this by stating that under parity transformation,

P †~rP = −~r

or

~rP = −P~r

where we have used the fact that P is unitary. Thus the position and parity anticommute. Further,
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since two inversions cancel the effect of each other, we have,

P 2 = 1

or equivalently,

P−1 = P † = P

The Parity operator is not only unitary but also hermitian with eigenvalues +1 or -1.

By definition the angular momentum is ~L = ~r × ~p. Clearly,

[L, P ] = 0

Since L is the generator of rotations, parity commutes with rotations,

[R,P ] = 0

.

If the Hamiltonian is invariant under parity transformation, then the states are eigenstates of the

parity. Consider the wavefunction of a rotationally invariant system in three dimensions:

ψnlm = Rnl(r)Ylm(θ, φ)

for example hydrogen atom. Under parity transformationwe have, r → r, θ → π − θ, φ → π + φ in

spherical coordinates. Thus

Pψnlm = (−1)lψnlm

using the property of the spherical harmonics.

“Intrinsic Parity” is a notion that is applied to all the elementary particles. The word intrinsic is

used in the same sense in which spin is referred to as intrinsic. To clarify consider for example the orbital

angular momentum operator Li = (~r × ~p)i. In quantum mechanics the operator Li is defined as,

Li = −i(xj
∂

∂xk
− xk

∂

∂xj
)

where the indices are taken around cyclically. Further Li satisfy the angular momentum algebra,

[Li, Lj ] = iǫijkLk
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The commutation relation is very general and applies to spin-angular momentum also,

[Si, Sj ] = iǫijkSk

and to the total angular momentum

[Ji, Jj ] = iǫijkJk

where Ji = Li + Si. However there is no spacial representation for S analogous to L. In this sense the

spin has no classical analogue and is an intrinsic property of quantum mechanical objects. Consequently

the parity of a state described by the eigenfunction of orbital angular momentum is given by,

Pψnlm = ηψ(−1)lψnlm

where ηψ denotes the intrinsic parity of the quantum particle. Further as in the other case,

η2ψ = 1

It is in this sense we refer to parity as an intrinsic property of the state when it is an eigenstate of parity.

There is no classical analogue.

Intrinsic parity of the Photon : As an example consider the intrinsic parity of photon. The electro-

magnetic interaction conserves parity. The current jµ of a charged particle couples to the electromagnetic

field (photon) through

jµA
µ

where

jµ = (~j, ρ)

and

Aµ = ( ~A,A0)

in the four-vector notation. Under parity,

(~j, ρ)→ (−~j, ρ)

since ~j = ρ~v, where ~v is the velocity. The electromagnetic interaction is invariant under parity only if

( ~A,A0)→ (− ~A,A0)
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Thus the intrinsic parity of the photon has to be negative just like any position vector.

Intrinsic parity of the pion : When parity is conserved the intrinsic parity of a particle may be

determined relative to others whose intrinsic parity is known: For example consider a reaction

A→ B + C

Conservation of parity implies

ηA = ηBηC(−1)L

where L is the relative angular momentum of the final state particles.

Thus the intrinsic parity of pion may be determined using the scattering process

π− + d→ n+ n

Using the relation

(parity π)(parity d) = (parity nn)

it is easy to show that the intrinsic parity of the pion should be negative. One needs to assume that

the intrinsic parity of proton and neutron to be the same. Infact we define the intrinsic parity of the

proton to be +1 and define the parity of various other particles relative to that of the proton. While the

pion has spin zero, deuteron has spin 1. Since the pion is absorbed almost at rest by the deuteron the

relative angular momentum in the initial state is zero. Thus the total angular momentum in the initial

state is J = 1 entirely due to the spin of the deuteron. Since the neutron is a S = 1/2 particle, using

angular momentum conservation we have the following options in the final state:

|ψ(1)
nn 〉 = |J = 1, S = 1, L = 0, 2〉

|ψ(2)
nn 〉 = |J = 1, S = 1, L = 1〉

|ψ(3)
nn 〉 = |J = 1, S = 0, L = 1〉

Antisymmetry excludes all but the second wave function. Hence the parity of the pion is given by,

ηπηd = ηnηn(−1)L

ηπ = −1

Hence the parity of the pion with respect to proton or neutron is negative.
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A system whose dynamics is given by Schrödinger or Klein-Gordon equation, the wave function in

the inverted system describes a particle with opposite momentum.

2.3.2 Charge Conjugation

Charge conjugation operator C is in many ways similar to Parity. By definition it inverts all internal

charges (electric, baryon number, lepton number etc) of a particle thus relating it to its anti-particle and

vice versa. The space-time coordinates are unchanged. For example electric charge

Q
C→ −Q

that is

|ψ(Q, ~p,~s〉 C→ |ψ(−Q, ~p,~s)〉

Thus the quantum mechanical state of a proton, say, under charge conjugation is transformed into

the state of an anti-proton.

|p〉 C→ |p̄〉

Therefore as in the case of parity we have,

C2 = 1

or equivalently,

C−1 = C

Thus C is not only unitary but also hermitian with eigenvalues +1 or -1.

Since C reverses the charges, it also reverses the electric and magnetic fields. As a result the photon

has negative eigenvalue under C. However Maxwell equations are invariant under charge conjugation.

From the decay

π0 → γ + γ

we conclude that the pion is even under charge conjugation. While some charge neutral states like

photon, neutral pion are eigenstates under C, it is not always so- for example

|n〉 C→ |n̄〉

Invariance under P or C would then mean that the transitions would occur to only states with the same

eigenvalue in the initial and final states. Note that the eigenvalues of these operators are multiplicative.

Strong and electromagnetic interactions respect these symmetries, where as in weak interactions these

are violated. However, the combination of P and C is still a symmetry to a good approximation though
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it is violated in some systems.

2.3.3 Time Reversal

The discussion of time reversal symmetry is some what more complicated. Classically both Newton’s

equations and Maxwell’s equations are invariant under time reversal. We briefly discuss the situation in

quantum mechanics where at the outset it appears not to be so since the Schroedinger equation is first

order in time.

Suppose ψ(x, t) is a solution of the Schroedinger equation,

i
∂ψ

∂t
(x, t) = (− 1

2m
∇2 + V )ψ(x, t)

then it is easy to see that the time reversed state ψ(x,−t) is not a solution because of the first order

time derivative. However, it is easy to check that ψ∗(x,−t) is a solution by complex conjugation:

i
∂ψ∗

∂t
(x,−t) = (− 1

2m
∇2 + V )ψ∗(x,−t)

Thus we can conjecture that the time reversal has some thing to do with complex conjugation.

Another way of looking at this is to preserve the probability invariant under time reversal. Following

Wigner we may then require

〈ψ|ψ〉 = 〈Tψ|Tψ〉

There are two ways of achieving this which is obvious if we look at two different quantum states. We

may have

〈φ|ψ〉 = 〈Tφ|Tψ〉

as in ordinary transformations or

〈φ|ψ〉∗ = 〈Tφ|Tψ〉

Since the first choice leads to the trouble mentioned above with respect to the dynamical equation, we

may choose,

Tψ(x, t) = ψ∗(x,−t)

Therefore for any Hermitian operator O,

〈ψ|O|φ〉 = 〈Tφ|TOT−1|Tψ〉

Taking the absolute square gets rid of the complex conjugate problem and the probability remains

invariant.
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How do we choose TOT−1? Here are some examples,

TxT−1 = x

TpT−1 = −p

etc.

Thus for any process i→ f

|Mi→f | = |Mf→i|

where M denotes the matrix element for a given transition. Thus the probability is the same if the

initial and final states are reversed as it happens in any time reversal transformation. This is known

as the principle of detailed balance. The physical cross-section however is not necessarily the same

since the flux and finals state phase space are different. Using Fermi’s golden rule the transition rates

are given by

Wi→f =
2π

~
|Mi→f |2ρf ,

Wf→i =
2π

~
|Mi→f |2ρi.

While the probabilities are the same the rates may be different since the density of states of the end

products ρi,f are not necessarily the same. These can be quite different depending on the masses and

number of particles. This is how one reconciles the time reversal invariance with the law of entropy

increase.

2.3.4 CPT theorem

While the discrete symmetries C,P and T appear to violated, the combined operation CPT is an exact

symmetry. Any theory that is invariant under Lorentz transformations must have CPT symmetry-

CPT theorem. There is no known violation of the CPT symmetry and is consistent with all known

experimental observations. The theorem has many consequences:

1. Spin-Statistics theorem: The connection between the spin of the particle and its statistics- for

example the spin half particles obey Fermi statistics where as the integer spin particles obey Bose-Einstein

statistics.

2. Particles and anti-particles have identical masses and life times.

3. All internal quantum numbers of anti-particles are opposite to those of the particles.
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2.4 Problems:

1. Find reasons that could forbid γ → γγ. What would happen if the photon had mass?

2. Can an electron and a positron annhilite to a single photon?

3. Consider the decay of the particle ∆→ π +N , where the spin of the ∆ particle is 3/2. Determine

the parity of the ∆.

4. Consider the process Co60 → Ni60 + e− + ν̄e. Show that

〈cos θ〉 =
〈

~S.~p

|~S||~p|

〉

is non-zero if parity is violated. Here S is the spin of the nucleus and p is the momentum of the

electron.
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Chapter 3

Hadrons and the Quark Model

During the 50’s and 60’s hundreds of hadrons, or strongly interacting particles, were discovered. The

concept of “elementary” particle took a beating. The picture was dramatically simplified when it was

realised that they could be organised in multiplets, which in turn could be understood in terms of com-

binations of elementary constituents called quarks. The quark model proposed by Gell-Mann accounts

qualitatively for the masses of light hadrons in the region of 1-2 GeV mass range.

The hadrons are divided into two broad categories called mesons ( integer spin) and baryons ( half-

odd integral spin with an additional quantum number called the baryon number). The following table

summarises the low lying hadrons classified according to their spin and parity. We have already alluded

to the isospin and strangeness before. As far as strong interactions are concerned both isospin and

strangeness are conserved exactly. The table 3.1 also shows the assignment of isospin and strangeness

quantum numbers. By inspection it is easy to see that there exists a relation between the charges of the

particles and other quantum numbers:

Q = Iz +
Y

2
= I3 +

B + S

2
, (3.1)

where I3 is the isospin projection, Y is the hypercharge which is the sum of baryon number and

strangeness quantum number. This is the well known Gell-Mann-Nishijima relation. Infact the orig-

inal assignments of quantum numbers were made using this relation as well1.

The deliberate arrangement of mesons into groups of (8+1) and baryons into groups of (8) and (10)

is suggestive of a classification scheme about which we will say more.

In quantum mechanics the degeneracy of eigenvalues is an indication of an underlying symmetry.

From the table the following facts emerge:

• Isospin multiplets of the same JP are almost exactly degenerate- for example (p,n), π±,0. Thus

1With the discovery of new flavours or quantum numbers Gell-Mann Nishijima’s original relation has been generalised
to include an expanded list of particles
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Particle Mass(MeV) JP Isospin Strangeness
pseudoscalar Mesons: 8 + 1
π±,0 140 0− 1 0
K+,K0 495 0− 1/2 1
K̄0,K− 495 0− 1/2 -1
η0 550 0− 0 0
η′0 960 0− 0 0
vector Mesons: 8 + 1
ρ±,0 770 1− 1 0
K∗+,K∗0 890 1− 1/2 1
K̄∗0,K∗− 890 1− 1/2 -1
ω0 780 1− 0 0
φ0 1020 1− 0 0
spin 1/2 Baryons: 8
p,n 940 1/2+ 1/2 0
Λ0 1115 1/2+ 0 -1
Σ±,0 1190 1/2+ 1 -1
Ξ0,− 1315 1/2+ 1/2 -2
spin 3/2 Baryons: 10
∆++,+,0,− 1232 3/2+ 3/2 0
Σ∗±,0 1385 3/2+ 1 -1
Ξ∗0,− 1523 3/2+ 1/2 -2
Ω− 1672 3/2+ 0 -3

Table 3.1: Hadrons and their properties

isospin symmetry is exact in strong interactions. The generators of isospin transformations com-

mute with the Hamiltonian. Small mass differences among the multiplets may then be attributed

to isospin breaking effects due to other interactions.

• The hadrons within each JP group are approximately “degenerate” to varying degrees. Baryons are

degenerate to within 30 percent, where as with mesons it would be questionable. In the following

analysis we concentrate more on Baryons and discuss mesons only in passing.

One can construct from the list given above sets of I3 − Y plots which will be identified with the

weight diagrams of the SU(3) group later.

The SU(3) scheme outlined by Gell-Mann had dramatic prediction that Ω− particle, which was then

not yet discovered, should be there to complete the decuplet JP = 3/2+. Indeed it was found.

We note a couple of important points without details here:

(1) From the known experimental data on Baryon excited states only states with I = 1/2, 3/2 have

been seen. This fact, as we shall see later, is crucial for the quark model where only the minimal three

quarks are require to construct baryons. If I = 5/2 state is observed it would require minimum five

quarks.

(2) The excitation spectra of N,∆,Λ are approximately similar. Even though their constituents may

be different combinations of various quarks, the approximate similarity indicates a certain universality

of the confining potential- namely flavour independence.
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Figure 3.1: SU(3) weight diagrams.
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3.1 The quark model

With the list of “fundamental particles” increasing following the discovery of more excited states of

particles in table 3.1, and new particles of even higher masses discovered, the question that whether all

of them could be regarded as elementary or fundamental was looming large. The anomalous magnetic

moments of nucleons also pointed to the existence of a substructure.

One feature we have noticed of the hadrons when arranged according to their JP is that they come

neatly arranged in various multiplets.

1. Baryons: 8(1/2+)⊕ 10(3/2+)

2. Mesons: 9(0−)⊕ 9(1−)

Gell-Mann and Zweig(1964) proposed that such a multiplet structure naturally arises when hadrons

are thought of as composites of more fundamental objects- quarks which are again fermions with spin

1/2.

The minimal non-trivial configuration for generating Baryons, which are also fermions, is to bind

three quarks (qqq). Each quark is assigned a baryon number 1/3 which ensures the fundamental baryons

have unit baryon number. Note that the baryon number is additive like charge.

Mesons are composites of quark(B=1/3) and anti-quark(B=-1/3) pairs so that the baryon number

of mesons is zero. Since the quarks have spin 1/2. mesons will necessarily have integral spin.

The next hypothesis introduced by Gell-Mann is that these quarks span the fundamental represen-

tation of the group SU(3) which has dimension 3 and the anti-quarks span the conjugate representation

of dimension 3̄. These assumptions are sufficient to see the emergence of the hadron multiplet structure:

1. Mesons (qq̄) : 3⊗ 3̄ = 1⊕ 8

2. Baryons (qqq) : 3⊗ 3⊗ 3 = 1⊕ 8⊕ 8̄⊕ 10

where the right hand side shows the dimensionality of higher dimensional representations obtained as

a direct sum of the irreducible representations (by taking the Kronecker product of the fundamental

representation). The notation will be clarified later but the resemblence to the observed multiplet

structure is clear.

While the above classification scheme is shown to work, the fundamental representation is never

realised in nature leading to the notion of quark confinement. At this stage therefore the quarks

merely serve as mnemonics for the classification of hadrons in which they have been permanantly bound.

The recent evidence of the decay of the top quark in the D0 experiment in Fermilab has however provided

the first solid evidence for the reality of quarks.

In the next few sections we consider simple examples using the spin analogy to clarify many group

theoretical notions that are used here.
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3.2 SU(2) - Spin and Isospin

To simplify the analysis some what we start with the non-strange hadrons. The only symmetry we

have to use here is the isospin which is conserved. Hence the states have definite isospin labels. The

non-strange baryons are arranged as follows:

• I=1/2 : p, n

• I=3/2 : ∆++,∆+,∆0,∆−

Suppose ψαi , ψ
β
j are basis vectors corresponding to two unitary irreducible representations of a compact

Lie group, where α, β label the representation and i, j label vectors in each representations, the basis

vectors (tensors) of the Kronecker product represenation are given by the product ψαi ψjβ.

In general these need not form the basis of an irreducible representation. However, the basis of any

irreducible representation contained in the product can be expanded interms of the product tensors. The

coefficients of such an expansion are called Clebsch-Gordon coefficients generalising from the example of

the rotation group where they were formulated first. For example,

ψγk =
∑

i,j

C(α, β, γ; i, j, k)ψαi ψ
β
j

where ψγk form the basis of an irreducible representation contained in the product.

Consider for example the Dj representation of the rotation group R(3). The product is written as,

Dj1 ⊗Dj2 = D|j1+j2| ⊕ ...⊕D|j1−j2|

where each irreducible representation is characterised by well defined permutation symmetry. For exam-

ple, the group of transformations on a spin 1/2 system is given by the representation D1/2. For a system

of two spin-half objects, we have

D1/2 ⊗D1/2 = D1 ⊕D0

which is simply a statement of the fact that the two spin half particles may be combined into a spin-1

or spin-0 system. In terms of dimensionalities this may also be written as,

2⊗ 2 = 3⊕ 1

We note that the representation D1/2 defines the unitary irreducible representation of lowest di-

mension of the group SU(2). The above group theoretical statements may be illustrated easily by the

following example. Consder explicitly the states of a spin half particle.
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Let,

|↑〉 =

∣

∣

∣

∣

S =
1

2
, Sz = +

1

2

〉

|↓〉 =

∣

∣

∣

∣

S =
1

2
, Sz = −

1

2

〉

be the basis vectors of the fundamental representation of SU(2) which is a group of Unitary-Unimodular

2× 2 matrices. The product states are four in number,

|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉 .

Except the first and the last others do not have definite symmetry under permutation. One may project

these into states with definite permutation symmetry:

|1,+1〉 = |↑↑〉

|1, 0〉 =
|↑↓〉+ |↓↑〉√

2

|1,−1〉 = |↓↓〉

which is equivalent to the statement

|1,m〉 =
∑

m1,m2

C

(

1

2
,
1

2
, 1;m1,m2,m

)∣

∣

∣

∣

1

2
,m1

〉 ∣

∣

∣

∣

1

2
,m2

〉

which span the spin-1 representation of a combination of two spin-1/2 particles. Note that the represen-

tation is completely symmetric under the exchange of the two spins.

The other combination is antisymmetric and leads to the spin-0 representation of the two particle

system.

|0, 0〉 = |↑↓〉 − |↓↑〉√
2

which is equivalent to the statement

|0, 0〉 =
∑

m1,m2

C

(

1

2
,
1

2
, 0;m1,m2, 0

)∣

∣

∣

∣

1

2
,m1

〉 ∣

∣

∣

∣

1

2
,m2

〉

Note that

J2 |j,m〉 = j(j + 1) |j,m〉

Jz |j,m〉 = m |j,m〉
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While combining two spin-1/2 objects it is sufficient to look at the symmetry properties of CG coefficinets

to get the symmetry property of the state

C(j1, j2, j;m1,m2,m) = (−1)j1+j2−jC(j2, j1, j;m1,m2,m)

Example of a physical system for two spin-1/2 objects is the deuteron.

3.2.1 A system of three spin-1/2 objects

Applying the CG theorem,

D1/2 ⊗D1/2 ⊗D1/2 = [D1 ⊕D0]⊗D1/2 = D3/2 ⊕D1/2 ⊕D1/2

or interms of multiplicities we have

2⊗ 2⊗ 2 = 4⊕ 2⊕ 2̄

Thus there are two spin 1/2 representations (distinguished by their permutation symmetry and one

spin 3/2 representation.

The states that span these representations may be constructed explicitly:

•

|3/2,m〉 =
∑

m1,m2

C(1, 1/2, 3/2;m1,m2,m) |1,m1〉 |1/2,m2〉

|3/2, 3/2〉 = |↑↑↑〉

|3/2, 1/2〉 =
|↑↑↓〉+ |↑↓↑〉+ |↓↑↑〉√

3

|3/2,−1/2〉 =
|↓↓↑〉+ |↓↑↓〉+ |↑↓↓〉√

3

|3/2,−3/2〉 = |↓↓↓〉

Collectively we refer to these states as χs and are explicitly symmetric.

•

|1/2,m〉 =
∑

m1,m2

C(1, 1/2, 1/2;m1,m2,m) |1,m1〉 |1/2,m2〉

|1/2, 1/2〉 =
2 |↑↑↓〉 − (|↑↓〉+ |↓↑〉) |↑〉√

6

|1/2,−1/2〉 =
2 |↓↓↑〉 − (|↓↑〉+ |↑↓〉) |↓〉√

6
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Collectively we call these states χλ. Note that these states are not symmetric or antisymmetric

under exchange of spins. These are called Mixed-symmetry states- symmetric in 1-2 with no

particular symmetry with respect the third spin.

•

|1/2,m〉 =
∑

m1,m2

C(0, 1/2, 1/2; 0,m,m) |0, 0〉 |1/2,m〉

|1/2, 1/2〉 =
(|↑↓〉 − |↓↑〉) |↑〉√

2

|1/2,−1/2〉 =
(|↓↑〉 − |↑↓〉) |↓〉√

2

Collectively we call these states χρ. These are again called Mixed-symmetry states- antisymmetric

in 1-2 with no particular symmetry with respect the third spin.

The precise number of states in each representation correspond to the multiplicities obtained from

the CG theorem.

3.2.2 Combining Isospin states

We may carry out the same excercise in the isospin space. The rotations in isospin space are analogous

to the rotations in the spin space. The fundamental group is again SU(2) and is spanned by two vectors

u and d referring to the up and down quark states. Analogy with spin is clear once we identify |↑〉 → |u〉

and |↓〉 → |d〉. The construction of states in the isospin space then proceeds the same way as in the spin

space.

By analogy with spin the u-quark has I = 1/2, I3 = 1/2 and the d-quark has I = 1/2, I3 = −1/2. All

the quarks carry spin-1/2 and are fermions under permutation symmetry.

Using the Gell-Mann - Nishijima formula the charges of the quarks may be obtained as follows:

Qu = I3 + (B + S)/2 = 2/3

Qd = I3 + (B + S)/2 = −1/3

since strangeness S=0 and Baryon number B=1/3 for u and d quarks by definition. Thus the quarks

carry fractional charges.

Following table summarises the states of two isospin 1/2 particles: Obviously no such di-quark systems
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I, I3 State Charge Q
I=1 Triplet:
1,1 uu 4/3
1,0 ud+du√

2
1/3

1,-1 dd -2/3
I=0 Singlet:
0,0 ud−du√

2
1/3

I, I3 State Charge Q Baryon
I=3/2 ∆ φs
3/2,3/2 uuu 2 ∆++

3/2,1/2 uud+duu+udu√
3

1 ∆+

3/2,-1/2 udd+dud+ddu√
3

0 ∆0

3/2,-3/2 ddd -1 ∆−

I=1/2 Nucleon doublet:φλ
1/2,1/2 2uud−(ud+du)u√

6
1 p

1/2,-1/2 2ddu−(ud+du)d√
6

1 n

I=1/2 Nucleon doublet:φρ
1/2,1/2 (ud−du)u√

2
1 p

1/2,-1/2 (ud−du)d√
2

1 n

with non-integral charges appearr in nature. However we need the above construction to construct

systems of three I=1/2 particles. Using the spin analogy the following table summarises the system of

three quarks (qqq) which will be identified with the baryon states.

3.2.3 Spin-Isospin States of definite symmetry

The spin-isospin state of the ∆ particle with S=I=3/2 is given by

|∆〉 = χsφs

However the nucleon states with S=I=1/2 have many possible combinations which have the same quan-

tum numbers as the proton and the neutron, infact too many for comfort since there are exactly two

members of the doublet that we should extract.

χρφρ, χρφλ, χλφλ, χλφρ

So we have four instead two states. But none of these states has a well defined symmetry or antisymmetry

under permutations, while the ∆ is completely symmetric under spin as well as isospin indices.

If we demand a completely symmetry under exchange as in the case of Delta states then one gets the

following combination:

|N〉 = χρφρ + χλφλ√
2
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On the otherhand a completely antisymmetric state would have the combination

|N〉 = χρφλ − χλφρ√
2

where N = p, n depending upon the isospin projection of φ state.

In nuclear three body problem the nuclei He3(ppn) and H3(pnn) play the roles analogous to that

of proton(uud) and neutron(ddu). The choice of the particular combination of the spin-isospin state is

dictated by the fact that the state of a system of fermions must be antisymmetric in all indices. Since

in the ground state wave function of these two nuclei (L=0) is completely symmetric, one choses the

antisymmetric wave function given above. The ground state static properties are well reproduced by

such a combination. Thus it might seem that there is an unambigious choice for the Nucleon from the

above two choices. However, the delta states given above are completely symmetric under spin-isospin

indices. The question therefore hangs on the fate of the Spin-Statistics Theorem. We will address this

issue next.

3.2.4 Spin-Statistics Problem: Origin of colour

Consider the state of ∆ particle. As remarked before the spin-isospin state of this particle is completely

symmetric under permutations. Its JP = 3/2+ and hence it is even under parity. It is also the ground

state of the I = 3/2 state. Quantum mechanics tells us that the ground state of any system with even

parity must be spacially symmetric under permutations. For example the ground states of the hydrogen

molecule, Helium and Oxygen nuclei, etc. Thus we find ourselves in the piquant situation where the ∆

state is a completely symmetric in space⊗ spin⊗ isospin coordinates.

The spin-statistics theorem tells us that a state of a system of ferrmions has to be completely anti-

symmetric. Thus we encounter a paradoxical situation that spin-statistics theorem may not hold for the

∆ states in particular2.

A way out of this dilemma is to introduce a new quantum number called Colour. Thus each quark

(u or d) comes in three colours and the wave function of the baryons is completely antisymmetric in the

colour space. Thus all baryons have

Bcolour = ǫijkqiqjqk

where i, j, k = red, green, blue, the three colours ( you may take 1,2,3 for the indices). The full wave

function of the Delta state is then given by,

|∆〉 = ǫijkqiqjqk[ψspaceχsφs]

2 Historically many solutions wer proposed- Parastatistics by Greenberg and coloured quarks with integral charge called
the Han-Nambu model. But the experimental evidence is firmly against these proposals
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which is on the whole an antisymmetric state. One may wonder if the above decomposition smells of

non-relativistic quantum mechanics which may not be wholly valid for quarks since their masses are not

very large. Indeed the situation with nucleons will clarify this issue further.

We may now extend the arguement given above for the nucleon states also. As we have seen there

are two combinations available for nucleons:

|N〉 = χρφρ + χλφλ√
2

|N〉 = χρφλ − χλφρ√
2

combined from the mixed symmetry states of spin and isospin. Once again we assume the spacial part

is symmetric since both nucleon form the ground state of the JP = 1/2+ spectrum of baryons. Since

the second combination is completely antisymmetric, it may seem as though we do not have the spin-

statistics problem. However, since the quarks have to be coloured in order to preserve the antisymmetry

of the ∆ states, it is natural to choose the symmetric states and impose antisymmetry condition by

invoking colour. Thus we choose the nucleon states to be,

|N〉 = ǫijkqiqjqk
χρφρ + χλφλ√

2

which is now completely antisymmetric.

An even stronger evidence of the choice of the combinations given above for nucleons, hence for colour,

actually comes from the experimental measurement of the static magnetic moment of the nucleons. We

discuss this below.

The experimental data on the neutron and proton magnetic moments gives,

µn = −1.91
µp = 2.79

= −0.685

The corresponding magnetic moment operator in terms of the basic quark operators is given by,

Mz =

3
∑

i=1

µσizei

where µ is the unit of quark magnetic moment which we keep arbitrary since we do not know this. ei

is the charge of the i-th quark and σiz is the z-component of the Pauli spin vector ~σ . We are therefore

interested in evaluating

µn,p =< N = n, p|Mz|N = n, p >

Note that the operator involves only the spin and isospin operators. We concentrate only this part of
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the wave-function. Because these states of the nucleon are either fully symmetric or antisymmetric we

have the identity,

µn,p = 3µ〈N = n, p|e3σ3z|N = n, p〉

The matrix elements in the spin space are given by,

〈χρ|σ3z |χρ〉 = 1

〈χρ|σ3z |χλ〉 = 0

〈χλ|σ3z |χλ〉 = −1/3

Similarly in the isospin space we have for protons

〈φpρ|e3|φpρ〉 = 2/3

〈φpρ|e3|φpλ〉 = 0

〈φpλ|e3|φ
p
λ〉 = 0

and for neutrons

〈φnρ |e3|φnρ 〉 = −1/3

〈φnρ |e3|φnλ〉 = 0

〈φnλ|e3|φnλ〉 = 1/3

Substituting these in the spin-isospin wave functions of the neutron and proton we have,

µn = −2µ/3

µp = µ

and therefore the ratio is given by,

µn
µp

= −2/3

whereas the experimental value is given by -0.685 which is in excellant agreement considering the crude

assumptions made. On the other hand if we had chosen the antisymmetric combination in the spin-isospin

space disregarding the colour hypothesis, we would have obtained,

µn
µp

= −2

in contradiction with experiment. Thus we have now evidence for colour from two independent approaches-

44



the spin-statistics theorem and the experimental data on the static magnetic moments of the neutron

and proton. Note that we did not need to fix µ the basic unit of magnetic moment of the quarks- it just

cancelled out in the ratios.

3.2.5 Constituent Quarks

The ratio of the magnetic moments as calculated before does not fix the unit of the quark magnetic

moment. As in the case of the electron if we assume that the Dirac magnetic moment of the quarks to

be given by the expressions:

µu =
eu
2mu

=
2µ

3
µd =

ed
2md

=
−µ
3

Assuming m = mu = md we have for the proton magnetic moment

µp = 2.79
e

2MP
=

e

2m

where m is the quark mass, we immediately get,

m =
Mp

2.79
= 336MeV

This mass is often referred to as the constituent quark mass. Unlike the mass of the electron which

enters the QED Lagrangian as a fundamental quantity, the constituent quark mass has no firm theoretical

basis except to define a scale for discussing the low energy and static properties of the nucleon.

3.2.6 Other evidences for colour

We conclude this discussion with few more remarks on the colour quantum number: Some of the strongest

evidence for colour comes from experiments. Consider the following ratio which is now experimentally

measured:

σ(e+e− → hadrons(qq̄)

σ(e+e− → µ+µ−)

which is the ratio of the total cross-sections for electron-positron annihilation to either quarks or muons.

Typically such a total cross-section is obtained by summing over all the final states. Thus in the nu-

merator one sums over all the spin-isospin (around 1 GeV. At higher energies one has to sum over other

quarks as well) states and in the denominator we sum over the spin states of the muons. If quarks come

in three colours, one needs to sum over these as well. As it turns out merely summing over spin and

flavours underestimates the ratio by a factor close to three suggesting the existence of an extra degree

of freedom. Imposing the requirement that the quarks come in three colours solves this puzzle as well.
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The strongest evidence to date comes from the following decay:

π0 → γγ

It is some what complicated to discuss this case without a background in quantum field theory. It suffices

to say that the π decay to two photons proceeds through the mediation of quarks. Once the amplitude

is obtained by summing over all quark states. Without imposing the colour degree of freedom, the decay

amplitude is underestimated by a factor of 3, and hence the rate by a factor of 9. Including colour the

calculated decay rate agrees with experiments within errors.

3.3 SU(3) Flavour States

We have constructed states of non-strange baryons using the SU(2) isospin doublet of quarks (u,d).

Extending these arguements to construct hadrons using the triplet of quarks (u,d,s) is straight-forward

if more cumbersome. We shall mention briefly how the hadron octets and decuplets mentioned in the

beginning of this section are obtained using three basic quark flavours

Regarding the triplet (u,d,s) as the basis spanning the fundamental representation of SU(3), we can

combine any two of them first. There are nine such combinations which may be arranged as

3⊗ 3 = 6⊕ 3

using the expansion of Kronecker product. Explicitly these di-quark states can be written as

uu, dd, ss,
ud+ du√

2
,
us+ su√

2
,
sd+ ds√

2

which are 6 completely symmetric states and

ud− du√
2

,
us− su√

2
,
sd− ds√

2

which are 3 completely antisymmetric states.

Similarly combining three quarks we obtain,

3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1

where the representation with dimension 10 is completely symmetric given by,

uuu, ddd, sss, (uud)sym, (uus)sym, (udd)sym, (sdd)sym, (ssu)sym, (ssd)sym, (uds)sym
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where (uud)sym means a completely symmetric arrangement of (uud) etc. These quark states correspond

to the spin 3/2 decuplet representation of the baryons.

The singlet under SU(3) with dimensionality 1 is the completely antisymmetric combination of (uds)

quarks. The two octets are mixed symmetry representations.

Thus we could generate the weight diagrams of SU(3) analogous to the Gell-Mann’s scheme for

hadrons interms of their quark contents.

Combining these states with states of definite spin proceeds as in the case of combining isospin and

spin states.

Appendix: Introduction to SU(2) and SU(3)

In general SU(N) is a group of N ×N unitary unimodular matrices.

UU † = 1, det(U) = 1

In general we may therefore write,

U = exp (iθaTa), a = 1, ..., N2 − 1

where θa are the parameters of the group and Ta are the hermitian( because the elements are unitary)

generators of the group.

The generators obey the following properties:

Trace(Ta) = 0

Trace(TaTb) = δab

and

[Ta, Tb] = ifabcTc

which defines the algebra of the generators completely.

SU(2) is the group of 2× 2 unitary unimodular matrices. It is also the lowest dimensional nontrivial

representation of the rotation group. The generators may be chosen to be

Ta =
1

2
σa; a = 1, 2, 3
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where σ are the Pauli matrices

σ1 =







0 1

1 0






σ2 =







0 −i

i 0






σ3 =







1 0

0 −1






(3.2)

The basis for this representation is conventionally chosen to be the eigenvectors of σ3 that is the column

vectors,

|1/2, 1/2〉 =







1

0






, |1/2,−1/2〉 =







0

1






(3.3)

which describe a spin-1/2 particle with the projection m = 1/2,−1/2 respectively. As we have seen

this fundamental representation of SU(2) may be combined to build higher dimensional representation

corresponding to the spins J = 1, 3/2, 2, ... etc. Note that there is only one diagonal generator. In

general for SU(N) there can atmost be N − 1 diagonal generators which is known as the rank of the

group. The rank of the group is also equal to the number of Casimir operators- the states that span the

representation are eigenstates of this operator. For example the Casimir operator of the SU(2) is J2.

The states are simultaneous eigenstates of J2 and Jz.

The group SU(3) is the group of 3× 3 unitary unimodular matrices. The generators may be chosen

to be

Ta =
1

2
λa; a = 1, ...8

where λ are given by

λ1 =













0 1 0

1 0 0

0 0 0













λ2 =













0 −i 0

i 0 0

0 0 0













(3.4)

λ3 =













1 0 0

0 −1 0

0 0 0













λ4 =













0 0 1

0 0 0

1 0 0













λ5 =













0 0 −i

0 0 0

i 0 0













(3.5)

λ6 =













0 0 0

0 0 1

0 1 0













λ7 =













0 0 0

0 0 −i

0 i 0













λ8 =













1 0 0

0 1 0

0 0 −2













/
√
3 (3.6)

We note a few points here:

• The generators T1, T2, T3 generate an SU(2) subgroup of SU(3) and the algebra of these generators

closes among themselves.
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• The diagonal generators commute among themselves.

[Hi, Hj ] = 0

hence the algebra is closed. The diagonal generators define a subalgebra called the Cartan sub-

algebra. The elements of this subalgebra are m = N − 1 in number where m is the rank of the

group. All states in a representation D are labelled by the eigenvalues of Hi such that

{Hi} | 〉 = {µi} | 〉

and ~µi = {µi} is called the weight vector.

For the group SU(3) we have chosen H1 = λ3/2, H2 = λ8/
√
3. The eigenvectors may be chosen to be,

|1/2, 1/3〉 =













1

0

0













|−1/2, 1/3〉 =













0

1

0













|0,−2/3〉 =













0

0

1













(3.7)

We may easily identify the quantum numbers of these states with isospin and hypercharge of u(1/2,1/3),

d(-1/2, 1/3) and s(0,-2/3) quarks. Thus the three quarks u,d and s form the basis of the fundamental

representation of SU(3).

3.3.1 Conjugate representation

Suppose Ta are generators of some representation D of the group, then

[Ta, Tb] = ifabcTc

and −T ∗
a also satisfy the same algebra

[T ∗
a , T

∗
b ] = ifabcT

∗
c

Therefore −T ∗
a also generate a representation D̄ of the same dimension. The states are again eigenstates

of the diagonal generators of the group. Thus we have, for example,

D → D̄

H1 → −H1, H2 → −H2
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Under this change,

u = |1/2, 1/3〉 → ū = |−1/2,−1/3〉

d = |−1/2, 1/3〉 → d̄ = |1/2,−1/3〉

s = |0,−2/3〉 → s̄ = |0, 2/3〉

interms of flavour states of SU(3). Note that in the conjugate representation all the charges (hyper) are

reversed.

Thus if we choose the vectors that span the fundamental representation of SU(3) as quarks, the

vectors that span the conjugate representation are anti-quarks. Indeed while there were many choices

for the fundamental group for three quarks like O(3), SO(3), SU(3) became a natural choice since its

representations are not real unlike SO(3).

3.4 Problems:

1. Explicitly construct the wavefunction of the ∆++ state which is completely antisymmetric.

2. Using isospin symmetry show that the transition rates for ∆→ π +N are in the following ratio:

∆++ → pπ+ : ∆+ → pπ0 : ∆++ → pπ− = 3 : 2 : 1

3. Using isospin analysis show that ρ0 → π0π0 is forbidden.

4. Use isospin invariance to show that the reaction cross-section for pp→ π+d is twice that of

np→ π0d
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